Initialising Repository

This commit is contained in:
2022-08-05 12:01:05 +05:30
commit 7605d0a6b1
11 changed files with 43703 additions and 0 deletions

View File

@@ -0,0 +1,608 @@
,work_year,experience_level,employment_type,job_title,salary,salary_currency,salary_in_usd,employee_residence,remote_ratio,company_location,company_size
0,2020,MI,FT,Data Scientist,70000,EUR,79833,DE,0,DE,L
1,2020,SE,FT,Machine Learning Scientist,260000,USD,260000,JP,0,JP,S
2,2020,SE,FT,Big Data Engineer,85000,GBP,109024,GB,50,GB,M
3,2020,MI,FT,Product Data Analyst,20000,USD,20000,HN,0,HN,S
4,2020,SE,FT,Machine Learning Engineer,150000,USD,150000,US,50,US,L
5,2020,EN,FT,Data Analyst,72000,USD,72000,US,100,US,L
6,2020,SE,FT,Lead Data Scientist,190000,USD,190000,US,100,US,S
7,2020,MI,FT,Data Scientist,11000000,HUF,35735,HU,50,HU,L
8,2020,MI,FT,Business Data Analyst,135000,USD,135000,US,100,US,L
9,2020,SE,FT,Lead Data Engineer,125000,USD,125000,NZ,50,NZ,S
10,2020,EN,FT,Data Scientist,45000,EUR,51321,FR,0,FR,S
11,2020,MI,FT,Data Scientist,3000000,INR,40481,IN,0,IN,L
12,2020,EN,FT,Data Scientist,35000,EUR,39916,FR,0,FR,M
13,2020,MI,FT,Lead Data Analyst,87000,USD,87000,US,100,US,L
14,2020,MI,FT,Data Analyst,85000,USD,85000,US,100,US,L
15,2020,MI,FT,Data Analyst,8000,USD,8000,PK,50,PK,L
16,2020,EN,FT,Data Engineer,4450000,JPY,41689,JP,100,JP,S
17,2020,SE,FT,Big Data Engineer,100000,EUR,114047,PL,100,GB,S
18,2020,EN,FT,Data Science Consultant,423000,INR,5707,IN,50,IN,M
19,2020,MI,FT,Lead Data Engineer,56000,USD,56000,PT,100,US,M
20,2020,MI,FT,Machine Learning Engineer,299000,CNY,43331,CN,0,CN,M
21,2020,MI,FT,Product Data Analyst,450000,INR,6072,IN,100,IN,L
22,2020,SE,FT,Data Engineer,42000,EUR,47899,GR,50,GR,L
23,2020,MI,FT,BI Data Analyst,98000,USD,98000,US,0,US,M
24,2020,MI,FT,Lead Data Scientist,115000,USD,115000,AE,0,AE,L
25,2020,EX,FT,Director of Data Science,325000,USD,325000,US,100,US,L
26,2020,EN,FT,Research Scientist,42000,USD,42000,NL,50,NL,L
27,2020,SE,FT,Data Engineer,720000,MXN,33511,MX,0,MX,S
28,2020,EN,CT,Business Data Analyst,100000,USD,100000,US,100,US,L
29,2020,SE,FT,Machine Learning Manager,157000,CAD,117104,CA,50,CA,L
30,2020,MI,FT,Data Engineering Manager,51999,EUR,59303,DE,100,DE,S
31,2020,EN,FT,Big Data Engineer,70000,USD,70000,US,100,US,L
32,2020,SE,FT,Data Scientist,60000,EUR,68428,GR,100,US,L
33,2020,MI,FT,Research Scientist,450000,USD,450000,US,0,US,M
34,2020,MI,FT,Data Analyst,41000,EUR,46759,FR,50,FR,L
35,2020,MI,FT,Data Engineer,65000,EUR,74130,AT,50,AT,L
36,2020,MI,FT,Data Science Consultant,103000,USD,103000,US,100,US,L
37,2020,EN,FT,Machine Learning Engineer,250000,USD,250000,US,50,US,L
38,2020,EN,FT,Data Analyst,10000,USD,10000,NG,100,NG,S
39,2020,EN,FT,Machine Learning Engineer,138000,USD,138000,US,100,US,S
40,2020,MI,FT,Data Scientist,45760,USD,45760,PH,100,US,S
41,2020,EX,FT,Data Engineering Manager,70000,EUR,79833,ES,50,ES,L
42,2020,MI,FT,Machine Learning Infrastructure Engineer,44000,EUR,50180,PT,0,PT,M
43,2020,MI,FT,Data Engineer,106000,USD,106000,US,100,US,L
44,2020,MI,FT,Data Engineer,88000,GBP,112872,GB,50,GB,L
45,2020,EN,PT,ML Engineer,14000,EUR,15966,DE,100,DE,S
46,2020,MI,FT,Data Scientist,60000,GBP,76958,GB,100,GB,S
47,2020,SE,FT,Data Engineer,188000,USD,188000,US,100,US,L
48,2020,MI,FT,Data Scientist,105000,USD,105000,US,100,US,L
49,2020,MI,FT,Data Engineer,61500,EUR,70139,FR,50,FR,L
50,2020,EN,FT,Data Analyst,450000,INR,6072,IN,0,IN,S
51,2020,EN,FT,Data Analyst,91000,USD,91000,US,100,US,L
52,2020,EN,FT,AI Scientist,300000,DKK,45896,DK,50,DK,S
53,2020,EN,FT,Data Engineer,48000,EUR,54742,PK,100,DE,L
54,2020,SE,FL,Computer Vision Engineer,60000,USD,60000,RU,100,US,S
55,2020,SE,FT,Principal Data Scientist,130000,EUR,148261,DE,100,DE,M
56,2020,MI,FT,Data Scientist,34000,EUR,38776,ES,100,ES,M
57,2020,MI,FT,Data Scientist,118000,USD,118000,US,100,US,M
58,2020,SE,FT,Data Scientist,120000,USD,120000,US,50,US,L
59,2020,MI,FT,Data Scientist,138350,USD,138350,US,100,US,M
60,2020,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L
61,2020,MI,FT,Data Engineer,130800,USD,130800,ES,100,US,M
62,2020,EN,PT,Data Scientist,19000,EUR,21669,IT,50,IT,S
63,2020,SE,FT,Data Scientist,412000,USD,412000,US,100,US,L
64,2020,SE,FT,Machine Learning Engineer,40000,EUR,45618,HR,100,HR,S
65,2020,EN,FT,Data Scientist,55000,EUR,62726,DE,50,DE,S
66,2020,EN,FT,Data Scientist,43200,EUR,49268,DE,0,DE,S
67,2020,SE,FT,Data Science Manager,190200,USD,190200,US,100,US,M
68,2020,EN,FT,Data Scientist,105000,USD,105000,US,100,US,S
69,2020,SE,FT,Data Scientist,80000,EUR,91237,AT,0,AT,S
70,2020,MI,FT,Data Scientist,55000,EUR,62726,FR,50,LU,S
71,2020,MI,FT,Data Scientist,37000,EUR,42197,FR,50,FR,S
72,2021,EN,FT,Research Scientist,60000,GBP,82528,GB,50,GB,L
73,2021,EX,FT,BI Data Analyst,150000,USD,150000,IN,100,US,L
74,2021,EX,FT,Head of Data,235000,USD,235000,US,100,US,L
75,2021,SE,FT,Data Scientist,45000,EUR,53192,FR,50,FR,L
76,2021,MI,FT,BI Data Analyst,100000,USD,100000,US,100,US,M
77,2021,MI,PT,3D Computer Vision Researcher,400000,INR,5409,IN,50,IN,M
78,2021,MI,CT,ML Engineer,270000,USD,270000,US,100,US,L
79,2021,EN,FT,Data Analyst,80000,USD,80000,US,100,US,M
80,2021,SE,FT,Data Analytics Engineer,67000,EUR,79197,DE,100,DE,L
81,2021,MI,FT,Data Engineer,140000,USD,140000,US,100,US,L
82,2021,MI,FT,Applied Data Scientist,68000,CAD,54238,GB,50,CA,L
83,2021,MI,FT,Machine Learning Engineer,40000,EUR,47282,ES,100,ES,S
84,2021,EX,FT,Director of Data Science,130000,EUR,153667,IT,100,PL,L
85,2021,MI,FT,Data Engineer,110000,PLN,28476,PL,100,PL,L
86,2021,EN,FT,Data Analyst,50000,EUR,59102,FR,50,FR,M
87,2021,MI,FT,Data Analytics Engineer,110000,USD,110000,US,100,US,L
88,2021,SE,FT,Lead Data Analyst,170000,USD,170000,US,100,US,L
89,2021,SE,FT,Data Analyst,80000,USD,80000,BG,100,US,S
90,2021,SE,FT,Marketing Data Analyst,75000,EUR,88654,GR,100,DK,L
91,2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,100,DE,S
92,2021,MI,FT,Lead Data Analyst,1450000,INR,19609,IN,100,IN,L
93,2021,SE,FT,Lead Data Engineer,276000,USD,276000,US,0,US,L
94,2021,EN,FT,Data Scientist,2200000,INR,29751,IN,50,IN,L
95,2021,MI,FT,Cloud Data Engineer,120000,SGD,89294,SG,50,SG,L
96,2021,EN,PT,AI Scientist,12000,USD,12000,BR,100,US,S
97,2021,MI,FT,Financial Data Analyst,450000,USD,450000,US,100,US,L
98,2021,EN,FT,Computer Vision Software Engineer,70000,USD,70000,US,100,US,M
99,2021,MI,FT,Computer Vision Software Engineer,81000,EUR,95746,DE,100,US,S
100,2021,MI,FT,Data Analyst,75000,USD,75000,US,0,US,L
101,2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,L
102,2021,MI,FT,BI Data Analyst,11000000,HUF,36259,HU,50,US,L
103,2021,MI,FT,Data Analyst,62000,USD,62000,US,0,US,L
104,2021,MI,FT,Data Scientist,73000,USD,73000,US,0,US,L
105,2021,MI,FT,Data Analyst,37456,GBP,51519,GB,50,GB,L
106,2021,MI,FT,Research Scientist,235000,CAD,187442,CA,100,CA,L
107,2021,SE,FT,Data Engineer,115000,USD,115000,US,100,US,S
108,2021,SE,FT,Data Engineer,150000,USD,150000,US,100,US,M
109,2021,EN,FT,Data Engineer,2250000,INR,30428,IN,100,IN,L
110,2021,SE,FT,Machine Learning Engineer,80000,EUR,94564,DE,50,DE,L
111,2021,SE,FT,Director of Data Engineering,82500,GBP,113476,GB,100,GB,M
112,2021,SE,FT,Lead Data Engineer,75000,GBP,103160,GB,100,GB,S
113,2021,EN,PT,AI Scientist,12000,USD,12000,PK,100,US,M
114,2021,MI,FT,Data Engineer,38400,EUR,45391,NL,100,NL,L
115,2021,EN,FT,Machine Learning Scientist,225000,USD,225000,US,100,US,L
116,2021,MI,FT,Data Scientist,50000,USD,50000,NG,100,NG,L
117,2021,MI,FT,Data Science Engineer,34000,EUR,40189,GR,100,GR,M
118,2021,EN,FT,Data Analyst,90000,USD,90000,US,100,US,S
119,2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L
120,2021,MI,FT,Big Data Engineer,60000,USD,60000,ES,50,RO,M
121,2021,SE,FT,Principal Data Engineer,200000,USD,200000,US,100,US,M
122,2021,EN,FT,Data Analyst,50000,USD,50000,US,100,US,M
123,2021,EN,FT,Applied Data Scientist,80000,GBP,110037,GB,0,GB,L
124,2021,EN,PT,Data Analyst,8760,EUR,10354,ES,50,ES,M
125,2021,MI,FT,Principal Data Scientist,151000,USD,151000,US,100,US,L
126,2021,SE,FT,Machine Learning Scientist,120000,USD,120000,US,50,US,S
127,2021,MI,FT,Data Scientist,700000,INR,9466,IN,0,IN,S
128,2021,EN,FT,Machine Learning Engineer,20000,USD,20000,IN,100,IN,S
129,2021,SE,FT,Lead Data Scientist,3000000,INR,40570,IN,50,IN,L
130,2021,EN,FT,Machine Learning Developer,100000,USD,100000,IQ,50,IQ,S
131,2021,EN,FT,Data Scientist,42000,EUR,49646,FR,50,FR,M
132,2021,MI,FT,Applied Machine Learning Scientist,38400,USD,38400,VN,100,US,M
133,2021,SE,FT,Computer Vision Engineer,24000,USD,24000,BR,100,BR,M
134,2021,EN,FT,Data Scientist,100000,USD,100000,US,0,US,S
135,2021,MI,FT,Data Analyst,90000,USD,90000,US,100,US,M
136,2021,MI,FT,ML Engineer,7000000,JPY,63711,JP,50,JP,S
137,2021,MI,FT,ML Engineer,8500000,JPY,77364,JP,50,JP,S
138,2021,SE,FT,Principal Data Scientist,220000,USD,220000,US,0,US,L
139,2021,EN,FT,Data Scientist,80000,USD,80000,US,100,US,M
140,2021,MI,FT,Data Analyst,135000,USD,135000,US,100,US,L
141,2021,SE,FT,Data Science Manager,240000,USD,240000,US,0,US,L
142,2021,SE,FT,Data Engineering Manager,150000,USD,150000,US,0,US,L
143,2021,MI,FT,Data Scientist,82500,USD,82500,US,100,US,S
144,2021,MI,FT,Data Engineer,100000,USD,100000,US,100,US,L
145,2021,SE,FT,Machine Learning Engineer,70000,EUR,82744,BE,50,BE,M
146,2021,MI,FT,Research Scientist,53000,EUR,62649,FR,50,FR,M
147,2021,MI,FT,Data Engineer,90000,USD,90000,US,100,US,L
148,2021,SE,FT,Data Engineering Manager,153000,USD,153000,US,100,US,L
149,2021,SE,FT,Cloud Data Engineer,160000,USD,160000,BR,100,US,S
150,2021,SE,FT,Director of Data Science,168000,USD,168000,JP,0,JP,S
151,2021,MI,FT,Data Scientist,150000,USD,150000,US,100,US,M
152,2021,MI,FT,Data Scientist,95000,CAD,75774,CA,100,CA,L
153,2021,EN,FT,Data Scientist,13400,USD,13400,UA,100,UA,L
154,2021,SE,FT,Data Science Manager,144000,USD,144000,US,100,US,L
155,2021,SE,FT,Data Science Engineer,159500,CAD,127221,CA,50,CA,L
156,2021,MI,FT,Data Scientist,160000,SGD,119059,SG,100,IL,M
157,2021,MI,FT,Applied Machine Learning Scientist,423000,USD,423000,US,50,US,L
158,2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,100,US,M
159,2021,EN,FT,Machine Learning Engineer,125000,USD,125000,US,100,US,S
160,2021,EX,FT,Head of Data,230000,USD,230000,RU,50,RU,L
161,2021,EX,FT,Head of Data Science,85000,USD,85000,RU,0,RU,M
162,2021,MI,FT,Data Engineer,24000,EUR,28369,MT,50,MT,L
163,2021,EN,FT,Data Science Consultant,54000,EUR,63831,DE,50,DE,L
164,2021,EX,FT,Director of Data Science,110000,EUR,130026,DE,50,DE,M
165,2021,SE,FT,Data Specialist,165000,USD,165000,US,100,US,L
166,2021,EN,FT,Data Engineer,80000,USD,80000,US,100,US,L
167,2021,EX,FT,Director of Data Science,250000,USD,250000,US,0,US,L
168,2021,EN,FT,BI Data Analyst,55000,USD,55000,US,50,US,S
169,2021,MI,FT,Data Architect,150000,USD,150000,US,100,US,L
170,2021,MI,FT,Data Architect,170000,USD,170000,US,100,US,L
171,2021,MI,FT,Data Engineer,60000,GBP,82528,GB,100,GB,L
172,2021,EN,FT,Data Analyst,60000,USD,60000,US,100,US,S
173,2021,SE,FT,Principal Data Scientist,235000,USD,235000,US,100,US,L
174,2021,SE,FT,Research Scientist,51400,EUR,60757,PT,50,PT,L
175,2021,SE,FT,Data Engineering Manager,174000,USD,174000,US,100,US,L
176,2021,MI,FT,Data Scientist,58000,MXN,2859,MX,0,MX,S
177,2021,MI,FT,Data Scientist,30400000,CLP,40038,CL,100,CL,L
178,2021,EN,FT,Machine Learning Engineer,81000,USD,81000,US,50,US,S
179,2021,MI,FT,Data Scientist,420000,INR,5679,IN,100,US,S
180,2021,MI,FT,Big Data Engineer,1672000,INR,22611,IN,0,IN,L
181,2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L
182,2021,MI,FT,Data Engineer,22000,EUR,26005,RO,0,US,L
183,2021,SE,FT,Finance Data Analyst,45000,GBP,61896,GB,50,GB,L
184,2021,MI,FL,Machine Learning Scientist,12000,USD,12000,PK,50,PK,M
185,2021,MI,FT,Data Engineer,4000,USD,4000,IR,100,IR,M
186,2021,SE,FT,Data Analytics Engineer,50000,USD,50000,VN,100,GB,M
187,2021,EX,FT,Data Science Consultant,59000,EUR,69741,FR,100,ES,S
188,2021,SE,FT,Data Engineer,65000,EUR,76833,RO,50,GB,S
189,2021,MI,FT,Machine Learning Engineer,74000,USD,74000,JP,50,JP,S
190,2021,SE,FT,Data Science Manager,152000,USD,152000,US,100,FR,L
191,2021,EN,FT,Machine Learning Engineer,21844,USD,21844,CO,50,CO,M
192,2021,MI,FT,Big Data Engineer,18000,USD,18000,MD,0,MD,S
193,2021,SE,FT,Data Science Manager,174000,USD,174000,US,100,US,L
194,2021,SE,FT,Research Scientist,120500,CAD,96113,CA,50,CA,L
195,2021,MI,FT,Data Scientist,147000,USD,147000,US,50,US,L
196,2021,EN,FT,BI Data Analyst,9272,USD,9272,KE,100,KE,S
197,2021,SE,FT,Machine Learning Engineer,1799997,INR,24342,IN,100,IN,L
198,2021,SE,FT,Data Science Manager,4000000,INR,54094,IN,50,US,L
199,2021,EN,FT,Data Science Consultant,90000,USD,90000,US,100,US,S
200,2021,MI,FT,Data Scientist,52000,EUR,61467,DE,50,AT,M
201,2021,SE,FT,Machine Learning Infrastructure Engineer,195000,USD,195000,US,100,US,M
202,2021,MI,FT,Data Scientist,32000,EUR,37825,ES,100,ES,L
203,2021,SE,FT,Research Scientist,50000,USD,50000,FR,100,US,S
204,2021,MI,FT,Data Scientist,160000,USD,160000,US,100,US,L
205,2021,MI,FT,Data Scientist,69600,BRL,12901,BR,0,BR,S
206,2021,SE,FT,Machine Learning Engineer,200000,USD,200000,US,100,US,L
207,2021,SE,FT,Data Engineer,165000,USD,165000,US,0,US,M
208,2021,MI,FL,Data Engineer,20000,USD,20000,IT,0,US,L
209,2021,SE,FT,Data Analytics Manager,120000,USD,120000,US,0,US,L
210,2021,MI,FT,Machine Learning Engineer,21000,EUR,24823,SI,50,SI,L
211,2021,MI,FT,Research Scientist,48000,EUR,56738,FR,50,FR,S
212,2021,MI,FT,Data Engineer,48000,GBP,66022,HK,50,GB,S
213,2021,EN,FT,Big Data Engineer,435000,INR,5882,IN,0,CH,L
214,2021,EN,FT,Machine Learning Engineer,21000,EUR,24823,DE,50,DE,M
215,2021,SE,FT,Principal Data Engineer,185000,USD,185000,US,100,US,L
216,2021,EN,PT,Computer Vision Engineer,180000,DKK,28609,DK,50,DK,S
217,2021,MI,FT,Data Scientist,76760,EUR,90734,DE,50,DE,L
218,2021,MI,FT,Machine Learning Engineer,75000,EUR,88654,BE,100,BE,M
219,2021,SE,FT,Data Analytics Manager,140000,USD,140000,US,100,US,L
220,2021,MI,FT,Machine Learning Engineer,180000,PLN,46597,PL,100,PL,L
221,2021,MI,FT,Data Scientist,85000,GBP,116914,GB,50,GB,L
222,2021,MI,FT,Data Scientist,2500000,INR,33808,IN,0,IN,M
223,2021,MI,FT,Data Scientist,40900,GBP,56256,GB,50,GB,L
224,2021,SE,FT,Machine Learning Scientist,225000,USD,225000,US,100,CA,L
225,2021,EX,CT,Principal Data Scientist,416000,USD,416000,US,100,US,S
226,2021,SE,FT,Data Scientist,110000,CAD,87738,CA,100,CA,S
227,2021,MI,FT,Data Scientist,75000,EUR,88654,DE,50,DE,L
228,2021,SE,FT,Data Scientist,135000,USD,135000,US,0,US,L
229,2021,SE,FT,Data Analyst,90000,CAD,71786,CA,100,CA,M
230,2021,EN,FT,Big Data Engineer,1200000,INR,16228,IN,100,IN,L
231,2021,SE,FT,ML Engineer,256000,USD,256000,US,100,US,S
232,2021,SE,FT,Director of Data Engineering,200000,USD,200000,US,100,US,L
233,2021,SE,FT,Data Analyst,200000,USD,200000,US,100,US,L
234,2021,MI,FT,Data Architect,180000,USD,180000,US,100,US,L
235,2021,MI,FT,Head of Data Science,110000,USD,110000,US,0,US,S
236,2021,MI,FT,Research Scientist,80000,CAD,63810,CA,100,CA,M
237,2021,MI,FT,Data Scientist,39600,EUR,46809,ES,100,ES,M
238,2021,EN,FT,Data Scientist,4000,USD,4000,VN,0,VN,M
239,2021,EN,FT,Data Engineer,1600000,INR,21637,IN,50,IN,M
240,2021,SE,FT,Data Scientist,130000,CAD,103691,CA,100,CA,L
241,2021,MI,FT,Data Analyst,80000,USD,80000,US,100,US,L
242,2021,MI,FT,Data Engineer,110000,USD,110000,US,100,US,L
243,2021,SE,FT,Data Scientist,165000,USD,165000,US,100,US,L
244,2021,EN,FT,AI Scientist,1335000,INR,18053,IN,100,AS,S
245,2021,MI,FT,Data Engineer,52500,GBP,72212,GB,50,GB,L
246,2021,EN,FT,Data Scientist,31000,EUR,36643,FR,50,FR,L
247,2021,MI,FT,Data Engineer,108000,TRY,12103,TR,0,TR,M
248,2021,SE,FT,Data Engineer,70000,GBP,96282,GB,50,GB,L
249,2021,SE,FT,Principal Data Analyst,170000,USD,170000,US,100,US,M
250,2021,MI,FT,Data Scientist,115000,USD,115000,US,50,US,L
251,2021,EN,FT,Data Scientist,90000,USD,90000,US,100,US,S
252,2021,EX,FT,Principal Data Engineer,600000,USD,600000,US,100,US,L
253,2021,EN,FT,Data Scientist,2100000,INR,28399,IN,100,IN,M
254,2021,MI,FT,Data Analyst,93000,USD,93000,US,100,US,L
255,2021,SE,FT,Big Data Architect,125000,CAD,99703,CA,50,CA,M
256,2021,MI,FT,Data Engineer,200000,USD,200000,US,100,US,L
257,2021,SE,FT,Principal Data Scientist,147000,EUR,173762,DE,100,DE,M
258,2021,SE,FT,Machine Learning Engineer,185000,USD,185000,US,50,US,L
259,2021,EX,FT,Director of Data Science,120000,EUR,141846,DE,0,DE,L
260,2021,MI,FT,Data Scientist,130000,USD,130000,US,50,US,L
261,2021,SE,FT,Data Analyst,54000,EUR,63831,DE,50,DE,L
262,2021,MI,FT,Data Scientist,1250000,INR,16904,IN,100,IN,S
263,2021,SE,FT,Machine Learning Engineer,4900000,INR,66265,IN,0,IN,L
264,2021,MI,FT,Data Scientist,21600,EUR,25532,RS,100,DE,S
265,2021,SE,FT,Lead Data Engineer,160000,USD,160000,PR,50,US,S
266,2021,MI,FT,Data Engineer,93150,USD,93150,US,0,US,M
267,2021,MI,FT,Data Engineer,111775,USD,111775,US,0,US,M
268,2021,MI,FT,Data Engineer,250000,TRY,28016,TR,100,TR,M
269,2021,EN,FT,Data Engineer,55000,EUR,65013,DE,50,DE,M
270,2021,EN,FT,Data Engineer,72500,USD,72500,US,100,US,L
271,2021,SE,FT,Computer Vision Engineer,102000,BRL,18907,BR,0,BR,M
272,2021,EN,FT,Data Science Consultant,65000,EUR,76833,DE,0,DE,L
273,2021,EN,FT,Machine Learning Engineer,85000,USD,85000,NL,100,DE,S
274,2021,SE,FT,Data Scientist,65720,EUR,77684,FR,50,FR,M
275,2021,EN,FT,Data Scientist,100000,USD,100000,US,100,US,M
276,2021,EN,FT,Data Scientist,58000,USD,58000,US,50,US,L
277,2021,SE,FT,AI Scientist,55000,USD,55000,ES,100,ES,L
278,2021,SE,FT,Data Scientist,180000,TRY,20171,TR,50,TR,L
279,2021,EN,FT,Business Data Analyst,50000,EUR,59102,LU,100,LU,L
280,2021,MI,FT,Data Engineer,112000,USD,112000,US,100,US,L
281,2021,EN,FT,Research Scientist,100000,USD,100000,JE,0,CN,L
282,2021,MI,PT,Data Engineer,59000,EUR,69741,NL,100,NL,L
283,2021,SE,CT,Staff Data Scientist,105000,USD,105000,US,100,US,M
284,2021,MI,FT,Research Scientist,69999,USD,69999,CZ,50,CZ,L
285,2021,SE,FT,Data Science Manager,7000000,INR,94665,IN,50,IN,L
286,2021,SE,FT,Head of Data,87000,EUR,102839,SI,100,SI,L
287,2021,MI,FT,Data Scientist,109000,USD,109000,US,50,US,L
288,2021,MI,FT,Machine Learning Engineer,43200,EUR,51064,IT,50,IT,L
289,2022,SE,FT,Data Engineer,135000,USD,135000,US,100,US,M
290,2022,SE,FT,Data Analyst,155000,USD,155000,US,100,US,M
291,2022,SE,FT,Data Analyst,120600,USD,120600,US,100,US,M
292,2022,MI,FT,Data Scientist,130000,USD,130000,US,0,US,M
293,2022,MI,FT,Data Scientist,90000,USD,90000,US,0,US,M
294,2022,MI,FT,Data Engineer,170000,USD,170000,US,100,US,M
295,2022,MI,FT,Data Engineer,150000,USD,150000,US,100,US,M
296,2022,SE,FT,Data Analyst,102100,USD,102100,US,100,US,M
297,2022,SE,FT,Data Analyst,84900,USD,84900,US,100,US,M
298,2022,SE,FT,Data Scientist,136620,USD,136620,US,100,US,M
299,2022,SE,FT,Data Scientist,99360,USD,99360,US,100,US,M
300,2022,SE,FT,Data Scientist,90000,GBP,117789,GB,0,GB,M
301,2022,SE,FT,Data Scientist,80000,GBP,104702,GB,0,GB,M
302,2022,SE,FT,Data Scientist,146000,USD,146000,US,100,US,M
303,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M
304,2022,EN,FT,Data Engineer,40000,GBP,52351,GB,100,GB,M
305,2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M
306,2022,SE,FT,Data Analyst,116000,USD,116000,US,0,US,M
307,2022,MI,FT,Data Analyst,106260,USD,106260,US,0,US,M
308,2022,MI,FT,Data Analyst,126500,USD,126500,US,0,US,M
309,2022,EX,FT,Data Engineer,242000,USD,242000,US,100,US,M
310,2022,EX,FT,Data Engineer,200000,USD,200000,US,100,US,M
311,2022,MI,FT,Data Scientist,50000,GBP,65438,GB,0,GB,M
312,2022,MI,FT,Data Scientist,30000,GBP,39263,GB,0,GB,M
313,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,0,GB,M
314,2022,MI,FT,Data Engineer,40000,GBP,52351,GB,0,GB,M
315,2022,SE,FT,Data Scientist,165220,USD,165220,US,100,US,M
316,2022,EN,FT,Data Engineer,35000,GBP,45807,GB,100,GB,M
317,2022,SE,FT,Data Scientist,120160,USD,120160,US,100,US,M
318,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M
319,2022,SE,FT,Data Engineer,181940,USD,181940,US,0,US,M
320,2022,SE,FT,Data Engineer,132320,USD,132320,US,0,US,M
321,2022,SE,FT,Data Engineer,220110,USD,220110,US,0,US,M
322,2022,SE,FT,Data Engineer,160080,USD,160080,US,0,US,M
323,2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,L
324,2022,SE,FT,Data Scientist,120000,USD,120000,US,0,US,L
325,2022,SE,FT,Data Analyst,124190,USD,124190,US,100,US,M
326,2022,EX,FT,Data Analyst,130000,USD,130000,US,100,US,M
327,2022,EX,FT,Data Analyst,110000,USD,110000,US,100,US,M
328,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M
329,2022,MI,FT,Data Analyst,115500,USD,115500,US,100,US,M
330,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M
331,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M
332,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M
333,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M
334,2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M
335,2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M
336,2022,MI,FT,Data Analyst,167000,USD,167000,US,100,US,M
337,2022,SE,FT,Data Engineer,243900,USD,243900,US,100,US,M
338,2022,SE,FT,Data Analyst,136600,USD,136600,US,100,US,M
339,2022,SE,FT,Data Analyst,109280,USD,109280,US,100,US,M
340,2022,SE,FT,Data Engineer,128875,USD,128875,US,100,US,M
341,2022,SE,FT,Data Engineer,93700,USD,93700,US,100,US,M
342,2022,EX,FT,Head of Data Science,224000,USD,224000,US,100,US,M
343,2022,EX,FT,Head of Data Science,167875,USD,167875,US,100,US,M
344,2022,EX,FT,Analytics Engineer,175000,USD,175000,US,100,US,M
345,2022,SE,FT,Data Engineer,156600,USD,156600,US,100,US,M
346,2022,SE,FT,Data Engineer,108800,USD,108800,US,0,US,M
347,2022,SE,FT,Data Scientist,95550,USD,95550,US,0,US,M
348,2022,SE,FT,Data Engineer,113000,USD,113000,US,0,US,L
349,2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M
350,2022,SE,FT,Data Science Manager,161342,USD,161342,US,100,US,M
351,2022,SE,FT,Data Science Manager,137141,USD,137141,US,100,US,M
352,2022,SE,FT,Data Scientist,167000,USD,167000,US,100,US,M
353,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M
354,2022,SE,FT,Data Engineer,60000,GBP,78526,GB,0,GB,M
355,2022,SE,FT,Data Engineer,50000,GBP,65438,GB,0,GB,M
356,2022,SE,FT,Data Scientist,150000,USD,150000,US,0,US,M
357,2022,SE,FT,Data Scientist,211500,USD,211500,US,100,US,M
358,2022,SE,FT,Data Architect,192400,USD,192400,CA,100,CA,M
359,2022,SE,FT,Data Architect,90700,USD,90700,CA,100,CA,M
360,2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M
361,2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M
362,2022,SE,FT,Data Analyst,130000,USD,130000,CA,100,CA,M
363,2022,SE,FT,Data Analyst,61300,USD,61300,CA,100,CA,M
364,2022,SE,FT,Data Engineer,160000,USD,160000,US,0,US,L
365,2022,SE,FT,Data Scientist,138600,USD,138600,US,100,US,M
366,2022,SE,FT,Data Engineer,136000,USD,136000,US,0,US,M
367,2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S
368,2022,EX,FT,Analytics Engineer,135000,USD,135000,US,100,US,M
369,2022,SE,FT,Data Scientist,170000,USD,170000,US,100,US,M
370,2022,SE,FT,Data Scientist,123000,USD,123000,US,100,US,M
371,2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M
372,2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M
373,2022,MI,FT,ETL Developer,50000,EUR,54957,GR,0,GR,M
374,2022,MI,FT,ETL Developer,50000,EUR,54957,GR,0,GR,M
375,2022,EX,FT,Lead Data Engineer,150000,CAD,118187,CA,100,CA,S
376,2022,SE,FT,Data Analyst,132000,USD,132000,US,0,US,M
377,2022,SE,FT,Data Engineer,165400,USD,165400,US,100,US,M
378,2022,SE,FT,Data Architect,208775,USD,208775,US,100,US,M
379,2022,SE,FT,Data Architect,147800,USD,147800,US,100,US,M
380,2022,SE,FT,Data Engineer,136994,USD,136994,US,100,US,M
381,2022,SE,FT,Data Engineer,101570,USD,101570,US,100,US,M
382,2022,SE,FT,Data Analyst,128875,USD,128875,US,100,US,M
383,2022,SE,FT,Data Analyst,93700,USD,93700,US,100,US,M
384,2022,EX,FT,Head of Machine Learning,6000000,INR,79039,IN,50,IN,L
385,2022,SE,FT,Data Engineer,132320,USD,132320,US,100,US,M
386,2022,EN,FT,Machine Learning Engineer,28500,GBP,37300,GB,100,GB,L
387,2022,SE,FT,Data Analyst,164000,USD,164000,US,0,US,M
388,2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M
389,2022,MI,FT,Machine Learning Engineer,95000,GBP,124333,GB,0,GB,M
390,2022,MI,FT,Machine Learning Engineer,75000,GBP,98158,GB,0,GB,M
391,2022,MI,FT,AI Scientist,120000,USD,120000,US,0,US,M
392,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M
393,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M
394,2022,SE,FT,Data Analytics Manager,145000,USD,145000,US,100,US,M
395,2022,SE,FT,Data Analytics Manager,105400,USD,105400,US,100,US,M
396,2022,MI,FT,Machine Learning Engineer,80000,EUR,87932,FR,100,DE,M
397,2022,MI,FT,Data Engineer,90000,GBP,117789,GB,0,GB,M
398,2022,SE,FT,Data Scientist,215300,USD,215300,US,100,US,L
399,2022,SE,FT,Data Scientist,158200,USD,158200,US,100,US,L
400,2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L
401,2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L
402,2022,SE,FT,Data Analyst,115934,USD,115934,US,0,US,M
403,2022,SE,FT,Data Analyst,81666,USD,81666,US,0,US,M
404,2022,SE,FT,Data Engineer,175000,USD,175000,US,100,US,M
405,2022,MI,FT,Data Engineer,75000,GBP,98158,GB,0,GB,M
406,2022,MI,FT,Data Analyst,58000,USD,58000,US,0,US,S
407,2022,SE,FT,Data Engineer,183600,USD,183600,US,100,US,L
408,2022,MI,FT,Data Analyst,40000,GBP,52351,GB,100,GB,M
409,2022,SE,FT,Data Scientist,180000,USD,180000,US,100,US,M
410,2022,MI,FT,Data Scientist,55000,GBP,71982,GB,0,GB,M
411,2022,MI,FT,Data Scientist,35000,GBP,45807,GB,0,GB,M
412,2022,MI,FT,Data Engineer,60000,EUR,65949,GR,100,GR,M
413,2022,MI,FT,Data Engineer,45000,EUR,49461,GR,100,GR,M
414,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,100,GB,M
415,2022,MI,FT,Data Engineer,45000,GBP,58894,GB,100,GB,M
416,2022,SE,FT,Data Scientist,260000,USD,260000,US,100,US,M
417,2022,SE,FT,Data Science Engineer,60000,USD,60000,AR,100,MX,L
418,2022,MI,FT,Data Engineer,63900,USD,63900,US,0,US,M
419,2022,MI,FT,Machine Learning Scientist,160000,USD,160000,US,100,US,L
420,2022,MI,FT,Machine Learning Scientist,112300,USD,112300,US,100,US,L
421,2022,MI,FT,Data Science Manager,241000,USD,241000,US,100,US,M
422,2022,MI,FT,Data Science Manager,159000,USD,159000,US,100,US,M
423,2022,SE,FT,Data Scientist,180000,USD,180000,US,0,US,M
424,2022,SE,FT,Data Scientist,80000,USD,80000,US,0,US,M
425,2022,MI,FT,Data Engineer,82900,USD,82900,US,0,US,M
426,2022,SE,FT,Data Engineer,100800,USD,100800,US,100,US,L
427,2022,MI,FT,Data Engineer,45000,EUR,49461,ES,100,ES,M
428,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L
429,2022,MI,FT,Data Analyst,30000,GBP,39263,GB,100,GB,M
430,2022,MI,FT,Data Analyst,40000,EUR,43966,ES,100,ES,M
431,2022,MI,FT,Data Analyst,30000,EUR,32974,ES,100,ES,M
432,2022,MI,FT,Data Engineer,80000,EUR,87932,ES,100,ES,M
433,2022,MI,FT,Data Engineer,70000,EUR,76940,ES,100,ES,M
434,2022,MI,FT,Data Engineer,80000,GBP,104702,GB,100,GB,M
435,2022,MI,FT,Data Engineer,70000,GBP,91614,GB,100,GB,M
436,2022,MI,FT,Data Engineer,60000,EUR,65949,ES,100,ES,M
437,2022,MI,FT,Data Engineer,80000,EUR,87932,GR,100,GR,M
438,2022,SE,FT,Machine Learning Engineer,189650,USD,189650,US,0,US,M
439,2022,SE,FT,Machine Learning Engineer,164996,USD,164996,US,0,US,M
440,2022,MI,FT,Data Analyst,40000,EUR,43966,GR,100,GR,M
441,2022,MI,FT,Data Analyst,30000,EUR,32974,GR,100,GR,M
442,2022,MI,FT,Data Engineer,75000,GBP,98158,GB,100,GB,M
443,2022,MI,FT,Data Engineer,60000,GBP,78526,GB,100,GB,M
444,2022,SE,FT,Data Scientist,215300,USD,215300,US,0,US,L
445,2022,MI,FT,Data Engineer,70000,EUR,76940,GR,100,GR,M
446,2022,SE,FT,Data Engineer,209100,USD,209100,US,100,US,L
447,2022,SE,FT,Data Engineer,154600,USD,154600,US,100,US,L
448,2022,SE,FT,Data Engineer,180000,USD,180000,US,100,US,M
449,2022,EN,FT,ML Engineer,20000,EUR,21983,PT,100,PT,L
450,2022,SE,FT,Data Engineer,80000,USD,80000,US,100,US,M
451,2022,MI,FT,Machine Learning Developer,100000,CAD,78791,CA,100,CA,M
452,2022,EX,FT,Director of Data Science,250000,CAD,196979,CA,50,CA,L
453,2022,MI,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,S
454,2022,EN,FT,Computer Vision Engineer,125000,USD,125000,US,0,US,M
455,2022,MI,FT,NLP Engineer,240000,CNY,37236,US,50,US,L
456,2022,SE,FT,Data Engineer,105000,USD,105000,US,100,US,M
457,2022,SE,FT,Lead Machine Learning Engineer,80000,EUR,87932,DE,0,DE,M
458,2022,MI,FT,Business Data Analyst,1400000,INR,18442,IN,100,IN,M
459,2022,MI,FT,Data Scientist,2400000,INR,31615,IN,100,IN,L
460,2022,MI,FT,Machine Learning Infrastructure Engineer,53000,EUR,58255,PT,50,PT,L
461,2022,EN,FT,Financial Data Analyst,100000,USD,100000,US,50,US,L
462,2022,MI,PT,Data Engineer,50000,EUR,54957,DE,50,DE,L
463,2022,EN,FT,Data Scientist,1400000,INR,18442,IN,100,IN,M
464,2022,SE,FT,Principal Data Scientist,148000,EUR,162674,DE,100,DE,M
465,2022,EN,FT,Data Engineer,120000,USD,120000,US,100,US,M
466,2022,SE,FT,Research Scientist,144000,USD,144000,US,50,US,L
467,2022,SE,FT,Data Scientist,104890,USD,104890,US,100,US,M
468,2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M
469,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
470,2022,MI,FT,Data Analyst,135000,USD,135000,US,100,US,M
471,2022,MI,FT,Data Analyst,50000,USD,50000,US,100,US,M
472,2022,SE,FT,Data Scientist,220000,USD,220000,US,100,US,M
473,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
474,2022,MI,FT,Data Scientist,140000,GBP,183228,GB,0,GB,M
475,2022,MI,FT,Data Scientist,70000,GBP,91614,GB,0,GB,M
476,2022,SE,FT,Data Scientist,185100,USD,185100,US,100,US,M
477,2022,SE,FT,Machine Learning Engineer,220000,USD,220000,US,100,US,M
478,2022,MI,FT,Data Scientist,200000,USD,200000,US,100,US,M
479,2022,MI,FT,Data Scientist,120000,USD,120000,US,100,US,M
480,2022,SE,FT,Machine Learning Engineer,120000,USD,120000,AE,100,AE,S
481,2022,SE,FT,Machine Learning Engineer,65000,USD,65000,AE,100,AE,S
482,2022,EX,FT,Data Engineer,324000,USD,324000,US,100,US,M
483,2022,EX,FT,Data Engineer,216000,USD,216000,US,100,US,M
484,2022,SE,FT,Data Engineer,210000,USD,210000,US,100,US,M
485,2022,SE,FT,Machine Learning Engineer,120000,USD,120000,US,100,US,M
486,2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M
487,2022,EN,PT,Data Scientist,100000,USD,100000,DZ,50,DZ,M
488,2022,MI,FL,Data Scientist,100000,USD,100000,CA,100,US,M
489,2022,EN,CT,Applied Machine Learning Scientist,29000,EUR,31875,TN,100,CZ,M
490,2022,SE,FT,Head of Data,200000,USD,200000,MY,100,US,M
491,2022,MI,FT,Principal Data Analyst,75000,USD,75000,CA,100,CA,S
492,2022,MI,FT,Data Scientist,150000,PLN,35590,PL,100,PL,L
493,2022,SE,FT,Machine Learning Developer,100000,CAD,78791,CA,100,CA,M
494,2022,SE,FT,Data Scientist,100000,USD,100000,BR,100,US,M
495,2022,MI,FT,Machine Learning Scientist,153000,USD,153000,US,50,US,M
496,2022,EN,FT,Data Engineer,52800,EUR,58035,PK,100,DE,M
497,2022,SE,FT,Data Scientist,165000,USD,165000,US,100,US,M
498,2022,SE,FT,Research Scientist,85000,EUR,93427,FR,50,FR,L
499,2022,EN,FT,Data Scientist,66500,CAD,52396,CA,100,CA,L
500,2022,SE,FT,Machine Learning Engineer,57000,EUR,62651,NL,100,NL,L
501,2022,MI,FT,Head of Data,30000,EUR,32974,EE,100,EE,S
502,2022,EN,FT,Data Scientist,40000,USD,40000,JP,100,MY,L
503,2022,MI,FT,Machine Learning Engineer,121000,AUD,87425,AU,100,AU,L
504,2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M
505,2022,EN,FT,Data Scientist,120000,AUD,86703,AU,50,AU,M
506,2022,MI,FT,Applied Machine Learning Scientist,75000,USD,75000,BO,100,US,L
507,2022,MI,FT,Research Scientist,59000,EUR,64849,AT,0,AT,L
508,2022,EN,FT,Research Scientist,120000,USD,120000,US,100,US,L
509,2022,MI,FT,Applied Data Scientist,157000,USD,157000,US,100,US,L
510,2022,EN,FT,Computer Vision Software Engineer,150000,USD,150000,AU,100,AU,S
511,2022,MI,FT,Business Data Analyst,90000,CAD,70912,CA,50,CA,L
512,2022,EN,FT,Data Engineer,65000,USD,65000,US,100,US,S
513,2022,SE,FT,Machine Learning Engineer,65000,EUR,71444,IE,100,IE,S
514,2022,EN,FT,Data Analytics Engineer,20000,USD,20000,PK,0,PK,M
515,2022,MI,FT,Data Scientist,48000,USD,48000,RU,100,US,S
516,2022,SE,FT,Data Science Manager,152500,USD,152500,US,100,US,M
517,2022,MI,FT,Data Engineer,62000,EUR,68147,FR,100,FR,M
518,2022,MI,FT,Data Scientist,115000,CHF,122346,CH,0,CH,L
519,2022,SE,FT,Applied Data Scientist,380000,USD,380000,US,100,US,L
520,2022,MI,FT,Data Scientist,88000,CAD,69336,CA,100,CA,M
521,2022,EN,FT,Computer Vision Engineer,10000,USD,10000,PT,100,LU,M
522,2022,MI,FT,Data Analyst,20000,USD,20000,GR,100,GR,S
523,2022,SE,FT,Data Analytics Lead,405000,USD,405000,US,100,US,L
524,2022,MI,FT,Data Scientist,135000,USD,135000,US,100,US,L
525,2022,SE,FT,Applied Data Scientist,177000,USD,177000,US,100,US,L
526,2022,MI,FT,Data Scientist,78000,USD,78000,US,100,US,M
527,2022,SE,FT,Data Analyst,135000,USD,135000,US,100,US,M
528,2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M
529,2022,SE,FT,Data Analyst,90320,USD,90320,US,100,US,M
530,2022,MI,FT,Data Analyst,85000,USD,85000,CA,0,CA,M
531,2022,MI,FT,Data Analyst,75000,USD,75000,CA,0,CA,M
532,2022,SE,FT,Machine Learning Engineer,214000,USD,214000,US,100,US,M
533,2022,SE,FT,Machine Learning Engineer,192600,USD,192600,US,100,US,M
534,2022,SE,FT,Data Architect,266400,USD,266400,US,100,US,M
535,2022,SE,FT,Data Architect,213120,USD,213120,US,100,US,M
536,2022,SE,FT,Data Analyst,112900,USD,112900,US,100,US,M
537,2022,SE,FT,Data Engineer,155000,USD,155000,US,100,US,M
538,2022,MI,FT,Data Scientist,141300,USD,141300,US,0,US,M
539,2022,MI,FT,Data Scientist,102100,USD,102100,US,0,US,M
540,2022,SE,FT,Data Analyst,115934,USD,115934,US,100,US,M
541,2022,SE,FT,Data Analyst,81666,USD,81666,US,100,US,M
542,2022,MI,FT,Data Engineer,206699,USD,206699,US,0,US,M
543,2022,MI,FT,Data Engineer,99100,USD,99100,US,0,US,M
544,2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M
545,2022,SE,FT,Data Engineer,115000,USD,115000,US,100,US,M
546,2022,SE,FT,Data Engineer,110500,USD,110500,US,100,US,M
547,2022,SE,FT,Data Engineer,130000,USD,130000,US,100,US,M
548,2022,SE,FT,Data Analyst,99050,USD,99050,US,100,US,M
549,2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M
550,2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,L
551,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,L
552,2022,SE,FT,Data Scientist,176000,USD,176000,US,100,US,M
553,2022,SE,FT,Data Scientist,144000,USD,144000,US,100,US,M
554,2022,SE,FT,Data Engineer,200100,USD,200100,US,100,US,M
555,2022,SE,FT,Data Engineer,160000,USD,160000,US,100,US,M
556,2022,SE,FT,Data Engineer,145000,USD,145000,US,100,US,M
557,2022,SE,FT,Data Engineer,70500,USD,70500,US,0,US,M
558,2022,SE,FT,Data Scientist,205300,USD,205300,US,0,US,M
559,2022,SE,FT,Data Scientist,140400,USD,140400,US,0,US,M
560,2022,SE,FT,Analytics Engineer,205300,USD,205300,US,0,US,M
561,2022,SE,FT,Analytics Engineer,184700,USD,184700,US,0,US,M
562,2022,SE,FT,Data Engineer,175100,USD,175100,US,100,US,M
563,2022,SE,FT,Data Engineer,140250,USD,140250,US,100,US,M
564,2022,SE,FT,Data Analyst,116150,USD,116150,US,100,US,M
565,2022,SE,FT,Data Engineer,54000,USD,54000,US,0,US,M
566,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M
567,2022,MI,FT,Data Analyst,50000,GBP,65438,GB,0,GB,M
568,2022,SE,FT,Data Analyst,80000,USD,80000,US,100,US,M
569,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
570,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M
571,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
572,2022,SE,FT,Data Analyst,100000,USD,100000,US,100,US,M
573,2022,SE,FT,Data Analyst,69000,USD,69000,US,100,US,M
574,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M
575,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
576,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M
577,2022,SE,FT,Data Analyst,150075,USD,150075,US,100,US,M
578,2022,SE,FT,Data Engineer,100000,USD,100000,US,100,US,M
579,2022,SE,FT,Data Engineer,25000,USD,25000,US,100,US,M
580,2022,SE,FT,Data Analyst,126500,USD,126500,US,100,US,M
581,2022,SE,FT,Data Analyst,106260,USD,106260,US,100,US,M
582,2022,SE,FT,Data Engineer,220110,USD,220110,US,100,US,M
583,2022,SE,FT,Data Engineer,160080,USD,160080,US,100,US,M
584,2022,SE,FT,Data Analyst,105000,USD,105000,US,100,US,M
585,2022,SE,FT,Data Analyst,110925,USD,110925,US,100,US,M
586,2022,MI,FT,Data Analyst,35000,GBP,45807,GB,0,GB,M
587,2022,SE,FT,Data Scientist,140000,USD,140000,US,100,US,M
588,2022,SE,FT,Data Analyst,99000,USD,99000,US,0,US,M
589,2022,SE,FT,Data Analyst,60000,USD,60000,US,100,US,M
590,2022,SE,FT,Data Architect,192564,USD,192564,US,100,US,M
591,2022,SE,FT,Data Architect,144854,USD,144854,US,100,US,M
592,2022,SE,FT,Data Scientist,230000,USD,230000,US,100,US,M
593,2022,SE,FT,Data Scientist,150000,USD,150000,US,100,US,M
594,2022,SE,FT,Data Analytics Manager,150260,USD,150260,US,100,US,M
595,2022,SE,FT,Data Analytics Manager,109280,USD,109280,US,100,US,M
596,2022,SE,FT,Data Scientist,210000,USD,210000,US,100,US,M
597,2022,SE,FT,Data Analyst,170000,USD,170000,US,100,US,M
598,2022,MI,FT,Data Scientist,160000,USD,160000,US,100,US,M
599,2022,MI,FT,Data Scientist,130000,USD,130000,US,100,US,M
600,2022,EN,FT,Data Analyst,67000,USD,67000,CA,0,CA,M
601,2022,EN,FT,Data Analyst,52000,USD,52000,CA,0,CA,M
602,2022,SE,FT,Data Engineer,154000,USD,154000,US,100,US,M
603,2022,SE,FT,Data Engineer,126000,USD,126000,US,100,US,M
604,2022,SE,FT,Data Analyst,129000,USD,129000,US,0,US,M
605,2022,SE,FT,Data Analyst,150000,USD,150000,US,100,US,M
606,2022,MI,FT,AI Scientist,200000,USD,200000,IN,100,US,L
1 work_year experience_level employment_type job_title salary salary_currency salary_in_usd employee_residence remote_ratio company_location company_size
2 0 2020 MI FT Data Scientist 70000 EUR 79833 DE 0 DE L
3 1 2020 SE FT Machine Learning Scientist 260000 USD 260000 JP 0 JP S
4 2 2020 SE FT Big Data Engineer 85000 GBP 109024 GB 50 GB M
5 3 2020 MI FT Product Data Analyst 20000 USD 20000 HN 0 HN S
6 4 2020 SE FT Machine Learning Engineer 150000 USD 150000 US 50 US L
7 5 2020 EN FT Data Analyst 72000 USD 72000 US 100 US L
8 6 2020 SE FT Lead Data Scientist 190000 USD 190000 US 100 US S
9 7 2020 MI FT Data Scientist 11000000 HUF 35735 HU 50 HU L
10 8 2020 MI FT Business Data Analyst 135000 USD 135000 US 100 US L
11 9 2020 SE FT Lead Data Engineer 125000 USD 125000 NZ 50 NZ S
12 10 2020 EN FT Data Scientist 45000 EUR 51321 FR 0 FR S
13 11 2020 MI FT Data Scientist 3000000 INR 40481 IN 0 IN L
14 12 2020 EN FT Data Scientist 35000 EUR 39916 FR 0 FR M
15 13 2020 MI FT Lead Data Analyst 87000 USD 87000 US 100 US L
16 14 2020 MI FT Data Analyst 85000 USD 85000 US 100 US L
17 15 2020 MI FT Data Analyst 8000 USD 8000 PK 50 PK L
18 16 2020 EN FT Data Engineer 4450000 JPY 41689 JP 100 JP S
19 17 2020 SE FT Big Data Engineer 100000 EUR 114047 PL 100 GB S
20 18 2020 EN FT Data Science Consultant 423000 INR 5707 IN 50 IN M
21 19 2020 MI FT Lead Data Engineer 56000 USD 56000 PT 100 US M
22 20 2020 MI FT Machine Learning Engineer 299000 CNY 43331 CN 0 CN M
23 21 2020 MI FT Product Data Analyst 450000 INR 6072 IN 100 IN L
24 22 2020 SE FT Data Engineer 42000 EUR 47899 GR 50 GR L
25 23 2020 MI FT BI Data Analyst 98000 USD 98000 US 0 US M
26 24 2020 MI FT Lead Data Scientist 115000 USD 115000 AE 0 AE L
27 25 2020 EX FT Director of Data Science 325000 USD 325000 US 100 US L
28 26 2020 EN FT Research Scientist 42000 USD 42000 NL 50 NL L
29 27 2020 SE FT Data Engineer 720000 MXN 33511 MX 0 MX S
30 28 2020 EN CT Business Data Analyst 100000 USD 100000 US 100 US L
31 29 2020 SE FT Machine Learning Manager 157000 CAD 117104 CA 50 CA L
32 30 2020 MI FT Data Engineering Manager 51999 EUR 59303 DE 100 DE S
33 31 2020 EN FT Big Data Engineer 70000 USD 70000 US 100 US L
34 32 2020 SE FT Data Scientist 60000 EUR 68428 GR 100 US L
35 33 2020 MI FT Research Scientist 450000 USD 450000 US 0 US M
36 34 2020 MI FT Data Analyst 41000 EUR 46759 FR 50 FR L
37 35 2020 MI FT Data Engineer 65000 EUR 74130 AT 50 AT L
38 36 2020 MI FT Data Science Consultant 103000 USD 103000 US 100 US L
39 37 2020 EN FT Machine Learning Engineer 250000 USD 250000 US 50 US L
40 38 2020 EN FT Data Analyst 10000 USD 10000 NG 100 NG S
41 39 2020 EN FT Machine Learning Engineer 138000 USD 138000 US 100 US S
42 40 2020 MI FT Data Scientist 45760 USD 45760 PH 100 US S
43 41 2020 EX FT Data Engineering Manager 70000 EUR 79833 ES 50 ES L
44 42 2020 MI FT Machine Learning Infrastructure Engineer 44000 EUR 50180 PT 0 PT M
45 43 2020 MI FT Data Engineer 106000 USD 106000 US 100 US L
46 44 2020 MI FT Data Engineer 88000 GBP 112872 GB 50 GB L
47 45 2020 EN PT ML Engineer 14000 EUR 15966 DE 100 DE S
48 46 2020 MI FT Data Scientist 60000 GBP 76958 GB 100 GB S
49 47 2020 SE FT Data Engineer 188000 USD 188000 US 100 US L
50 48 2020 MI FT Data Scientist 105000 USD 105000 US 100 US L
51 49 2020 MI FT Data Engineer 61500 EUR 70139 FR 50 FR L
52 50 2020 EN FT Data Analyst 450000 INR 6072 IN 0 IN S
53 51 2020 EN FT Data Analyst 91000 USD 91000 US 100 US L
54 52 2020 EN FT AI Scientist 300000 DKK 45896 DK 50 DK S
55 53 2020 EN FT Data Engineer 48000 EUR 54742 PK 100 DE L
56 54 2020 SE FL Computer Vision Engineer 60000 USD 60000 RU 100 US S
57 55 2020 SE FT Principal Data Scientist 130000 EUR 148261 DE 100 DE M
58 56 2020 MI FT Data Scientist 34000 EUR 38776 ES 100 ES M
59 57 2020 MI FT Data Scientist 118000 USD 118000 US 100 US M
60 58 2020 SE FT Data Scientist 120000 USD 120000 US 50 US L
61 59 2020 MI FT Data Scientist 138350 USD 138350 US 100 US M
62 60 2020 MI FT Data Engineer 110000 USD 110000 US 100 US L
63 61 2020 MI FT Data Engineer 130800 USD 130800 ES 100 US M
64 62 2020 EN PT Data Scientist 19000 EUR 21669 IT 50 IT S
65 63 2020 SE FT Data Scientist 412000 USD 412000 US 100 US L
66 64 2020 SE FT Machine Learning Engineer 40000 EUR 45618 HR 100 HR S
67 65 2020 EN FT Data Scientist 55000 EUR 62726 DE 50 DE S
68 66 2020 EN FT Data Scientist 43200 EUR 49268 DE 0 DE S
69 67 2020 SE FT Data Science Manager 190200 USD 190200 US 100 US M
70 68 2020 EN FT Data Scientist 105000 USD 105000 US 100 US S
71 69 2020 SE FT Data Scientist 80000 EUR 91237 AT 0 AT S
72 70 2020 MI FT Data Scientist 55000 EUR 62726 FR 50 LU S
73 71 2020 MI FT Data Scientist 37000 EUR 42197 FR 50 FR S
74 72 2021 EN FT Research Scientist 60000 GBP 82528 GB 50 GB L
75 73 2021 EX FT BI Data Analyst 150000 USD 150000 IN 100 US L
76 74 2021 EX FT Head of Data 235000 USD 235000 US 100 US L
77 75 2021 SE FT Data Scientist 45000 EUR 53192 FR 50 FR L
78 76 2021 MI FT BI Data Analyst 100000 USD 100000 US 100 US M
79 77 2021 MI PT 3D Computer Vision Researcher 400000 INR 5409 IN 50 IN M
80 78 2021 MI CT ML Engineer 270000 USD 270000 US 100 US L
81 79 2021 EN FT Data Analyst 80000 USD 80000 US 100 US M
82 80 2021 SE FT Data Analytics Engineer 67000 EUR 79197 DE 100 DE L
83 81 2021 MI FT Data Engineer 140000 USD 140000 US 100 US L
84 82 2021 MI FT Applied Data Scientist 68000 CAD 54238 GB 50 CA L
85 83 2021 MI FT Machine Learning Engineer 40000 EUR 47282 ES 100 ES S
86 84 2021 EX FT Director of Data Science 130000 EUR 153667 IT 100 PL L
87 85 2021 MI FT Data Engineer 110000 PLN 28476 PL 100 PL L
88 86 2021 EN FT Data Analyst 50000 EUR 59102 FR 50 FR M
89 87 2021 MI FT Data Analytics Engineer 110000 USD 110000 US 100 US L
90 88 2021 SE FT Lead Data Analyst 170000 USD 170000 US 100 US L
91 89 2021 SE FT Data Analyst 80000 USD 80000 BG 100 US S
92 90 2021 SE FT Marketing Data Analyst 75000 EUR 88654 GR 100 DK L
93 91 2021 EN FT Data Science Consultant 65000 EUR 76833 DE 100 DE S
94 92 2021 MI FT Lead Data Analyst 1450000 INR 19609 IN 100 IN L
95 93 2021 SE FT Lead Data Engineer 276000 USD 276000 US 0 US L
96 94 2021 EN FT Data Scientist 2200000 INR 29751 IN 50 IN L
97 95 2021 MI FT Cloud Data Engineer 120000 SGD 89294 SG 50 SG L
98 96 2021 EN PT AI Scientist 12000 USD 12000 BR 100 US S
99 97 2021 MI FT Financial Data Analyst 450000 USD 450000 US 100 US L
100 98 2021 EN FT Computer Vision Software Engineer 70000 USD 70000 US 100 US M
101 99 2021 MI FT Computer Vision Software Engineer 81000 EUR 95746 DE 100 US S
102 100 2021 MI FT Data Analyst 75000 USD 75000 US 0 US L
103 101 2021 SE FT Data Engineer 150000 USD 150000 US 100 US L
104 102 2021 MI FT BI Data Analyst 11000000 HUF 36259 HU 50 US L
105 103 2021 MI FT Data Analyst 62000 USD 62000 US 0 US L
106 104 2021 MI FT Data Scientist 73000 USD 73000 US 0 US L
107 105 2021 MI FT Data Analyst 37456 GBP 51519 GB 50 GB L
108 106 2021 MI FT Research Scientist 235000 CAD 187442 CA 100 CA L
109 107 2021 SE FT Data Engineer 115000 USD 115000 US 100 US S
110 108 2021 SE FT Data Engineer 150000 USD 150000 US 100 US M
111 109 2021 EN FT Data Engineer 2250000 INR 30428 IN 100 IN L
112 110 2021 SE FT Machine Learning Engineer 80000 EUR 94564 DE 50 DE L
113 111 2021 SE FT Director of Data Engineering 82500 GBP 113476 GB 100 GB M
114 112 2021 SE FT Lead Data Engineer 75000 GBP 103160 GB 100 GB S
115 113 2021 EN PT AI Scientist 12000 USD 12000 PK 100 US M
116 114 2021 MI FT Data Engineer 38400 EUR 45391 NL 100 NL L
117 115 2021 EN FT Machine Learning Scientist 225000 USD 225000 US 100 US L
118 116 2021 MI FT Data Scientist 50000 USD 50000 NG 100 NG L
119 117 2021 MI FT Data Science Engineer 34000 EUR 40189 GR 100 GR M
120 118 2021 EN FT Data Analyst 90000 USD 90000 US 100 US S
121 119 2021 MI FT Data Engineer 200000 USD 200000 US 100 US L
122 120 2021 MI FT Big Data Engineer 60000 USD 60000 ES 50 RO M
123 121 2021 SE FT Principal Data Engineer 200000 USD 200000 US 100 US M
124 122 2021 EN FT Data Analyst 50000 USD 50000 US 100 US M
125 123 2021 EN FT Applied Data Scientist 80000 GBP 110037 GB 0 GB L
126 124 2021 EN PT Data Analyst 8760 EUR 10354 ES 50 ES M
127 125 2021 MI FT Principal Data Scientist 151000 USD 151000 US 100 US L
128 126 2021 SE FT Machine Learning Scientist 120000 USD 120000 US 50 US S
129 127 2021 MI FT Data Scientist 700000 INR 9466 IN 0 IN S
130 128 2021 EN FT Machine Learning Engineer 20000 USD 20000 IN 100 IN S
131 129 2021 SE FT Lead Data Scientist 3000000 INR 40570 IN 50 IN L
132 130 2021 EN FT Machine Learning Developer 100000 USD 100000 IQ 50 IQ S
133 131 2021 EN FT Data Scientist 42000 EUR 49646 FR 50 FR M
134 132 2021 MI FT Applied Machine Learning Scientist 38400 USD 38400 VN 100 US M
135 133 2021 SE FT Computer Vision Engineer 24000 USD 24000 BR 100 BR M
136 134 2021 EN FT Data Scientist 100000 USD 100000 US 0 US S
137 135 2021 MI FT Data Analyst 90000 USD 90000 US 100 US M
138 136 2021 MI FT ML Engineer 7000000 JPY 63711 JP 50 JP S
139 137 2021 MI FT ML Engineer 8500000 JPY 77364 JP 50 JP S
140 138 2021 SE FT Principal Data Scientist 220000 USD 220000 US 0 US L
141 139 2021 EN FT Data Scientist 80000 USD 80000 US 100 US M
142 140 2021 MI FT Data Analyst 135000 USD 135000 US 100 US L
143 141 2021 SE FT Data Science Manager 240000 USD 240000 US 0 US L
144 142 2021 SE FT Data Engineering Manager 150000 USD 150000 US 0 US L
145 143 2021 MI FT Data Scientist 82500 USD 82500 US 100 US S
146 144 2021 MI FT Data Engineer 100000 USD 100000 US 100 US L
147 145 2021 SE FT Machine Learning Engineer 70000 EUR 82744 BE 50 BE M
148 146 2021 MI FT Research Scientist 53000 EUR 62649 FR 50 FR M
149 147 2021 MI FT Data Engineer 90000 USD 90000 US 100 US L
150 148 2021 SE FT Data Engineering Manager 153000 USD 153000 US 100 US L
151 149 2021 SE FT Cloud Data Engineer 160000 USD 160000 BR 100 US S
152 150 2021 SE FT Director of Data Science 168000 USD 168000 JP 0 JP S
153 151 2021 MI FT Data Scientist 150000 USD 150000 US 100 US M
154 152 2021 MI FT Data Scientist 95000 CAD 75774 CA 100 CA L
155 153 2021 EN FT Data Scientist 13400 USD 13400 UA 100 UA L
156 154 2021 SE FT Data Science Manager 144000 USD 144000 US 100 US L
157 155 2021 SE FT Data Science Engineer 159500 CAD 127221 CA 50 CA L
158 156 2021 MI FT Data Scientist 160000 SGD 119059 SG 100 IL M
159 157 2021 MI FT Applied Machine Learning Scientist 423000 USD 423000 US 50 US L
160 158 2021 SE FT Data Analytics Manager 120000 USD 120000 US 100 US M
161 159 2021 EN FT Machine Learning Engineer 125000 USD 125000 US 100 US S
162 160 2021 EX FT Head of Data 230000 USD 230000 RU 50 RU L
163 161 2021 EX FT Head of Data Science 85000 USD 85000 RU 0 RU M
164 162 2021 MI FT Data Engineer 24000 EUR 28369 MT 50 MT L
165 163 2021 EN FT Data Science Consultant 54000 EUR 63831 DE 50 DE L
166 164 2021 EX FT Director of Data Science 110000 EUR 130026 DE 50 DE M
167 165 2021 SE FT Data Specialist 165000 USD 165000 US 100 US L
168 166 2021 EN FT Data Engineer 80000 USD 80000 US 100 US L
169 167 2021 EX FT Director of Data Science 250000 USD 250000 US 0 US L
170 168 2021 EN FT BI Data Analyst 55000 USD 55000 US 50 US S
171 169 2021 MI FT Data Architect 150000 USD 150000 US 100 US L
172 170 2021 MI FT Data Architect 170000 USD 170000 US 100 US L
173 171 2021 MI FT Data Engineer 60000 GBP 82528 GB 100 GB L
174 172 2021 EN FT Data Analyst 60000 USD 60000 US 100 US S
175 173 2021 SE FT Principal Data Scientist 235000 USD 235000 US 100 US L
176 174 2021 SE FT Research Scientist 51400 EUR 60757 PT 50 PT L
177 175 2021 SE FT Data Engineering Manager 174000 USD 174000 US 100 US L
178 176 2021 MI FT Data Scientist 58000 MXN 2859 MX 0 MX S
179 177 2021 MI FT Data Scientist 30400000 CLP 40038 CL 100 CL L
180 178 2021 EN FT Machine Learning Engineer 81000 USD 81000 US 50 US S
181 179 2021 MI FT Data Scientist 420000 INR 5679 IN 100 US S
182 180 2021 MI FT Big Data Engineer 1672000 INR 22611 IN 0 IN L
183 181 2021 MI FT Data Scientist 76760 EUR 90734 DE 50 DE L
184 182 2021 MI FT Data Engineer 22000 EUR 26005 RO 0 US L
185 183 2021 SE FT Finance Data Analyst 45000 GBP 61896 GB 50 GB L
186 184 2021 MI FL Machine Learning Scientist 12000 USD 12000 PK 50 PK M
187 185 2021 MI FT Data Engineer 4000 USD 4000 IR 100 IR M
188 186 2021 SE FT Data Analytics Engineer 50000 USD 50000 VN 100 GB M
189 187 2021 EX FT Data Science Consultant 59000 EUR 69741 FR 100 ES S
190 188 2021 SE FT Data Engineer 65000 EUR 76833 RO 50 GB S
191 189 2021 MI FT Machine Learning Engineer 74000 USD 74000 JP 50 JP S
192 190 2021 SE FT Data Science Manager 152000 USD 152000 US 100 FR L
193 191 2021 EN FT Machine Learning Engineer 21844 USD 21844 CO 50 CO M
194 192 2021 MI FT Big Data Engineer 18000 USD 18000 MD 0 MD S
195 193 2021 SE FT Data Science Manager 174000 USD 174000 US 100 US L
196 194 2021 SE FT Research Scientist 120500 CAD 96113 CA 50 CA L
197 195 2021 MI FT Data Scientist 147000 USD 147000 US 50 US L
198 196 2021 EN FT BI Data Analyst 9272 USD 9272 KE 100 KE S
199 197 2021 SE FT Machine Learning Engineer 1799997 INR 24342 IN 100 IN L
200 198 2021 SE FT Data Science Manager 4000000 INR 54094 IN 50 US L
201 199 2021 EN FT Data Science Consultant 90000 USD 90000 US 100 US S
202 200 2021 MI FT Data Scientist 52000 EUR 61467 DE 50 AT M
203 201 2021 SE FT Machine Learning Infrastructure Engineer 195000 USD 195000 US 100 US M
204 202 2021 MI FT Data Scientist 32000 EUR 37825 ES 100 ES L
205 203 2021 SE FT Research Scientist 50000 USD 50000 FR 100 US S
206 204 2021 MI FT Data Scientist 160000 USD 160000 US 100 US L
207 205 2021 MI FT Data Scientist 69600 BRL 12901 BR 0 BR S
208 206 2021 SE FT Machine Learning Engineer 200000 USD 200000 US 100 US L
209 207 2021 SE FT Data Engineer 165000 USD 165000 US 0 US M
210 208 2021 MI FL Data Engineer 20000 USD 20000 IT 0 US L
211 209 2021 SE FT Data Analytics Manager 120000 USD 120000 US 0 US L
212 210 2021 MI FT Machine Learning Engineer 21000 EUR 24823 SI 50 SI L
213 211 2021 MI FT Research Scientist 48000 EUR 56738 FR 50 FR S
214 212 2021 MI FT Data Engineer 48000 GBP 66022 HK 50 GB S
215 213 2021 EN FT Big Data Engineer 435000 INR 5882 IN 0 CH L
216 214 2021 EN FT Machine Learning Engineer 21000 EUR 24823 DE 50 DE M
217 215 2021 SE FT Principal Data Engineer 185000 USD 185000 US 100 US L
218 216 2021 EN PT Computer Vision Engineer 180000 DKK 28609 DK 50 DK S
219 217 2021 MI FT Data Scientist 76760 EUR 90734 DE 50 DE L
220 218 2021 MI FT Machine Learning Engineer 75000 EUR 88654 BE 100 BE M
221 219 2021 SE FT Data Analytics Manager 140000 USD 140000 US 100 US L
222 220 2021 MI FT Machine Learning Engineer 180000 PLN 46597 PL 100 PL L
223 221 2021 MI FT Data Scientist 85000 GBP 116914 GB 50 GB L
224 222 2021 MI FT Data Scientist 2500000 INR 33808 IN 0 IN M
225 223 2021 MI FT Data Scientist 40900 GBP 56256 GB 50 GB L
226 224 2021 SE FT Machine Learning Scientist 225000 USD 225000 US 100 CA L
227 225 2021 EX CT Principal Data Scientist 416000 USD 416000 US 100 US S
228 226 2021 SE FT Data Scientist 110000 CAD 87738 CA 100 CA S
229 227 2021 MI FT Data Scientist 75000 EUR 88654 DE 50 DE L
230 228 2021 SE FT Data Scientist 135000 USD 135000 US 0 US L
231 229 2021 SE FT Data Analyst 90000 CAD 71786 CA 100 CA M
232 230 2021 EN FT Big Data Engineer 1200000 INR 16228 IN 100 IN L
233 231 2021 SE FT ML Engineer 256000 USD 256000 US 100 US S
234 232 2021 SE FT Director of Data Engineering 200000 USD 200000 US 100 US L
235 233 2021 SE FT Data Analyst 200000 USD 200000 US 100 US L
236 234 2021 MI FT Data Architect 180000 USD 180000 US 100 US L
237 235 2021 MI FT Head of Data Science 110000 USD 110000 US 0 US S
238 236 2021 MI FT Research Scientist 80000 CAD 63810 CA 100 CA M
239 237 2021 MI FT Data Scientist 39600 EUR 46809 ES 100 ES M
240 238 2021 EN FT Data Scientist 4000 USD 4000 VN 0 VN M
241 239 2021 EN FT Data Engineer 1600000 INR 21637 IN 50 IN M
242 240 2021 SE FT Data Scientist 130000 CAD 103691 CA 100 CA L
243 241 2021 MI FT Data Analyst 80000 USD 80000 US 100 US L
244 242 2021 MI FT Data Engineer 110000 USD 110000 US 100 US L
245 243 2021 SE FT Data Scientist 165000 USD 165000 US 100 US L
246 244 2021 EN FT AI Scientist 1335000 INR 18053 IN 100 AS S
247 245 2021 MI FT Data Engineer 52500 GBP 72212 GB 50 GB L
248 246 2021 EN FT Data Scientist 31000 EUR 36643 FR 50 FR L
249 247 2021 MI FT Data Engineer 108000 TRY 12103 TR 0 TR M
250 248 2021 SE FT Data Engineer 70000 GBP 96282 GB 50 GB L
251 249 2021 SE FT Principal Data Analyst 170000 USD 170000 US 100 US M
252 250 2021 MI FT Data Scientist 115000 USD 115000 US 50 US L
253 251 2021 EN FT Data Scientist 90000 USD 90000 US 100 US S
254 252 2021 EX FT Principal Data Engineer 600000 USD 600000 US 100 US L
255 253 2021 EN FT Data Scientist 2100000 INR 28399 IN 100 IN M
256 254 2021 MI FT Data Analyst 93000 USD 93000 US 100 US L
257 255 2021 SE FT Big Data Architect 125000 CAD 99703 CA 50 CA M
258 256 2021 MI FT Data Engineer 200000 USD 200000 US 100 US L
259 257 2021 SE FT Principal Data Scientist 147000 EUR 173762 DE 100 DE M
260 258 2021 SE FT Machine Learning Engineer 185000 USD 185000 US 50 US L
261 259 2021 EX FT Director of Data Science 120000 EUR 141846 DE 0 DE L
262 260 2021 MI FT Data Scientist 130000 USD 130000 US 50 US L
263 261 2021 SE FT Data Analyst 54000 EUR 63831 DE 50 DE L
264 262 2021 MI FT Data Scientist 1250000 INR 16904 IN 100 IN S
265 263 2021 SE FT Machine Learning Engineer 4900000 INR 66265 IN 0 IN L
266 264 2021 MI FT Data Scientist 21600 EUR 25532 RS 100 DE S
267 265 2021 SE FT Lead Data Engineer 160000 USD 160000 PR 50 US S
268 266 2021 MI FT Data Engineer 93150 USD 93150 US 0 US M
269 267 2021 MI FT Data Engineer 111775 USD 111775 US 0 US M
270 268 2021 MI FT Data Engineer 250000 TRY 28016 TR 100 TR M
271 269 2021 EN FT Data Engineer 55000 EUR 65013 DE 50 DE M
272 270 2021 EN FT Data Engineer 72500 USD 72500 US 100 US L
273 271 2021 SE FT Computer Vision Engineer 102000 BRL 18907 BR 0 BR M
274 272 2021 EN FT Data Science Consultant 65000 EUR 76833 DE 0 DE L
275 273 2021 EN FT Machine Learning Engineer 85000 USD 85000 NL 100 DE S
276 274 2021 SE FT Data Scientist 65720 EUR 77684 FR 50 FR M
277 275 2021 EN FT Data Scientist 100000 USD 100000 US 100 US M
278 276 2021 EN FT Data Scientist 58000 USD 58000 US 50 US L
279 277 2021 SE FT AI Scientist 55000 USD 55000 ES 100 ES L
280 278 2021 SE FT Data Scientist 180000 TRY 20171 TR 50 TR L
281 279 2021 EN FT Business Data Analyst 50000 EUR 59102 LU 100 LU L
282 280 2021 MI FT Data Engineer 112000 USD 112000 US 100 US L
283 281 2021 EN FT Research Scientist 100000 USD 100000 JE 0 CN L
284 282 2021 MI PT Data Engineer 59000 EUR 69741 NL 100 NL L
285 283 2021 SE CT Staff Data Scientist 105000 USD 105000 US 100 US M
286 284 2021 MI FT Research Scientist 69999 USD 69999 CZ 50 CZ L
287 285 2021 SE FT Data Science Manager 7000000 INR 94665 IN 50 IN L
288 286 2021 SE FT Head of Data 87000 EUR 102839 SI 100 SI L
289 287 2021 MI FT Data Scientist 109000 USD 109000 US 50 US L
290 288 2021 MI FT Machine Learning Engineer 43200 EUR 51064 IT 50 IT L
291 289 2022 SE FT Data Engineer 135000 USD 135000 US 100 US M
292 290 2022 SE FT Data Analyst 155000 USD 155000 US 100 US M
293 291 2022 SE FT Data Analyst 120600 USD 120600 US 100 US M
294 292 2022 MI FT Data Scientist 130000 USD 130000 US 0 US M
295 293 2022 MI FT Data Scientist 90000 USD 90000 US 0 US M
296 294 2022 MI FT Data Engineer 170000 USD 170000 US 100 US M
297 295 2022 MI FT Data Engineer 150000 USD 150000 US 100 US M
298 296 2022 SE FT Data Analyst 102100 USD 102100 US 100 US M
299 297 2022 SE FT Data Analyst 84900 USD 84900 US 100 US M
300 298 2022 SE FT Data Scientist 136620 USD 136620 US 100 US M
301 299 2022 SE FT Data Scientist 99360 USD 99360 US 100 US M
302 300 2022 SE FT Data Scientist 90000 GBP 117789 GB 0 GB M
303 301 2022 SE FT Data Scientist 80000 GBP 104702 GB 0 GB M
304 302 2022 SE FT Data Scientist 146000 USD 146000 US 100 US M
305 303 2022 SE FT Data Scientist 123000 USD 123000 US 100 US M
306 304 2022 EN FT Data Engineer 40000 GBP 52351 GB 100 GB M
307 305 2022 SE FT Data Analyst 99000 USD 99000 US 0 US M
308 306 2022 SE FT Data Analyst 116000 USD 116000 US 0 US M
309 307 2022 MI FT Data Analyst 106260 USD 106260 US 0 US M
310 308 2022 MI FT Data Analyst 126500 USD 126500 US 0 US M
311 309 2022 EX FT Data Engineer 242000 USD 242000 US 100 US M
312 310 2022 EX FT Data Engineer 200000 USD 200000 US 100 US M
313 311 2022 MI FT Data Scientist 50000 GBP 65438 GB 0 GB M
314 312 2022 MI FT Data Scientist 30000 GBP 39263 GB 0 GB M
315 313 2022 MI FT Data Engineer 60000 GBP 78526 GB 0 GB M
316 314 2022 MI FT Data Engineer 40000 GBP 52351 GB 0 GB M
317 315 2022 SE FT Data Scientist 165220 USD 165220 US 100 US M
318 316 2022 EN FT Data Engineer 35000 GBP 45807 GB 100 GB M
319 317 2022 SE FT Data Scientist 120160 USD 120160 US 100 US M
320 318 2022 SE FT Data Analyst 90320 USD 90320 US 100 US M
321 319 2022 SE FT Data Engineer 181940 USD 181940 US 0 US M
322 320 2022 SE FT Data Engineer 132320 USD 132320 US 0 US M
323 321 2022 SE FT Data Engineer 220110 USD 220110 US 0 US M
324 322 2022 SE FT Data Engineer 160080 USD 160080 US 0 US M
325 323 2022 SE FT Data Scientist 180000 USD 180000 US 0 US L
326 324 2022 SE FT Data Scientist 120000 USD 120000 US 0 US L
327 325 2022 SE FT Data Analyst 124190 USD 124190 US 100 US M
328 326 2022 EX FT Data Analyst 130000 USD 130000 US 100 US M
329 327 2022 EX FT Data Analyst 110000 USD 110000 US 100 US M
330 328 2022 SE FT Data Analyst 170000 USD 170000 US 100 US M
331 329 2022 MI FT Data Analyst 115500 USD 115500 US 100 US M
332 330 2022 SE FT Data Analyst 112900 USD 112900 US 100 US M
333 331 2022 SE FT Data Analyst 90320 USD 90320 US 100 US M
334 332 2022 SE FT Data Analyst 112900 USD 112900 US 100 US M
335 333 2022 SE FT Data Analyst 90320 USD 90320 US 100 US M
336 334 2022 SE FT Data Engineer 165400 USD 165400 US 100 US M
337 335 2022 SE FT Data Engineer 132320 USD 132320 US 100 US M
338 336 2022 MI FT Data Analyst 167000 USD 167000 US 100 US M
339 337 2022 SE FT Data Engineer 243900 USD 243900 US 100 US M
340 338 2022 SE FT Data Analyst 136600 USD 136600 US 100 US M
341 339 2022 SE FT Data Analyst 109280 USD 109280 US 100 US M
342 340 2022 SE FT Data Engineer 128875 USD 128875 US 100 US M
343 341 2022 SE FT Data Engineer 93700 USD 93700 US 100 US M
344 342 2022 EX FT Head of Data Science 224000 USD 224000 US 100 US M
345 343 2022 EX FT Head of Data Science 167875 USD 167875 US 100 US M
346 344 2022 EX FT Analytics Engineer 175000 USD 175000 US 100 US M
347 345 2022 SE FT Data Engineer 156600 USD 156600 US 100 US M
348 346 2022 SE FT Data Engineer 108800 USD 108800 US 0 US M
349 347 2022 SE FT Data Scientist 95550 USD 95550 US 0 US M
350 348 2022 SE FT Data Engineer 113000 USD 113000 US 0 US L
351 349 2022 SE FT Data Analyst 135000 USD 135000 US 100 US M
352 350 2022 SE FT Data Science Manager 161342 USD 161342 US 100 US M
353 351 2022 SE FT Data Science Manager 137141 USD 137141 US 100 US M
354 352 2022 SE FT Data Scientist 167000 USD 167000 US 100 US M
355 353 2022 SE FT Data Scientist 123000 USD 123000 US 100 US M
356 354 2022 SE FT Data Engineer 60000 GBP 78526 GB 0 GB M
357 355 2022 SE FT Data Engineer 50000 GBP 65438 GB 0 GB M
358 356 2022 SE FT Data Scientist 150000 USD 150000 US 0 US M
359 357 2022 SE FT Data Scientist 211500 USD 211500 US 100 US M
360 358 2022 SE FT Data Architect 192400 USD 192400 CA 100 CA M
361 359 2022 SE FT Data Architect 90700 USD 90700 CA 100 CA M
362 360 2022 SE FT Data Analyst 130000 USD 130000 CA 100 CA M
363 361 2022 SE FT Data Analyst 61300 USD 61300 CA 100 CA M
364 362 2022 SE FT Data Analyst 130000 USD 130000 CA 100 CA M
365 363 2022 SE FT Data Analyst 61300 USD 61300 CA 100 CA M
366 364 2022 SE FT Data Engineer 160000 USD 160000 US 0 US L
367 365 2022 SE FT Data Scientist 138600 USD 138600 US 100 US M
368 366 2022 SE FT Data Engineer 136000 USD 136000 US 0 US M
369 367 2022 MI FT Data Analyst 58000 USD 58000 US 0 US S
370 368 2022 EX FT Analytics Engineer 135000 USD 135000 US 100 US M
371 369 2022 SE FT Data Scientist 170000 USD 170000 US 100 US M
372 370 2022 SE FT Data Scientist 123000 USD 123000 US 100 US M
373 371 2022 SE FT Machine Learning Engineer 189650 USD 189650 US 0 US M
374 372 2022 SE FT Machine Learning Engineer 164996 USD 164996 US 0 US M
375 373 2022 MI FT ETL Developer 50000 EUR 54957 GR 0 GR M
376 374 2022 MI FT ETL Developer 50000 EUR 54957 GR 0 GR M
377 375 2022 EX FT Lead Data Engineer 150000 CAD 118187 CA 100 CA S
378 376 2022 SE FT Data Analyst 132000 USD 132000 US 0 US M
379 377 2022 SE FT Data Engineer 165400 USD 165400 US 100 US M
380 378 2022 SE FT Data Architect 208775 USD 208775 US 100 US M
381 379 2022 SE FT Data Architect 147800 USD 147800 US 100 US M
382 380 2022 SE FT Data Engineer 136994 USD 136994 US 100 US M
383 381 2022 SE FT Data Engineer 101570 USD 101570 US 100 US M
384 382 2022 SE FT Data Analyst 128875 USD 128875 US 100 US M
385 383 2022 SE FT Data Analyst 93700 USD 93700 US 100 US M
386 384 2022 EX FT Head of Machine Learning 6000000 INR 79039 IN 50 IN L
387 385 2022 SE FT Data Engineer 132320 USD 132320 US 100 US M
388 386 2022 EN FT Machine Learning Engineer 28500 GBP 37300 GB 100 GB L
389 387 2022 SE FT Data Analyst 164000 USD 164000 US 0 US M
390 388 2022 SE FT Data Engineer 155000 USD 155000 US 100 US M
391 389 2022 MI FT Machine Learning Engineer 95000 GBP 124333 GB 0 GB M
392 390 2022 MI FT Machine Learning Engineer 75000 GBP 98158 GB 0 GB M
393 391 2022 MI FT AI Scientist 120000 USD 120000 US 0 US M
394 392 2022 SE FT Data Analyst 112900 USD 112900 US 100 US M
395 393 2022 SE FT Data Analyst 90320 USD 90320 US 100 US M
396 394 2022 SE FT Data Analytics Manager 145000 USD 145000 US 100 US M
397 395 2022 SE FT Data Analytics Manager 105400 USD 105400 US 100 US M
398 396 2022 MI FT Machine Learning Engineer 80000 EUR 87932 FR 100 DE M
399 397 2022 MI FT Data Engineer 90000 GBP 117789 GB 0 GB M
400 398 2022 SE FT Data Scientist 215300 USD 215300 US 100 US L
401 399 2022 SE FT Data Scientist 158200 USD 158200 US 100 US L
402 400 2022 SE FT Data Engineer 209100 USD 209100 US 100 US L
403 401 2022 SE FT Data Engineer 154600 USD 154600 US 100 US L
404 402 2022 SE FT Data Analyst 115934 USD 115934 US 0 US M
405 403 2022 SE FT Data Analyst 81666 USD 81666 US 0 US M
406 404 2022 SE FT Data Engineer 175000 USD 175000 US 100 US M
407 405 2022 MI FT Data Engineer 75000 GBP 98158 GB 0 GB M
408 406 2022 MI FT Data Analyst 58000 USD 58000 US 0 US S
409 407 2022 SE FT Data Engineer 183600 USD 183600 US 100 US L
410 408 2022 MI FT Data Analyst 40000 GBP 52351 GB 100 GB M
411 409 2022 SE FT Data Scientist 180000 USD 180000 US 100 US M
412 410 2022 MI FT Data Scientist 55000 GBP 71982 GB 0 GB M
413 411 2022 MI FT Data Scientist 35000 GBP 45807 GB 0 GB M
414 412 2022 MI FT Data Engineer 60000 EUR 65949 GR 100 GR M
415 413 2022 MI FT Data Engineer 45000 EUR 49461 GR 100 GR M
416 414 2022 MI FT Data Engineer 60000 GBP 78526 GB 100 GB M
417 415 2022 MI FT Data Engineer 45000 GBP 58894 GB 100 GB M
418 416 2022 SE FT Data Scientist 260000 USD 260000 US 100 US M
419 417 2022 SE FT Data Science Engineer 60000 USD 60000 AR 100 MX L
420 418 2022 MI FT Data Engineer 63900 USD 63900 US 0 US M
421 419 2022 MI FT Machine Learning Scientist 160000 USD 160000 US 100 US L
422 420 2022 MI FT Machine Learning Scientist 112300 USD 112300 US 100 US L
423 421 2022 MI FT Data Science Manager 241000 USD 241000 US 100 US M
424 422 2022 MI FT Data Science Manager 159000 USD 159000 US 100 US M
425 423 2022 SE FT Data Scientist 180000 USD 180000 US 0 US M
426 424 2022 SE FT Data Scientist 80000 USD 80000 US 0 US M
427 425 2022 MI FT Data Engineer 82900 USD 82900 US 0 US M
428 426 2022 SE FT Data Engineer 100800 USD 100800 US 100 US L
429 427 2022 MI FT Data Engineer 45000 EUR 49461 ES 100 ES M
430 428 2022 SE FT Data Scientist 140400 USD 140400 US 0 US L
431 429 2022 MI FT Data Analyst 30000 GBP 39263 GB 100 GB M
432 430 2022 MI FT Data Analyst 40000 EUR 43966 ES 100 ES M
433 431 2022 MI FT Data Analyst 30000 EUR 32974 ES 100 ES M
434 432 2022 MI FT Data Engineer 80000 EUR 87932 ES 100 ES M
435 433 2022 MI FT Data Engineer 70000 EUR 76940 ES 100 ES M
436 434 2022 MI FT Data Engineer 80000 GBP 104702 GB 100 GB M
437 435 2022 MI FT Data Engineer 70000 GBP 91614 GB 100 GB M
438 436 2022 MI FT Data Engineer 60000 EUR 65949 ES 100 ES M
439 437 2022 MI FT Data Engineer 80000 EUR 87932 GR 100 GR M
440 438 2022 SE FT Machine Learning Engineer 189650 USD 189650 US 0 US M
441 439 2022 SE FT Machine Learning Engineer 164996 USD 164996 US 0 US M
442 440 2022 MI FT Data Analyst 40000 EUR 43966 GR 100 GR M
443 441 2022 MI FT Data Analyst 30000 EUR 32974 GR 100 GR M
444 442 2022 MI FT Data Engineer 75000 GBP 98158 GB 100 GB M
445 443 2022 MI FT Data Engineer 60000 GBP 78526 GB 100 GB M
446 444 2022 SE FT Data Scientist 215300 USD 215300 US 0 US L
447 445 2022 MI FT Data Engineer 70000 EUR 76940 GR 100 GR M
448 446 2022 SE FT Data Engineer 209100 USD 209100 US 100 US L
449 447 2022 SE FT Data Engineer 154600 USD 154600 US 100 US L
450 448 2022 SE FT Data Engineer 180000 USD 180000 US 100 US M
451 449 2022 EN FT ML Engineer 20000 EUR 21983 PT 100 PT L
452 450 2022 SE FT Data Engineer 80000 USD 80000 US 100 US M
453 451 2022 MI FT Machine Learning Developer 100000 CAD 78791 CA 100 CA M
454 452 2022 EX FT Director of Data Science 250000 CAD 196979 CA 50 CA L
455 453 2022 MI FT Machine Learning Engineer 120000 USD 120000 US 100 US S
456 454 2022 EN FT Computer Vision Engineer 125000 USD 125000 US 0 US M
457 455 2022 MI FT NLP Engineer 240000 CNY 37236 US 50 US L
458 456 2022 SE FT Data Engineer 105000 USD 105000 US 100 US M
459 457 2022 SE FT Lead Machine Learning Engineer 80000 EUR 87932 DE 0 DE M
460 458 2022 MI FT Business Data Analyst 1400000 INR 18442 IN 100 IN M
461 459 2022 MI FT Data Scientist 2400000 INR 31615 IN 100 IN L
462 460 2022 MI FT Machine Learning Infrastructure Engineer 53000 EUR 58255 PT 50 PT L
463 461 2022 EN FT Financial Data Analyst 100000 USD 100000 US 50 US L
464 462 2022 MI PT Data Engineer 50000 EUR 54957 DE 50 DE L
465 463 2022 EN FT Data Scientist 1400000 INR 18442 IN 100 IN M
466 464 2022 SE FT Principal Data Scientist 148000 EUR 162674 DE 100 DE M
467 465 2022 EN FT Data Engineer 120000 USD 120000 US 100 US M
468 466 2022 SE FT Research Scientist 144000 USD 144000 US 50 US L
469 467 2022 SE FT Data Scientist 104890 USD 104890 US 100 US M
470 468 2022 SE FT Data Engineer 100000 USD 100000 US 100 US M
471 469 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
472 470 2022 MI FT Data Analyst 135000 USD 135000 US 100 US M
473 471 2022 MI FT Data Analyst 50000 USD 50000 US 100 US M
474 472 2022 SE FT Data Scientist 220000 USD 220000 US 100 US M
475 473 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
476 474 2022 MI FT Data Scientist 140000 GBP 183228 GB 0 GB M
477 475 2022 MI FT Data Scientist 70000 GBP 91614 GB 0 GB M
478 476 2022 SE FT Data Scientist 185100 USD 185100 US 100 US M
479 477 2022 SE FT Machine Learning Engineer 220000 USD 220000 US 100 US M
480 478 2022 MI FT Data Scientist 200000 USD 200000 US 100 US M
481 479 2022 MI FT Data Scientist 120000 USD 120000 US 100 US M
482 480 2022 SE FT Machine Learning Engineer 120000 USD 120000 AE 100 AE S
483 481 2022 SE FT Machine Learning Engineer 65000 USD 65000 AE 100 AE S
484 482 2022 EX FT Data Engineer 324000 USD 324000 US 100 US M
485 483 2022 EX FT Data Engineer 216000 USD 216000 US 100 US M
486 484 2022 SE FT Data Engineer 210000 USD 210000 US 100 US M
487 485 2022 SE FT Machine Learning Engineer 120000 USD 120000 US 100 US M
488 486 2022 SE FT Data Scientist 230000 USD 230000 US 100 US M
489 487 2022 EN PT Data Scientist 100000 USD 100000 DZ 50 DZ M
490 488 2022 MI FL Data Scientist 100000 USD 100000 CA 100 US M
491 489 2022 EN CT Applied Machine Learning Scientist 29000 EUR 31875 TN 100 CZ M
492 490 2022 SE FT Head of Data 200000 USD 200000 MY 100 US M
493 491 2022 MI FT Principal Data Analyst 75000 USD 75000 CA 100 CA S
494 492 2022 MI FT Data Scientist 150000 PLN 35590 PL 100 PL L
495 493 2022 SE FT Machine Learning Developer 100000 CAD 78791 CA 100 CA M
496 494 2022 SE FT Data Scientist 100000 USD 100000 BR 100 US M
497 495 2022 MI FT Machine Learning Scientist 153000 USD 153000 US 50 US M
498 496 2022 EN FT Data Engineer 52800 EUR 58035 PK 100 DE M
499 497 2022 SE FT Data Scientist 165000 USD 165000 US 100 US M
500 498 2022 SE FT Research Scientist 85000 EUR 93427 FR 50 FR L
501 499 2022 EN FT Data Scientist 66500 CAD 52396 CA 100 CA L
502 500 2022 SE FT Machine Learning Engineer 57000 EUR 62651 NL 100 NL L
503 501 2022 MI FT Head of Data 30000 EUR 32974 EE 100 EE S
504 502 2022 EN FT Data Scientist 40000 USD 40000 JP 100 MY L
505 503 2022 MI FT Machine Learning Engineer 121000 AUD 87425 AU 100 AU L
506 504 2022 SE FT Data Engineer 115000 USD 115000 US 100 US M
507 505 2022 EN FT Data Scientist 120000 AUD 86703 AU 50 AU M
508 506 2022 MI FT Applied Machine Learning Scientist 75000 USD 75000 BO 100 US L
509 507 2022 MI FT Research Scientist 59000 EUR 64849 AT 0 AT L
510 508 2022 EN FT Research Scientist 120000 USD 120000 US 100 US L
511 509 2022 MI FT Applied Data Scientist 157000 USD 157000 US 100 US L
512 510 2022 EN FT Computer Vision Software Engineer 150000 USD 150000 AU 100 AU S
513 511 2022 MI FT Business Data Analyst 90000 CAD 70912 CA 50 CA L
514 512 2022 EN FT Data Engineer 65000 USD 65000 US 100 US S
515 513 2022 SE FT Machine Learning Engineer 65000 EUR 71444 IE 100 IE S
516 514 2022 EN FT Data Analytics Engineer 20000 USD 20000 PK 0 PK M
517 515 2022 MI FT Data Scientist 48000 USD 48000 RU 100 US S
518 516 2022 SE FT Data Science Manager 152500 USD 152500 US 100 US M
519 517 2022 MI FT Data Engineer 62000 EUR 68147 FR 100 FR M
520 518 2022 MI FT Data Scientist 115000 CHF 122346 CH 0 CH L
521 519 2022 SE FT Applied Data Scientist 380000 USD 380000 US 100 US L
522 520 2022 MI FT Data Scientist 88000 CAD 69336 CA 100 CA M
523 521 2022 EN FT Computer Vision Engineer 10000 USD 10000 PT 100 LU M
524 522 2022 MI FT Data Analyst 20000 USD 20000 GR 100 GR S
525 523 2022 SE FT Data Analytics Lead 405000 USD 405000 US 100 US L
526 524 2022 MI FT Data Scientist 135000 USD 135000 US 100 US L
527 525 2022 SE FT Applied Data Scientist 177000 USD 177000 US 100 US L
528 526 2022 MI FT Data Scientist 78000 USD 78000 US 100 US M
529 527 2022 SE FT Data Analyst 135000 USD 135000 US 100 US M
530 528 2022 SE FT Data Analyst 100000 USD 100000 US 100 US M
531 529 2022 SE FT Data Analyst 90320 USD 90320 US 100 US M
532 530 2022 MI FT Data Analyst 85000 USD 85000 CA 0 CA M
533 531 2022 MI FT Data Analyst 75000 USD 75000 CA 0 CA M
534 532 2022 SE FT Machine Learning Engineer 214000 USD 214000 US 100 US M
535 533 2022 SE FT Machine Learning Engineer 192600 USD 192600 US 100 US M
536 534 2022 SE FT Data Architect 266400 USD 266400 US 100 US M
537 535 2022 SE FT Data Architect 213120 USD 213120 US 100 US M
538 536 2022 SE FT Data Analyst 112900 USD 112900 US 100 US M
539 537 2022 SE FT Data Engineer 155000 USD 155000 US 100 US M
540 538 2022 MI FT Data Scientist 141300 USD 141300 US 0 US M
541 539 2022 MI FT Data Scientist 102100 USD 102100 US 0 US M
542 540 2022 SE FT Data Analyst 115934 USD 115934 US 100 US M
543 541 2022 SE FT Data Analyst 81666 USD 81666 US 100 US M
544 542 2022 MI FT Data Engineer 206699 USD 206699 US 0 US M
545 543 2022 MI FT Data Engineer 99100 USD 99100 US 0 US M
546 544 2022 SE FT Data Engineer 130000 USD 130000 US 100 US M
547 545 2022 SE FT Data Engineer 115000 USD 115000 US 100 US M
548 546 2022 SE FT Data Engineer 110500 USD 110500 US 100 US M
549 547 2022 SE FT Data Engineer 130000 USD 130000 US 100 US M
550 548 2022 SE FT Data Analyst 99050 USD 99050 US 100 US M
551 549 2022 SE FT Data Engineer 160000 USD 160000 US 100 US M
552 550 2022 SE FT Data Scientist 205300 USD 205300 US 0 US L
553 551 2022 SE FT Data Scientist 140400 USD 140400 US 0 US L
554 552 2022 SE FT Data Scientist 176000 USD 176000 US 100 US M
555 553 2022 SE FT Data Scientist 144000 USD 144000 US 100 US M
556 554 2022 SE FT Data Engineer 200100 USD 200100 US 100 US M
557 555 2022 SE FT Data Engineer 160000 USD 160000 US 100 US M
558 556 2022 SE FT Data Engineer 145000 USD 145000 US 100 US M
559 557 2022 SE FT Data Engineer 70500 USD 70500 US 0 US M
560 558 2022 SE FT Data Scientist 205300 USD 205300 US 0 US M
561 559 2022 SE FT Data Scientist 140400 USD 140400 US 0 US M
562 560 2022 SE FT Analytics Engineer 205300 USD 205300 US 0 US M
563 561 2022 SE FT Analytics Engineer 184700 USD 184700 US 0 US M
564 562 2022 SE FT Data Engineer 175100 USD 175100 US 100 US M
565 563 2022 SE FT Data Engineer 140250 USD 140250 US 100 US M
566 564 2022 SE FT Data Analyst 116150 USD 116150 US 100 US M
567 565 2022 SE FT Data Engineer 54000 USD 54000 US 0 US M
568 566 2022 SE FT Data Analyst 170000 USD 170000 US 100 US M
569 567 2022 MI FT Data Analyst 50000 GBP 65438 GB 0 GB M
570 568 2022 SE FT Data Analyst 80000 USD 80000 US 100 US M
571 569 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
572 570 2022 SE FT Data Scientist 210000 USD 210000 US 100 US M
573 571 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
574 572 2022 SE FT Data Analyst 100000 USD 100000 US 100 US M
575 573 2022 SE FT Data Analyst 69000 USD 69000 US 100 US M
576 574 2022 SE FT Data Scientist 210000 USD 210000 US 100 US M
577 575 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
578 576 2022 SE FT Data Scientist 210000 USD 210000 US 100 US M
579 577 2022 SE FT Data Analyst 150075 USD 150075 US 100 US M
580 578 2022 SE FT Data Engineer 100000 USD 100000 US 100 US M
581 579 2022 SE FT Data Engineer 25000 USD 25000 US 100 US M
582 580 2022 SE FT Data Analyst 126500 USD 126500 US 100 US M
583 581 2022 SE FT Data Analyst 106260 USD 106260 US 100 US M
584 582 2022 SE FT Data Engineer 220110 USD 220110 US 100 US M
585 583 2022 SE FT Data Engineer 160080 USD 160080 US 100 US M
586 584 2022 SE FT Data Analyst 105000 USD 105000 US 100 US M
587 585 2022 SE FT Data Analyst 110925 USD 110925 US 100 US M
588 586 2022 MI FT Data Analyst 35000 GBP 45807 GB 0 GB M
589 587 2022 SE FT Data Scientist 140000 USD 140000 US 100 US M
590 588 2022 SE FT Data Analyst 99000 USD 99000 US 0 US M
591 589 2022 SE FT Data Analyst 60000 USD 60000 US 100 US M
592 590 2022 SE FT Data Architect 192564 USD 192564 US 100 US M
593 591 2022 SE FT Data Architect 144854 USD 144854 US 100 US M
594 592 2022 SE FT Data Scientist 230000 USD 230000 US 100 US M
595 593 2022 SE FT Data Scientist 150000 USD 150000 US 100 US M
596 594 2022 SE FT Data Analytics Manager 150260 USD 150260 US 100 US M
597 595 2022 SE FT Data Analytics Manager 109280 USD 109280 US 100 US M
598 596 2022 SE FT Data Scientist 210000 USD 210000 US 100 US M
599 597 2022 SE FT Data Analyst 170000 USD 170000 US 100 US M
600 598 2022 MI FT Data Scientist 160000 USD 160000 US 100 US M
601 599 2022 MI FT Data Scientist 130000 USD 130000 US 100 US M
602 600 2022 EN FT Data Analyst 67000 USD 67000 CA 0 CA M
603 601 2022 EN FT Data Analyst 52000 USD 52000 CA 0 CA M
604 602 2022 SE FT Data Engineer 154000 USD 154000 US 100 US M
605 603 2022 SE FT Data Engineer 126000 USD 126000 US 100 US M
606 604 2022 SE FT Data Analyst 129000 USD 129000 US 0 US M
607 605 2022 SE FT Data Analyst 150000 USD 150000 US 100 US M
608 606 2022 MI FT AI Scientist 200000 USD 200000 IN 100 US L

11
README.MD Normal file
View File

@@ -0,0 +1,11 @@
# Machine Learning Models
I have created this repository for all the Machine Learning models I develop.
You can find all the projects and their documentation in their respective directories.
Below is a table of all the Machine Learning models created:
## Models
|Model Name|Link to directory|
|----------|-----------------|
| Test Model | |

View File

@@ -0,0 +1,101 @@
# Brain Stroke prediction- DecisionTree
A stroke is an interruption of the blood supply to any part of the brain. If blood flow was stopped for longer than a few seconds and the brain cannot get blood and oxygen, brain cells can die, and the abilities controlled by that area of the brain are lost. In this Notebook we will use some features to see wether we will be able to predict the stoke or not? This is just a theoretical Machine Learning Model that will analyze the data and determine where the stroke can occur.
## Basic Outline For A Machine Learning Model:
Points to keep in mind when working with a machine learning model
1. Import the Data
2. Clean the Data
3. Split the Data into Training/Test Sets
4. Create Model
5. Train the Model
6. Make Predictions
7. Evaluate and Improve
## Libraries Needed:
1. Numpy
2. Pandas
3. Matplotlib
4. Scikit-Learn
5. Seaborn
6. Cufflinks
## Tools Needed:
1. Jupyter (IDE)
2. https://www.kaggle.com (To download the dataset)
3. https://dreampuf.github.io/GraphvizOnline/ (To visualize the graph)
## Methodology:
1. IMPORTING LIBRARIES AND LOADING DATA
2. DATA EXPLORATION
3. VIZUALIZATION
4. DATA PREPROCESSING
a. Target and Feature values / Train Test Split
5. MODEL BUILDING
a. Decision Tree Classifier and Gini method
b. Prediction Model File Generation
c. Prediction Model File Loading
d. Model accuracy score
i. Testing Accuracy
ii. Training Accuracy
6. MODEL WORKING GRAPH
## In-Depth Working of this model:
### Imports
1. Numpy: For working with arrays.
2. Pandas: Used to analyze the data.
3. OS Module: For working with files/directories.
4. matplotlib: Used for programmatic plot generation.
5. Seaborn: Used for statistical graphics.
6. Warnings: Used to control warnings in Python.
7. sklearn: These are simple and efficient tools for predictive data analsis.
### Data Exploration
1. pd.read_csv: Used to load cvs files in pandas dataframe.
2. df.head: It returns first 'n' rows.
3. pd.info: It prints information about the dataframe.
4. df.describe: It generates descriptive statistics.
5. unique: It returns unique values from the dataframe.
### Vizualization
1. Cufflinks: It connects plotly with pandas to create charts directly on the dataframe.
2. go_offline: This enables us to use plotly offline rather than online.
3. offline=Flase: It enables the charts to not render locally.
4. df.groupby: It enables us to group dataframe using a mapper or a series of colomns.
5. df.values: It returns a numpy representation of the dataframe.
6. df.iplot: It is for building interactive plots.
7. df.sum: It returns a sum of values over the requested axis.
### Data Preprocessing
1. df.isnull: It detects missing values.
2. df.drop: It drops speficied labels from rows and columns.
3. get_dummies: It converts categorial variable into dummy/indicator variable.
### Model Building
1. criterion: The function to measure the quality of a split.
2. random_state: It controls the randomness of the estimator.
3. max_depth: The maximum depth of the tree.
4. clf_gini.fit: It is used to fit training data.
5. joblib.dump: It collects all the learning and dumps it in one file.
6. joblib.load: It reconstructs the file for use which is created by 'dump' method.
7. clf_gini.predict: It is a method which operates using numpy.argmax function on the output of predic_probo.
8. clf_gini.score: It returns the mean accuracy on the given test data and labels.
9. export_graphviz: It is used to export a decision tree in a '.dot' format.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,202 @@
gender,age,hypertension,heart_disease,ever_married,work_type,Residence_type,avg_glucose_level,bmi,smoking_status,stroke
Female,61.0,0,0,Yes,Self-employed,Rural,202.21,31.555602417555065,never smoked,1
Female,59.0,0,0,Yes,Private,Rural,76.15,30.24293671780551,Unknown,1
Male,78.0,0,1,Yes,Private,Urban,219.84,30.698951437189447,Unknown,1
Male,57.0,0,1,No,Govt_job,Urban,217.08,33.80840960032553,Unknown,1
Male,58.0,0,0,Yes,Private,Rural,189.84,31.378533851873115,Unknown,1
Male,59.0,0,0,Yes,Private,Rural,211.78,33.4845680869329,formerly smoked,1
Female,63.0,0,0,Yes,Private,Urban,90.9,30.042545164065906,formerly smoked,1
Female,75.0,0,1,No,Self-employed,Urban,109.78,28.31827337114426,Unknown,1
Female,76.0,0,0,No,Private,Urban,89.96,28.397892673424312,Unknown,1
Male,78.0,1,0,Yes,Private,Urban,75.32,29.139780244728872,formerly smoked,1
Female,63.0,0,0,Yes,Govt_job,Urban,197.54,31.602317143886843,never smoked,1
Male,78.0,0,0,Yes,Private,Urban,237.75,29.316691843518786,formerly smoked,1
Male,75.0,0,0,Yes,Private,Urban,104.72,28.31827337114426,Unknown,1
Female,76.0,0,0,Yes,Govt_job,Rural,62.57,27.954912232096934,formerly smoked,1
Female,51.0,0,0,Yes,Private,Urban,165.31,30.491106831242366,never smoked,1
Female,66.0,0,0,Yes,Self-employed,Urban,101.45,29.292953098797682,Unknown,1
Male,58.0,0,0,Yes,Private,Urban,71.2,30.003880754655786,Unknown,1
Male,58.0,0,0,Yes,Private,Urban,82.3,30.199570565349735,smokes,1
Female,76.0,0,0,Yes,Self-employed,Urban,106.41,28.202069360450302,formerly smoked,1
Female,72.0,0,0,Yes,Private,Urban,219.91,32.120369077356244,Unknown,1
Male,78.0,1,0,Yes,Self-employed,Urban,93.13,29.210833962046138,formerly smoked,1
Female,75.0,0,0,Yes,Govt_job,Urban,62.48,28.070471960148872,Unknown,1
Female,38.0,0,0,Yes,Private,Rural,101.45,29.863774950891848,formerly smoked,1
Male,65.0,0,0,Yes,Self-employed,Urban,68.43,29.583323235372124,formerly smoked,1
Female,79.0,0,0,Yes,Private,Rural,169.67,27.971856904548776,Unknown,1
Female,76.0,0,0,Yes,Private,Urban,57.92,27.940892278838152,formerly smoked,1
Male,71.0,0,1,Yes,Private,Urban,81.76,28.9457498615031,smokes,1
Female,1.32,0,0,No,children,Urban,70.37,18.719259745575055,Unknown,1
Male,79.0,1,0,Yes,Private,Rural,75.02,29.139780244728872,never smoked,1
Male,64.0,0,0,Yes,Self-employed,Rural,111.98,29.79052811527944,formerly smoked,1
Female,79.0,1,1,No,Self-employed,Rural,60.94,28.759856260413944,never smoked,1
Female,78.0,0,0,Yes,Self-employed,Rural,60.67,27.08627617177477,formerly smoked,1
Female,80.0,0,0,Yes,Govt_job,Urban,110.66,27.282122315103724,Unknown,1
Female,77.0,0,0,No,Private,Urban,81.32,28.08147438013183,Unknown,1
Male,61.0,0,1,Yes,Private,Urban,209.86,32.94704544116234,Unknown,1
Male,79.0,0,0,Yes,Private,Rural,114.77,27.243396290267707,formerly smoked,1
Male,74.0,0,0,Yes,Private,Urban,167.13,28.736400149250798,Unknown,1
Female,76.0,1,1,Yes,Self-employed,Urban,199.86,31.684031473836264,smokes,1
Male,74.0,0,0,Yes,Self-employed,Rural,60.98,28.070471960148872,never smoked,1
Male,71.0,1,0,Yes,Self-employed,Rural,87.8,30.763683412344054,Unknown,1
Male,34.0,0,1,Yes,Private,Urban,106.23,29.70237259796381,formerly smoked,0
Female,76.0,1,0,Yes,Self-employed,Urban,209.58,33.07902301871912,never smoked,0
Female,63.0,0,0,Yes,Govt_job,Rural,79.92,29.970218681520958,smokes,0
Male,61.0,0,0,Yes,Govt_job,Urban,184.15,30.863162932887985,Unknown,0
Male,54.0,1,0,Yes,Private,Rural,198.69,33.737576205047304,smokes,0
Male,40.0,0,0,Yes,Private,Rural,89.77,30.0668053524742,smokes,0
Female,48.0,1,0,No,Private,Rural,118.14,31.697085992503364,formerly smoked,0
Male,61.0,0,1,Yes,Private,Urban,88.27,29.99730179513789,never smoked,0
Male,31.0,1,0,Yes,Govt_job,Urban,92.11,31.198140115564627,never smoked,0
Female,43.0,0,0,Yes,Govt_job,Rural,107.42,29.854190333221652,never smoked,0
Female,9.0,0,0,No,children,Urban,95.81,20.018427356531838,Unknown,0
Male,52.0,0,0,Yes,Private,Urban,226.7,33.117246460733575,smokes,0
Female,77.0,0,1,Yes,Private,Rural,183.1,28.982843563019326,never smoked,0
Female,17.0,0,0,No,Private,Rural,83.23,26.420807382569834,never smoked,0
Female,71.0,0,0,Yes,Self-employed,Urban,91.35,29.016504284733173,formerly smoked,0
Female,35.0,0,0,No,Govt_job,Urban,83.76,29.789599917563965,smokes,0
Female,23.0,0,0,No,Private,Urban,110.16,26.997282265398667,never smoked,0
Male,40.0,0,0,No,Private,Urban,88.27,30.0668053524742,formerly smoked,0
Female,23.0,0,0,No,Private,Rural,193.22,28.383477868385224,smokes,0
Female,71.0,1,0,Yes,Self-employed,Rural,66.12,30.375307026800215,never smoked,0
Male,13.0,0,0,No,children,Urban,71.73,22.562797542765956,Unknown,0
Male,73.0,1,0,Yes,Self-employed,Rural,102.06,30.19632033911637,Unknown,0
Female,3.0,0,0,No,children,Urban,79.63,18.896758341975225,Unknown,0
Male,51.0,0,0,Yes,Private,Rural,217.71,33.749649271841086,formerly smoked,0
Male,35.0,0,0,Yes,Private,Rural,115.92,29.612603644460908,formerly smoked,0
Female,73.0,0,0,Yes,Self-employed,Rural,79.69,28.596578523400677,formerly smoked,0
Female,6.0,0,0,No,children,Urban,201.25,20.50813016611414,Unknown,0
Male,46.0,1,0,Yes,Private,Rural,73.72,31.606570696468122,smokes,0
Female,71.0,0,0,Yes,Private,Urban,214.77,32.27387095184459,Unknown,0
Female,54.0,1,0,Yes,Private,Rural,98.74,31.89971211530221,never smoked,0
Female,80.0,0,0,Yes,Govt_job,Urban,84.86,27.411314469808467,Unknown,0
Female,49.0,0,0,Yes,Private,Rural,67.27,29.876490922740366,formerly smoked,0
Male,72.0,0,0,Yes,Self-employed,Rural,72.09,28.54569321378707,smokes,0
Male,25.0,0,0,Yes,Private,Rural,78.29,27.173222235093398,smokes,0
Male,27.0,0,0,No,Private,Rural,191.79,28.89969575625761,smokes,0
Male,51.0,1,0,Yes,Private,Rural,163.56,32.29329460570186,formerly smoked,0
Male,48.0,0,0,Yes,Self-employed,Rural,216.88,33.69541657142078,smokes,0
Male,7.0,0,0,No,children,Urban,87.94,19.483194786207072,Unknown,0
Female,61.0,1,1,Yes,Private,Urban,237.58,33.746401289230256,formerly smoked,0
Female,25.0,0,0,Yes,Govt_job,Urban,93.23,27.24120740794051,smokes,0
Male,30.0,0,0,Yes,Private,Urban,91.23,29.28032172443538,smokes,0
Male,71.0,1,0,Yes,Self-employed,Rural,93.6,30.719672786758665,never smoked,0
Male,47.0,0,0,No,Private,Rural,237.17,32.05850252051601,Unknown,0
Male,76.0,0,1,Yes,Private,Urban,79.05,28.328095943797504,Unknown,0
Female,29.0,0,0,No,Private,Urban,81.43,28.61994283496398,formerly smoked,0
Female,48.0,0,1,Yes,Self-employed,Urban,101.22,30.006573102139797,formerly smoked,0
Female,57.0,1,0,Yes,Private,Urban,210.0,35.18860462517498,never smoked,0
Male,58.0,0,0,Yes,Private,Urban,94.0,30.272074039541987,Unknown,0
Male,45.0,0,1,Yes,Private,Rural,93.77,30.013810750424852,Unknown,0
Male,66.0,0,0,Yes,Private,Urban,190.4,30.538184095161768,formerly smoked,0
Male,59.0,0,1,Yes,Govt_job,Urban,188.69,31.378533851873115,formerly smoked,0
Male,34.0,0,0,Yes,Private,Rural,86.51,29.904709563307257,formerly smoked,0
Male,69.0,1,0,Yes,Private,Rural,107.11,30.624831677910333,smokes,0
Male,66.0,0,0,Yes,Self-employed,Urban,71.38,29.18710939880596,formerly smoked,0
Female,48.0,0,0,Yes,Self-employed,Rural,209.9,33.17294727137241,smokes,0
Male,32.0,0,0,No,Private,Rural,95.58,29.752554356966748,smokes,0
Male,60.0,0,0,Yes,Self-employed,Urban,185.71,31.378533851873115,Unknown,0
Female,30.0,0,0,No,Govt_job,Urban,88.2,29.28032172443538,smokes,0
Female,60.0,0,0,Yes,Self-employed,Urban,203.04,32.130179775170376,smokes,0
Male,10.0,0,0,No,children,Rural,99.87,20.263791073638025,formerly smoked,0
Male,20.0,0,0,No,Private,Rural,70.96,26.305040919138523,Unknown,0
Male,77.0,0,0,Yes,Private,Urban,74.26,28.004566476544774,formerly smoked,0
Male,67.0,0,0,Yes,Private,Urban,92.73,29.081488595208445,never smoked,0
Female,42.0,0,0,Yes,Private,Urban,208.06,32.49735905629397,smokes,0
Female,60.0,1,0,Yes,Private,Urban,109.0,31.89971211530221,Unknown,0
Male,0.48,0,0,No,children,Urban,73.02,17.89929451491795,Unknown,0
Male,35.0,0,0,Yes,Private,Rural,77.48,29.832593105583623,formerly smoked,0
Male,50.0,1,0,No,Private,Urban,81.96,31.97914377106592,formerly smoked,0
Female,19.0,0,0,No,Private,Rural,72.39,26.284524627193612,smokes,0
Female,77.0,1,0,Yes,Self-employed,Urban,109.51,29.663123711666024,never smoked,0
Male,67.0,0,1,Yes,Private,Rural,97.24,28.944067909678317,Unknown,0
Female,20.0,0,0,No,Private,Urban,89.03,26.59200375926125,smokes,0
Male,49.0,0,0,Yes,Private,Rural,79.64,30.188174647677695,smokes,0
Male,77.0,0,1,Yes,Govt_job,Rural,106.03,27.956143010263066,Unknown,0
Female,52.0,1,0,Yes,Self-employed,Rural,111.38,31.791922363152473,smokes,0
Male,43.0,0,0,Yes,Govt_job,Rural,80.07,29.984830834123173,never smoked,0
Female,69.0,1,0,Yes,Govt_job,Urban,112.2,30.574928449662846,never smoked,0
Female,34.0,1,0,Yes,Self-employed,Urban,100.61,31.47526322033101,Unknown,0
Male,78.0,0,1,Yes,Self-employed,Urban,243.73,28.02386637636746,smokes,0
Male,76.0,0,1,Yes,Self-employed,Urban,67.03,28.02871647102671,never smoked,0
Male,62.0,1,1,Yes,Private,Rural,176.25,32.43801447032291,never smoked,0
Female,71.0,1,0,Yes,Private,Urban,105.55,30.557687319717626,smokes,0
Male,79.0,0,1,Yes,Private,Urban,213.38,30.504871562608173,Unknown,0
Male,79.0,0,1,Yes,Private,Rural,82.27,27.411314469808467,never smoked,0
Male,54.0,0,0,Yes,Private,Rural,74.06,30.162336272799983,never smoked,0
Female,73.0,1,0,Yes,Private,Rural,217.84,33.899575602263056,never smoked,0
Female,5.0,0,0,No,children,Rural,105.18,19.03363307440957,Unknown,0
Female,38.0,0,0,Yes,Private,Rural,217.55,33.541750072202845,smokes,0
Male,72.0,1,0,Yes,Private,Rural,231.71,33.22529657056137,Unknown,0
Male,14.0,0,0,No,Private,Rural,110.72,25.92538060204817,never smoked,0
Male,50.0,0,0,Yes,Private,Urban,67.02,29.876490922740366,formerly smoked,0
Male,29.0,1,0,Yes,Private,Urban,77.55,30.352153075720764,formerly smoked,0
Male,75.0,1,0,Yes,Private,Rural,198.79,31.809102388818047,smokes,0
Female,68.0,1,1,Yes,Private,Rural,233.3,33.480734073500464,Unknown,0
Female,33.0,1,0,No,Private,Rural,97.87,31.430239364510037,smokes,0
Male,63.0,0,1,Yes,Self-employed,Urban,82.72,29.927100195480005,never smoked,0
Female,56.0,0,0,Yes,Private,Urban,102.97,30.111585941603717,smokes,0
Male,70.0,0,0,Yes,Govt_job,Urban,202.55,30.781985990405303,formerly smoked,0
Male,71.0,0,1,Yes,Private,Urban,204.98,30.976758580936625,formerly smoked,0
Female,73.0,0,0,No,Self-employed,Rural,69.35,28.36584508965892,never smoked,0
Female,67.0,1,0,Yes,Private,Rural,85.48,30.75318633749586,smokes,0
Female,62.0,1,0,Yes,Self-employed,Urban,75.78,31.75309029478169,smokes,0
Female,38.0,0,0,Yes,Private,Urban,91.44,30.0668053524742,Unknown,0
Female,47.0,0,0,Yes,Self-employed,Rural,195.61,31.720165526413464,never smoked,0
Female,42.0,0,0,Yes,Private,Urban,73.37,29.948147355072038,smokes,0
Male,58.0,0,0,Yes,Govt_job,Urban,160.87,30.546215505510165,formerly smoked,0
Male,44.0,1,0,Yes,Private,Rural,84.1,31.723509495457375,Unknown,0
Male,42.0,0,0,Yes,Private,Urban,177.91,30.68964575227439,Unknown,0
Male,78.0,1,0,Yes,Self-employed,Urban,90.19,29.210833962046138,Unknown,0
Female,68.0,0,0,No,Private,Urban,82.85,28.968393628910906,smokes,0
Male,39.0,0,0,Yes,Private,Rural,84.18,29.951301422935355,smokes,0
Male,60.0,0,0,Yes,Self-employed,Rural,212.02,33.4845680869329,Unknown,0
Female,31.0,0,0,Yes,Self-employed,Urban,87.23,29.435237286859376,formerly smoked,0
Male,67.0,0,0,Yes,Private,Urban,260.85,29.09959343959128,Unknown,0
Female,52.0,1,0,Yes,Self-employed,Rural,104.45,31.843071754782194,never smoked,0
Female,53.0,0,0,Yes,Private,Urban,227.68,33.117246460733575,never smoked,0
Female,33.0,0,0,No,Private,Urban,84.4,29.746116027365073,smokes,0
Female,53.0,0,0,No,Private,Rural,235.45,32.48706845856044,formerly smoked,0
Female,49.0,0,0,Yes,Private,Rural,107.55,30.056974383018026,Unknown,0
Male,52.0,0,1,No,Self-employed,Rural,79.81,30.188174647677695,formerly smoked,0
Female,41.0,0,0,Yes,Self-employed,Rural,76.66,29.99444194055943,Unknown,0
Male,1.88,0,0,No,children,Rural,143.97,19.018775636939367,Unknown,0
Male,34.0,0,0,Yes,Private,Urban,99.23,29.70237259796381,smokes,0
Female,16.0,0,0,No,Private,Urban,89.45,26.52751396445424,Unknown,0
Female,45.0,0,0,Yes,Private,Urban,202.66,31.86199054694296,never smoked,0
Male,1.08,0,0,No,children,Rural,74.5,18.797637948568624,Unknown,0
Male,1.8,0,0,No,children,Urban,68.8,18.719259745575055,Unknown,0
Female,13.0,0,0,No,children,Rural,219.81,25.654078421843533,Unknown,0
Female,61.0,0,0,Yes,Private,Rural,219.38,33.46726940704127,never smoked,0
Female,37.0,0,0,No,Govt_job,Rural,72.08,29.595595561791818,formerly smoked,0
Male,32.0,1,0,No,Govt_job,Urban,58.24,31.098300161525284,formerly smoked,0
Female,79.0,0,0,Yes,Private,Rural,208.05,29.78694460325683,smokes,0
Male,8.0,0,0,No,children,Urban,78.76,19.428195618403347,Unknown,0
Female,75.0,0,1,Yes,Self-employed,Urban,83.88,28.402910258289666,smokes,0
Female,79.0,1,0,Yes,Self-employed,Rural,92.43,29.210833962046138,never smoked,0
Female,69.0,0,1,Yes,Private,Urban,207.6,31.231186313834275,never smoked,0
Male,31.0,0,0,Yes,Private,Urban,108.62,29.23491653621969,smokes,0
Female,82.0,1,0,Yes,Private,Urban,222.52,31.75340319266665,formerly smoked,0
Male,32.0,1,0,No,Private,Rural,74.43,31.497422037342364,Unknown,0
Female,17.0,0,0,No,Private,Urban,92.97,26.52751396445424,formerly smoked,0
Female,18.0,0,0,No,Private,Rural,101.12,26.437222755448115,smokes,0
Male,59.0,1,0,Yes,Govt_job,Rural,253.93,32.1306496403525,formerly smoked,0
Male,3.0,0,0,No,children,Rural,194.75,20.11991532687849,Unknown,0
Female,20.0,0,0,No,Govt_job,Rural,79.53,26.52504773335733,never smoked,0
Female,78.0,0,0,Yes,Govt_job,Urban,101.76,27.32855855724956,smokes,0
Male,52.0,1,0,Yes,Govt_job,Rural,116.62,31.749263451594498,smokes,0
Female,65.0,0,1,Yes,Private,Rural,57.52,29.420252347958517,formerly smoked,0
Male,59.0,0,0,Yes,Private,Urban,223.16,33.17530861079809,Unknown,0
Female,78.0,1,1,Yes,Private,Rural,206.53,31.17927645645906,never smoked,0
Female,70.0,0,1,Yes,Self-employed,Rural,65.68,28.64225263181359,Unknown,0
Female,70.0,0,1,Yes,Self-employed,Urban,240.69,30.87306207992168,smokes,0
Male,37.0,0,0,Yes,Private,Rural,107.06,29.70237259796381,smokes,0
Male,72.0,0,1,Yes,Private,Rural,238.27,30.69765019772622,smokes,0
Male,1.32,0,0,No,children,Rural,107.02,18.799209785253908,Unknown,0
Male,58.0,0,0,Yes,Govt_job,Urban,84.94,30.199570565349735,never smoked,0
Male,31.0,0,0,No,Private,Urban,215.07,32.721655047898544,smokes,0
Male,41.0,0,0,No,Private,Rural,70.15,29.75663127443438,formerly smoked,0
Male,40.0,0,0,Yes,Private,Urban,191.15,31.12417217394211,smokes,0
Female,45.0,1,0,Yes,Govt_job,Rural,95.02,31.79830364006429,smokes,0
Male,40.0,0,0,Yes,Private,Rural,83.94,29.951301422935355,smokes,0
Female,80.0,1,0,Yes,Private,Urban,83.75,29.09742107186247,never smoked,0
1 gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bmi smoking_status stroke
2 Female 61.0 0 0 Yes Self-employed Rural 202.21 31.555602417555065 never smoked 1
3 Female 59.0 0 0 Yes Private Rural 76.15 30.24293671780551 Unknown 1
4 Male 78.0 0 1 Yes Private Urban 219.84 30.698951437189447 Unknown 1
5 Male 57.0 0 1 No Govt_job Urban 217.08 33.80840960032553 Unknown 1
6 Male 58.0 0 0 Yes Private Rural 189.84 31.378533851873115 Unknown 1
7 Male 59.0 0 0 Yes Private Rural 211.78 33.4845680869329 formerly smoked 1
8 Female 63.0 0 0 Yes Private Urban 90.9 30.042545164065906 formerly smoked 1
9 Female 75.0 0 1 No Self-employed Urban 109.78 28.31827337114426 Unknown 1
10 Female 76.0 0 0 No Private Urban 89.96 28.397892673424312 Unknown 1
11 Male 78.0 1 0 Yes Private Urban 75.32 29.139780244728872 formerly smoked 1
12 Female 63.0 0 0 Yes Govt_job Urban 197.54 31.602317143886843 never smoked 1
13 Male 78.0 0 0 Yes Private Urban 237.75 29.316691843518786 formerly smoked 1
14 Male 75.0 0 0 Yes Private Urban 104.72 28.31827337114426 Unknown 1
15 Female 76.0 0 0 Yes Govt_job Rural 62.57 27.954912232096934 formerly smoked 1
16 Female 51.0 0 0 Yes Private Urban 165.31 30.491106831242366 never smoked 1
17 Female 66.0 0 0 Yes Self-employed Urban 101.45 29.292953098797682 Unknown 1
18 Male 58.0 0 0 Yes Private Urban 71.2 30.003880754655786 Unknown 1
19 Male 58.0 0 0 Yes Private Urban 82.3 30.199570565349735 smokes 1
20 Female 76.0 0 0 Yes Self-employed Urban 106.41 28.202069360450302 formerly smoked 1
21 Female 72.0 0 0 Yes Private Urban 219.91 32.120369077356244 Unknown 1
22 Male 78.0 1 0 Yes Self-employed Urban 93.13 29.210833962046138 formerly smoked 1
23 Female 75.0 0 0 Yes Govt_job Urban 62.48 28.070471960148872 Unknown 1
24 Female 38.0 0 0 Yes Private Rural 101.45 29.863774950891848 formerly smoked 1
25 Male 65.0 0 0 Yes Self-employed Urban 68.43 29.583323235372124 formerly smoked 1
26 Female 79.0 0 0 Yes Private Rural 169.67 27.971856904548776 Unknown 1
27 Female 76.0 0 0 Yes Private Urban 57.92 27.940892278838152 formerly smoked 1
28 Male 71.0 0 1 Yes Private Urban 81.76 28.9457498615031 smokes 1
29 Female 1.32 0 0 No children Urban 70.37 18.719259745575055 Unknown 1
30 Male 79.0 1 0 Yes Private Rural 75.02 29.139780244728872 never smoked 1
31 Male 64.0 0 0 Yes Self-employed Rural 111.98 29.79052811527944 formerly smoked 1
32 Female 79.0 1 1 No Self-employed Rural 60.94 28.759856260413944 never smoked 1
33 Female 78.0 0 0 Yes Self-employed Rural 60.67 27.08627617177477 formerly smoked 1
34 Female 80.0 0 0 Yes Govt_job Urban 110.66 27.282122315103724 Unknown 1
35 Female 77.0 0 0 No Private Urban 81.32 28.08147438013183 Unknown 1
36 Male 61.0 0 1 Yes Private Urban 209.86 32.94704544116234 Unknown 1
37 Male 79.0 0 0 Yes Private Rural 114.77 27.243396290267707 formerly smoked 1
38 Male 74.0 0 0 Yes Private Urban 167.13 28.736400149250798 Unknown 1
39 Female 76.0 1 1 Yes Self-employed Urban 199.86 31.684031473836264 smokes 1
40 Male 74.0 0 0 Yes Self-employed Rural 60.98 28.070471960148872 never smoked 1
41 Male 71.0 1 0 Yes Self-employed Rural 87.8 30.763683412344054 Unknown 1
42 Male 34.0 0 1 Yes Private Urban 106.23 29.70237259796381 formerly smoked 0
43 Female 76.0 1 0 Yes Self-employed Urban 209.58 33.07902301871912 never smoked 0
44 Female 63.0 0 0 Yes Govt_job Rural 79.92 29.970218681520958 smokes 0
45 Male 61.0 0 0 Yes Govt_job Urban 184.15 30.863162932887985 Unknown 0
46 Male 54.0 1 0 Yes Private Rural 198.69 33.737576205047304 smokes 0
47 Male 40.0 0 0 Yes Private Rural 89.77 30.0668053524742 smokes 0
48 Female 48.0 1 0 No Private Rural 118.14 31.697085992503364 formerly smoked 0
49 Male 61.0 0 1 Yes Private Urban 88.27 29.99730179513789 never smoked 0
50 Male 31.0 1 0 Yes Govt_job Urban 92.11 31.198140115564627 never smoked 0
51 Female 43.0 0 0 Yes Govt_job Rural 107.42 29.854190333221652 never smoked 0
52 Female 9.0 0 0 No children Urban 95.81 20.018427356531838 Unknown 0
53 Male 52.0 0 0 Yes Private Urban 226.7 33.117246460733575 smokes 0
54 Female 77.0 0 1 Yes Private Rural 183.1 28.982843563019326 never smoked 0
55 Female 17.0 0 0 No Private Rural 83.23 26.420807382569834 never smoked 0
56 Female 71.0 0 0 Yes Self-employed Urban 91.35 29.016504284733173 formerly smoked 0
57 Female 35.0 0 0 No Govt_job Urban 83.76 29.789599917563965 smokes 0
58 Female 23.0 0 0 No Private Urban 110.16 26.997282265398667 never smoked 0
59 Male 40.0 0 0 No Private Urban 88.27 30.0668053524742 formerly smoked 0
60 Female 23.0 0 0 No Private Rural 193.22 28.383477868385224 smokes 0
61 Female 71.0 1 0 Yes Self-employed Rural 66.12 30.375307026800215 never smoked 0
62 Male 13.0 0 0 No children Urban 71.73 22.562797542765956 Unknown 0
63 Male 73.0 1 0 Yes Self-employed Rural 102.06 30.19632033911637 Unknown 0
64 Female 3.0 0 0 No children Urban 79.63 18.896758341975225 Unknown 0
65 Male 51.0 0 0 Yes Private Rural 217.71 33.749649271841086 formerly smoked 0
66 Male 35.0 0 0 Yes Private Rural 115.92 29.612603644460908 formerly smoked 0
67 Female 73.0 0 0 Yes Self-employed Rural 79.69 28.596578523400677 formerly smoked 0
68 Female 6.0 0 0 No children Urban 201.25 20.50813016611414 Unknown 0
69 Male 46.0 1 0 Yes Private Rural 73.72 31.606570696468122 smokes 0
70 Female 71.0 0 0 Yes Private Urban 214.77 32.27387095184459 Unknown 0
71 Female 54.0 1 0 Yes Private Rural 98.74 31.89971211530221 never smoked 0
72 Female 80.0 0 0 Yes Govt_job Urban 84.86 27.411314469808467 Unknown 0
73 Female 49.0 0 0 Yes Private Rural 67.27 29.876490922740366 formerly smoked 0
74 Male 72.0 0 0 Yes Self-employed Rural 72.09 28.54569321378707 smokes 0
75 Male 25.0 0 0 Yes Private Rural 78.29 27.173222235093398 smokes 0
76 Male 27.0 0 0 No Private Rural 191.79 28.89969575625761 smokes 0
77 Male 51.0 1 0 Yes Private Rural 163.56 32.29329460570186 formerly smoked 0
78 Male 48.0 0 0 Yes Self-employed Rural 216.88 33.69541657142078 smokes 0
79 Male 7.0 0 0 No children Urban 87.94 19.483194786207072 Unknown 0
80 Female 61.0 1 1 Yes Private Urban 237.58 33.746401289230256 formerly smoked 0
81 Female 25.0 0 0 Yes Govt_job Urban 93.23 27.24120740794051 smokes 0
82 Male 30.0 0 0 Yes Private Urban 91.23 29.28032172443538 smokes 0
83 Male 71.0 1 0 Yes Self-employed Rural 93.6 30.719672786758665 never smoked 0
84 Male 47.0 0 0 No Private Rural 237.17 32.05850252051601 Unknown 0
85 Male 76.0 0 1 Yes Private Urban 79.05 28.328095943797504 Unknown 0
86 Female 29.0 0 0 No Private Urban 81.43 28.61994283496398 formerly smoked 0
87 Female 48.0 0 1 Yes Self-employed Urban 101.22 30.006573102139797 formerly smoked 0
88 Female 57.0 1 0 Yes Private Urban 210.0 35.18860462517498 never smoked 0
89 Male 58.0 0 0 Yes Private Urban 94.0 30.272074039541987 Unknown 0
90 Male 45.0 0 1 Yes Private Rural 93.77 30.013810750424852 Unknown 0
91 Male 66.0 0 0 Yes Private Urban 190.4 30.538184095161768 formerly smoked 0
92 Male 59.0 0 1 Yes Govt_job Urban 188.69 31.378533851873115 formerly smoked 0
93 Male 34.0 0 0 Yes Private Rural 86.51 29.904709563307257 formerly smoked 0
94 Male 69.0 1 0 Yes Private Rural 107.11 30.624831677910333 smokes 0
95 Male 66.0 0 0 Yes Self-employed Urban 71.38 29.18710939880596 formerly smoked 0
96 Female 48.0 0 0 Yes Self-employed Rural 209.9 33.17294727137241 smokes 0
97 Male 32.0 0 0 No Private Rural 95.58 29.752554356966748 smokes 0
98 Male 60.0 0 0 Yes Self-employed Urban 185.71 31.378533851873115 Unknown 0
99 Female 30.0 0 0 No Govt_job Urban 88.2 29.28032172443538 smokes 0
100 Female 60.0 0 0 Yes Self-employed Urban 203.04 32.130179775170376 smokes 0
101 Male 10.0 0 0 No children Rural 99.87 20.263791073638025 formerly smoked 0
102 Male 20.0 0 0 No Private Rural 70.96 26.305040919138523 Unknown 0
103 Male 77.0 0 0 Yes Private Urban 74.26 28.004566476544774 formerly smoked 0
104 Male 67.0 0 0 Yes Private Urban 92.73 29.081488595208445 never smoked 0
105 Female 42.0 0 0 Yes Private Urban 208.06 32.49735905629397 smokes 0
106 Female 60.0 1 0 Yes Private Urban 109.0 31.89971211530221 Unknown 0
107 Male 0.48 0 0 No children Urban 73.02 17.89929451491795 Unknown 0
108 Male 35.0 0 0 Yes Private Rural 77.48 29.832593105583623 formerly smoked 0
109 Male 50.0 1 0 No Private Urban 81.96 31.97914377106592 formerly smoked 0
110 Female 19.0 0 0 No Private Rural 72.39 26.284524627193612 smokes 0
111 Female 77.0 1 0 Yes Self-employed Urban 109.51 29.663123711666024 never smoked 0
112 Male 67.0 0 1 Yes Private Rural 97.24 28.944067909678317 Unknown 0
113 Female 20.0 0 0 No Private Urban 89.03 26.59200375926125 smokes 0
114 Male 49.0 0 0 Yes Private Rural 79.64 30.188174647677695 smokes 0
115 Male 77.0 0 1 Yes Govt_job Rural 106.03 27.956143010263066 Unknown 0
116 Female 52.0 1 0 Yes Self-employed Rural 111.38 31.791922363152473 smokes 0
117 Male 43.0 0 0 Yes Govt_job Rural 80.07 29.984830834123173 never smoked 0
118 Female 69.0 1 0 Yes Govt_job Urban 112.2 30.574928449662846 never smoked 0
119 Female 34.0 1 0 Yes Self-employed Urban 100.61 31.47526322033101 Unknown 0
120 Male 78.0 0 1 Yes Self-employed Urban 243.73 28.02386637636746 smokes 0
121 Male 76.0 0 1 Yes Self-employed Urban 67.03 28.02871647102671 never smoked 0
122 Male 62.0 1 1 Yes Private Rural 176.25 32.43801447032291 never smoked 0
123 Female 71.0 1 0 Yes Private Urban 105.55 30.557687319717626 smokes 0
124 Male 79.0 0 1 Yes Private Urban 213.38 30.504871562608173 Unknown 0
125 Male 79.0 0 1 Yes Private Rural 82.27 27.411314469808467 never smoked 0
126 Male 54.0 0 0 Yes Private Rural 74.06 30.162336272799983 never smoked 0
127 Female 73.0 1 0 Yes Private Rural 217.84 33.899575602263056 never smoked 0
128 Female 5.0 0 0 No children Rural 105.18 19.03363307440957 Unknown 0
129 Female 38.0 0 0 Yes Private Rural 217.55 33.541750072202845 smokes 0
130 Male 72.0 1 0 Yes Private Rural 231.71 33.22529657056137 Unknown 0
131 Male 14.0 0 0 No Private Rural 110.72 25.92538060204817 never smoked 0
132 Male 50.0 0 0 Yes Private Urban 67.02 29.876490922740366 formerly smoked 0
133 Male 29.0 1 0 Yes Private Urban 77.55 30.352153075720764 formerly smoked 0
134 Male 75.0 1 0 Yes Private Rural 198.79 31.809102388818047 smokes 0
135 Female 68.0 1 1 Yes Private Rural 233.3 33.480734073500464 Unknown 0
136 Female 33.0 1 0 No Private Rural 97.87 31.430239364510037 smokes 0
137 Male 63.0 0 1 Yes Self-employed Urban 82.72 29.927100195480005 never smoked 0
138 Female 56.0 0 0 Yes Private Urban 102.97 30.111585941603717 smokes 0
139 Male 70.0 0 0 Yes Govt_job Urban 202.55 30.781985990405303 formerly smoked 0
140 Male 71.0 0 1 Yes Private Urban 204.98 30.976758580936625 formerly smoked 0
141 Female 73.0 0 0 No Self-employed Rural 69.35 28.36584508965892 never smoked 0
142 Female 67.0 1 0 Yes Private Rural 85.48 30.75318633749586 smokes 0
143 Female 62.0 1 0 Yes Self-employed Urban 75.78 31.75309029478169 smokes 0
144 Female 38.0 0 0 Yes Private Urban 91.44 30.0668053524742 Unknown 0
145 Female 47.0 0 0 Yes Self-employed Rural 195.61 31.720165526413464 never smoked 0
146 Female 42.0 0 0 Yes Private Urban 73.37 29.948147355072038 smokes 0
147 Male 58.0 0 0 Yes Govt_job Urban 160.87 30.546215505510165 formerly smoked 0
148 Male 44.0 1 0 Yes Private Rural 84.1 31.723509495457375 Unknown 0
149 Male 42.0 0 0 Yes Private Urban 177.91 30.68964575227439 Unknown 0
150 Male 78.0 1 0 Yes Self-employed Urban 90.19 29.210833962046138 Unknown 0
151 Female 68.0 0 0 No Private Urban 82.85 28.968393628910906 smokes 0
152 Male 39.0 0 0 Yes Private Rural 84.18 29.951301422935355 smokes 0
153 Male 60.0 0 0 Yes Self-employed Rural 212.02 33.4845680869329 Unknown 0
154 Female 31.0 0 0 Yes Self-employed Urban 87.23 29.435237286859376 formerly smoked 0
155 Male 67.0 0 0 Yes Private Urban 260.85 29.09959343959128 Unknown 0
156 Female 52.0 1 0 Yes Self-employed Rural 104.45 31.843071754782194 never smoked 0
157 Female 53.0 0 0 Yes Private Urban 227.68 33.117246460733575 never smoked 0
158 Female 33.0 0 0 No Private Urban 84.4 29.746116027365073 smokes 0
159 Female 53.0 0 0 No Private Rural 235.45 32.48706845856044 formerly smoked 0
160 Female 49.0 0 0 Yes Private Rural 107.55 30.056974383018026 Unknown 0
161 Male 52.0 0 1 No Self-employed Rural 79.81 30.188174647677695 formerly smoked 0
162 Female 41.0 0 0 Yes Self-employed Rural 76.66 29.99444194055943 Unknown 0
163 Male 1.88 0 0 No children Rural 143.97 19.018775636939367 Unknown 0
164 Male 34.0 0 0 Yes Private Urban 99.23 29.70237259796381 smokes 0
165 Female 16.0 0 0 No Private Urban 89.45 26.52751396445424 Unknown 0
166 Female 45.0 0 0 Yes Private Urban 202.66 31.86199054694296 never smoked 0
167 Male 1.08 0 0 No children Rural 74.5 18.797637948568624 Unknown 0
168 Male 1.8 0 0 No children Urban 68.8 18.719259745575055 Unknown 0
169 Female 13.0 0 0 No children Rural 219.81 25.654078421843533 Unknown 0
170 Female 61.0 0 0 Yes Private Rural 219.38 33.46726940704127 never smoked 0
171 Female 37.0 0 0 No Govt_job Rural 72.08 29.595595561791818 formerly smoked 0
172 Male 32.0 1 0 No Govt_job Urban 58.24 31.098300161525284 formerly smoked 0
173 Female 79.0 0 0 Yes Private Rural 208.05 29.78694460325683 smokes 0
174 Male 8.0 0 0 No children Urban 78.76 19.428195618403347 Unknown 0
175 Female 75.0 0 1 Yes Self-employed Urban 83.88 28.402910258289666 smokes 0
176 Female 79.0 1 0 Yes Self-employed Rural 92.43 29.210833962046138 never smoked 0
177 Female 69.0 0 1 Yes Private Urban 207.6 31.231186313834275 never smoked 0
178 Male 31.0 0 0 Yes Private Urban 108.62 29.23491653621969 smokes 0
179 Female 82.0 1 0 Yes Private Urban 222.52 31.75340319266665 formerly smoked 0
180 Male 32.0 1 0 No Private Rural 74.43 31.497422037342364 Unknown 0
181 Female 17.0 0 0 No Private Urban 92.97 26.52751396445424 formerly smoked 0
182 Female 18.0 0 0 No Private Rural 101.12 26.437222755448115 smokes 0
183 Male 59.0 1 0 Yes Govt_job Rural 253.93 32.1306496403525 formerly smoked 0
184 Male 3.0 0 0 No children Rural 194.75 20.11991532687849 Unknown 0
185 Female 20.0 0 0 No Govt_job Rural 79.53 26.52504773335733 never smoked 0
186 Female 78.0 0 0 Yes Govt_job Urban 101.76 27.32855855724956 smokes 0
187 Male 52.0 1 0 Yes Govt_job Rural 116.62 31.749263451594498 smokes 0
188 Female 65.0 0 1 Yes Private Rural 57.52 29.420252347958517 formerly smoked 0
189 Male 59.0 0 0 Yes Private Urban 223.16 33.17530861079809 Unknown 0
190 Female 78.0 1 1 Yes Private Rural 206.53 31.17927645645906 never smoked 0
191 Female 70.0 0 1 Yes Self-employed Rural 65.68 28.64225263181359 Unknown 0
192 Female 70.0 0 1 Yes Self-employed Urban 240.69 30.87306207992168 smokes 0
193 Male 37.0 0 0 Yes Private Rural 107.06 29.70237259796381 smokes 0
194 Male 72.0 0 1 Yes Private Rural 238.27 30.69765019772622 smokes 0
195 Male 1.32 0 0 No children Rural 107.02 18.799209785253908 Unknown 0
196 Male 58.0 0 0 Yes Govt_job Urban 84.94 30.199570565349735 never smoked 0
197 Male 31.0 0 0 No Private Urban 215.07 32.721655047898544 smokes 0
198 Male 41.0 0 0 No Private Rural 70.15 29.75663127443438 formerly smoked 0
199 Male 40.0 0 0 Yes Private Urban 191.15 31.12417217394211 smokes 0
200 Female 45.0 1 0 Yes Govt_job Rural 95.02 31.79830364006429 smokes 0
201 Male 40.0 0 0 Yes Private Rural 83.94 29.951301422935355 smokes 0
202 Female 80.0 1 0 Yes Private Urban 83.75 29.09742107186247 never smoked 0

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,949 @@
digraph Tree {
node [shape=box, style="filled, rounded", color="black", fontname="helvetica"] ;
edge [fontname="helvetica"] ;
0 [label="age <= 65.5\ngini = 0.093\nsamples = 3337\nvalue = [3174, 163]", fillcolor="#e68743"] ;
1 [label="age <= 48.5\ngini = 0.043\nsamples = 2671\nvalue = [2612, 59]", fillcolor="#e6843d"] ;
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="age <= 37.5\ngini = 0.012\nsamples = 1835\nvalue = [1824, 11]", fillcolor="#e5823a"] ;
1 -> 2 ;
3 [label="smoking_status_smokes <= 0.5\ngini = 0.002\nsamples = 1322\nvalue = [1321, 1]", fillcolor="#e58139"] ;
2 -> 3 ;
4 [label="gini = 0.0\nsamples = 1164\nvalue = [1164, 0]", fillcolor="#e58139"] ;
3 -> 4 ;
5 [label="age <= 31.5\ngini = 0.013\nsamples = 158\nvalue = [157, 1]", fillcolor="#e5823a"] ;
3 -> 5 ;
6 [label="gini = 0.0\nsamples = 116\nvalue = [116, 0]", fillcolor="#e58139"] ;
5 -> 6 ;
7 [label="avg_glucose_level <= 76.645\ngini = 0.046\nsamples = 42\nvalue = [41, 1]", fillcolor="#e6843e"] ;
5 -> 7 ;
8 [label="avg_glucose_level <= 75.285\ngini = 0.165\nsamples = 11\nvalue = [10, 1]", fillcolor="#e88e4d"] ;
7 -> 8 ;
9 [label="gini = 0.0\nsamples = 10\nvalue = [10, 0]", fillcolor="#e58139"] ;
8 -> 9 ;
10 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
8 -> 10 ;
11 [label="gini = 0.0\nsamples = 31\nvalue = [31, 0]", fillcolor="#e58139"] ;
7 -> 11 ;
12 [label="avg_glucose_level <= 86.965\ngini = 0.038\nsamples = 513\nvalue = [503, 10]", fillcolor="#e6843d"] ;
2 -> 12 ;
13 [label="avg_glucose_level <= 86.935\ngini = 0.069\nsamples = 225\nvalue = [217, 8]", fillcolor="#e68640"] ;
12 -> 13 ;
14 [label="avg_glucose_level <= 82.26\ngini = 0.061\nsamples = 224\nvalue = [217, 7]", fillcolor="#e6853f"] ;
13 -> 14 ;
15 [label="hypertension <= 0.5\ngini = 0.035\nsamples = 170\nvalue = [167, 3]", fillcolor="#e5833d"] ;
14 -> 15 ;
16 [label="age <= 44.5\ngini = 0.025\nsamples = 161\nvalue = [159, 2]", fillcolor="#e5833b"] ;
15 -> 16 ;
17 [label="gini = 0.0\nsamples = 97\nvalue = [97, 0]", fillcolor="#e58139"] ;
16 -> 17 ;
18 [label="smoking_status_never smoked <= 0.5\ngini = 0.061\nsamples = 64\nvalue = [62, 2]", fillcolor="#e6853f"] ;
16 -> 18 ;
19 [label="gini = 0.0\nsamples = 38\nvalue = [38, 0]", fillcolor="#e58139"] ;
18 -> 19 ;
20 [label="age <= 46.5\ngini = 0.142\nsamples = 26\nvalue = [24, 2]", fillcolor="#e78c49"] ;
18 -> 20 ;
21 [label="work_type_Private <= 0.5\ngini = 0.278\nsamples = 12\nvalue = [10, 2]", fillcolor="#ea9a61"] ;
20 -> 21 ;
22 [label="gini = 0.0\nsamples = 7\nvalue = [7, 0]", fillcolor="#e58139"] ;
21 -> 22 ;
23 [label="avg_glucose_level <= 79.6\ngini = 0.48\nsamples = 5\nvalue = [3, 2]", fillcolor="#f6d5bd"] ;
21 -> 23 ;
24 [label="bmi <= 29.05\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
23 -> 24 ;
25 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
24 -> 25 ;
26 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
24 -> 26 ;
27 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
23 -> 27 ;
28 [label="gini = 0.0\nsamples = 14\nvalue = [14, 0]", fillcolor="#e58139"] ;
20 -> 28 ;
29 [label="smoking_status_smokes <= 0.5\ngini = 0.198\nsamples = 9\nvalue = [8, 1]", fillcolor="#e89152"] ;
15 -> 29 ;
30 [label="gini = 0.0\nsamples = 8\nvalue = [8, 0]", fillcolor="#e58139"] ;
29 -> 30 ;
31 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
29 -> 31 ;
32 [label="avg_glucose_level <= 82.3\ngini = 0.137\nsamples = 54\nvalue = [50, 4]", fillcolor="#e78b49"] ;
14 -> 32 ;
33 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
32 -> 33 ;
34 [label="avg_glucose_level <= 83.425\ngini = 0.107\nsamples = 53\nvalue = [50, 3]", fillcolor="#e78945"] ;
32 -> 34 ;
35 [label="avg_glucose_level <= 83.19\ngini = 0.278\nsamples = 12\nvalue = [10, 2]", fillcolor="#ea9a61"] ;
34 -> 35 ;
36 [label="gini = 0.0\nsamples = 9\nvalue = [9, 0]", fillcolor="#e58139"] ;
35 -> 36 ;
37 [label="smoking_status_smokes <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
35 -> 37 ;
38 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
37 -> 38 ;
39 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
37 -> 39 ;
40 [label="age <= 47.5\ngini = 0.048\nsamples = 41\nvalue = [40, 1]", fillcolor="#e6843e"] ;
34 -> 40 ;
41 [label="gini = 0.0\nsamples = 37\nvalue = [37, 0]", fillcolor="#e58139"] ;
40 -> 41 ;
42 [label="avg_glucose_level <= 84.38\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
40 -> 42 ;
43 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
42 -> 43 ;
44 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
42 -> 44 ;
45 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
13 -> 45 ;
46 [label="bmi <= 45.45\ngini = 0.014\nsamples = 288\nvalue = [286, 2]", fillcolor="#e5823a"] ;
12 -> 46 ;
47 [label="age <= 38.5\ngini = 0.007\nsamples = 283\nvalue = [282, 1]", fillcolor="#e5813a"] ;
46 -> 47 ;
48 [label="smoking_status_formerly smoked <= 0.5\ngini = 0.074\nsamples = 26\nvalue = [25, 1]", fillcolor="#e68641"] ;
47 -> 48 ;
49 [label="gini = 0.0\nsamples = 20\nvalue = [20, 0]", fillcolor="#e58139"] ;
48 -> 49 ;
50 [label="bmi <= 30.35\ngini = 0.278\nsamples = 6\nvalue = [5, 1]", fillcolor="#ea9a61"] ;
48 -> 50 ;
51 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
50 -> 51 ;
52 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
50 -> 52 ;
53 [label="gini = 0.0\nsamples = 257\nvalue = [257, 0]", fillcolor="#e58139"] ;
47 -> 53 ;
54 [label="bmi <= 46.2\ngini = 0.32\nsamples = 5\nvalue = [4, 1]", fillcolor="#eca06a"] ;
46 -> 54 ;
55 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
54 -> 55 ;
56 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
54 -> 56 ;
57 [label="avg_glucose_level <= 100.97\ngini = 0.108\nsamples = 836\nvalue = [788, 48]", fillcolor="#e78945"] ;
1 -> 57 ;
58 [label="bmi <= 25.55\ngini = 0.068\nsamples = 482\nvalue = [465, 17]", fillcolor="#e68640"] ;
57 -> 58 ;
59 [label="gini = 0.0\nsamples = 81\nvalue = [81, 0]", fillcolor="#e58139"] ;
58 -> 59 ;
60 [label="bmi <= 30.4\ngini = 0.081\nsamples = 401\nvalue = [384, 17]", fillcolor="#e68742"] ;
58 -> 60 ;
61 [label="bmi <= 29.95\ngini = 0.121\nsamples = 185\nvalue = [173, 12]", fillcolor="#e78a47"] ;
60 -> 61 ;
62 [label="bmi <= 26.45\ngini = 0.071\nsamples = 162\nvalue = [156, 6]", fillcolor="#e68641"] ;
61 -> 62 ;
63 [label="avg_glucose_level <= 92.03\ngini = 0.204\nsamples = 26\nvalue = [23, 3]", fillcolor="#e89153"] ;
62 -> 63 ;
64 [label="gini = 0.0\nsamples = 21\nvalue = [21, 0]", fillcolor="#e58139"] ;
63 -> 64 ;
65 [label="bmi <= 26.25\ngini = 0.48\nsamples = 5\nvalue = [2, 3]", fillcolor="#bddef6"] ;
63 -> 65 ;
66 [label="work_type_Self-employed <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
65 -> 66 ;
67 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
66 -> 67 ;
68 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
66 -> 68 ;
69 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
65 -> 69 ;
70 [label="work_type_Govt_job <= 0.5\ngini = 0.043\nsamples = 136\nvalue = [133, 3]", fillcolor="#e6843d"] ;
62 -> 70 ;
71 [label="age <= 54.5\ngini = 0.017\nsamples = 120\nvalue = [119, 1]", fillcolor="#e5823b"] ;
70 -> 71 ;
72 [label="age <= 53.5\ngini = 0.048\nsamples = 41\nvalue = [40, 1]", fillcolor="#e6843e"] ;
71 -> 72 ;
73 [label="gini = 0.0\nsamples = 32\nvalue = [32, 0]", fillcolor="#e58139"] ;
72 -> 73 ;
74 [label="gender <= 0.5\ngini = 0.198\nsamples = 9\nvalue = [8, 1]", fillcolor="#e89152"] ;
72 -> 74 ;
75 [label="avg_glucose_level <= 64.39\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
74 -> 75 ;
76 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
75 -> 76 ;
77 [label="bmi <= 28.95\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
75 -> 77 ;
78 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
77 -> 78 ;
79 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
77 -> 79 ;
80 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
74 -> 80 ;
81 [label="gini = 0.0\nsamples = 79\nvalue = [79, 0]", fillcolor="#e58139"] ;
71 -> 81 ;
82 [label="heart_disease <= 0.5\ngini = 0.219\nsamples = 16\nvalue = [14, 2]", fillcolor="#e99355"] ;
70 -> 82 ;
83 [label="hypertension <= 0.5\ngini = 0.124\nsamples = 15\nvalue = [14, 1]", fillcolor="#e78a47"] ;
82 -> 83 ;
84 [label="gini = 0.0\nsamples = 14\nvalue = [14, 0]", fillcolor="#e58139"] ;
83 -> 84 ;
85 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
83 -> 85 ;
86 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
82 -> 86 ;
87 [label="Residence_type_Rural <= 0.5\ngini = 0.386\nsamples = 23\nvalue = [17, 6]", fillcolor="#eead7f"] ;
61 -> 87 ;
88 [label="age <= 63.5\ngini = 0.469\nsamples = 8\nvalue = [3, 5]", fillcolor="#b0d8f5"] ;
87 -> 88 ;
89 [label="work_type_Govt_job <= 0.5\ngini = 0.278\nsamples = 6\nvalue = [1, 5]", fillcolor="#61b1ea"] ;
88 -> 89 ;
90 [label="gini = 0.0\nsamples = 5\nvalue = [0, 5]", fillcolor="#399de5"] ;
89 -> 90 ;
91 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
89 -> 91 ;
92 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
88 -> 92 ;
93 [label="age <= 50.5\ngini = 0.124\nsamples = 15\nvalue = [14, 1]", fillcolor="#e78a47"] ;
87 -> 93 ;
94 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
93 -> 94 ;
95 [label="gini = 0.0\nsamples = 14\nvalue = [14, 0]", fillcolor="#e58139"] ;
93 -> 95 ;
96 [label="ever_married <= 0.5\ngini = 0.045\nsamples = 216\nvalue = [211, 5]", fillcolor="#e6843e"] ;
60 -> 96 ;
97 [label="bmi <= 37.2\ngini = 0.208\nsamples = 17\nvalue = [15, 2]", fillcolor="#e89253"] ;
96 -> 97 ;
98 [label="gini = 0.0\nsamples = 11\nvalue = [11, 0]", fillcolor="#e58139"] ;
97 -> 98 ;
99 [label="Residence_type_Rural <= 0.5\ngini = 0.444\nsamples = 6\nvalue = [4, 2]", fillcolor="#f2c09c"] ;
97 -> 99 ;
100 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
99 -> 100 ;
101 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
99 -> 101 ;
102 [label="work_type_Govt_job <= 0.5\ngini = 0.03\nsamples = 199\nvalue = [196, 3]", fillcolor="#e5833c"] ;
96 -> 102 ;
103 [label="smoking_status_Unknown <= 0.5\ngini = 0.012\nsamples = 163\nvalue = [162, 1]", fillcolor="#e5823a"] ;
102 -> 103 ;
104 [label="gini = 0.0\nsamples = 132\nvalue = [132, 0]", fillcolor="#e58139"] ;
103 -> 104 ;
105 [label="bmi <= 36.65\ngini = 0.062\nsamples = 31\nvalue = [30, 1]", fillcolor="#e68540"] ;
103 -> 105 ;
106 [label="gini = 0.0\nsamples = 27\nvalue = [27, 0]", fillcolor="#e58139"] ;
105 -> 106 ;
107 [label="bmi <= 37.85\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
105 -> 107 ;
108 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
107 -> 108 ;
109 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
107 -> 109 ;
110 [label="avg_glucose_level <= 68.26\ngini = 0.105\nsamples = 36\nvalue = [34, 2]", fillcolor="#e78845"] ;
102 -> 110 ;
111 [label="avg_glucose_level <= 63.415\ngini = 0.48\nsamples = 5\nvalue = [3, 2]", fillcolor="#f6d5bd"] ;
110 -> 111 ;
112 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
111 -> 112 ;
113 [label="bmi <= 43.85\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
111 -> 113 ;
114 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
113 -> 114 ;
115 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
113 -> 115 ;
116 [label="gini = 0.0\nsamples = 31\nvalue = [31, 0]", fillcolor="#e58139"] ;
110 -> 116 ;
117 [label="avg_glucose_level <= 101.015\ngini = 0.16\nsamples = 354\nvalue = [323, 31]", fillcolor="#e78d4c"] ;
57 -> 117 ;
118 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
117 -> 118 ;
119 [label="smoking_status_never smoked <= 0.5\ngini = 0.156\nsamples = 353\nvalue = [323, 30]", fillcolor="#e78d4b"] ;
117 -> 119 ;
120 [label="bmi <= 45.85\ngini = 0.213\nsamples = 214\nvalue = [188, 26]", fillcolor="#e99254"] ;
119 -> 120 ;
121 [label="avg_glucose_level <= 222.245\ngini = 0.207\nsamples = 213\nvalue = [188, 25]", fillcolor="#e89253"] ;
120 -> 121 ;
122 [label="avg_glucose_level <= 221.86\ngini = 0.236\nsamples = 183\nvalue = [158, 25]", fillcolor="#e99558"] ;
121 -> 122 ;
123 [label="age <= 55.5\ngini = 0.229\nsamples = 182\nvalue = [158, 24]", fillcolor="#e99457"] ;
122 -> 123 ;
124 [label="avg_glucose_level <= 105.11\ngini = 0.145\nsamples = 89\nvalue = [82, 7]", fillcolor="#e78c4a"] ;
123 -> 124 ;
125 [label="avg_glucose_level <= 104.375\ngini = 0.426\nsamples = 13\nvalue = [9, 4]", fillcolor="#f1b991"] ;
124 -> 125 ;
126 [label="age <= 51.5\ngini = 0.298\nsamples = 11\nvalue = [9, 2]", fillcolor="#eb9d65"] ;
125 -> 126 ;
127 [label="Residence_type_Urban <= 0.5\ngini = 0.48\nsamples = 5\nvalue = [3, 2]", fillcolor="#f6d5bd"] ;
126 -> 127 ;
128 [label="gender <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
127 -> 128 ;
129 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
128 -> 129 ;
130 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
128 -> 130 ;
131 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
127 -> 131 ;
132 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
126 -> 132 ;
133 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
125 -> 133 ;
134 [label="bmi <= 40.3\ngini = 0.076\nsamples = 76\nvalue = [73, 3]", fillcolor="#e68641"] ;
124 -> 134 ;
135 [label="age <= 49.5\ngini = 0.031\nsamples = 64\nvalue = [63, 1]", fillcolor="#e5833c"] ;
134 -> 135 ;
136 [label="avg_glucose_level <= 155.33\ngini = 0.219\nsamples = 8\nvalue = [7, 1]", fillcolor="#e99355"] ;
135 -> 136 ;
137 [label="gini = 0.0\nsamples = 7\nvalue = [7, 0]", fillcolor="#e58139"] ;
136 -> 137 ;
138 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
136 -> 138 ;
139 [label="gini = 0.0\nsamples = 56\nvalue = [56, 0]", fillcolor="#e58139"] ;
135 -> 139 ;
140 [label="bmi <= 42.7\ngini = 0.278\nsamples = 12\nvalue = [10, 2]", fillcolor="#ea9a61"] ;
134 -> 140 ;
141 [label="smoking_status_smokes <= 0.5\ngini = 0.444\nsamples = 6\nvalue = [4, 2]", fillcolor="#f2c09c"] ;
140 -> 141 ;
142 [label="bmi <= 42.3\ngini = 0.32\nsamples = 5\nvalue = [4, 1]", fillcolor="#eca06a"] ;
141 -> 142 ;
143 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
142 -> 143 ;
144 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
142 -> 144 ;
145 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
141 -> 145 ;
146 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
140 -> 146 ;
147 [label="age <= 59.5\ngini = 0.299\nsamples = 93\nvalue = [76, 17]", fillcolor="#eb9d65"] ;
123 -> 147 ;
148 [label="work_type_Private <= 0.5\ngini = 0.42\nsamples = 40\nvalue = [28, 12]", fillcolor="#f0b78e"] ;
147 -> 148 ;
149 [label="bmi <= 29.4\ngini = 0.208\nsamples = 17\nvalue = [15, 2]", fillcolor="#e89253"] ;
148 -> 149 ;
150 [label="bmi <= 26.5\ngini = 0.5\nsamples = 4\nvalue = [2, 2]", fillcolor="#ffffff"] ;
149 -> 150 ;
151 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
150 -> 151 ;
152 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
150 -> 152 ;
153 [label="gini = 0.0\nsamples = 13\nvalue = [13, 0]", fillcolor="#e58139"] ;
149 -> 153 ;
154 [label="bmi <= 30.85\ngini = 0.491\nsamples = 23\nvalue = [13, 10]", fillcolor="#f9e2d1"] ;
148 -> 154 ;
155 [label="bmi <= 24.55\ngini = 0.165\nsamples = 11\nvalue = [10, 1]", fillcolor="#e88e4d"] ;
154 -> 155 ;
156 [label="age <= 58.0\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
155 -> 156 ;
157 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
156 -> 157 ;
158 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
156 -> 158 ;
159 [label="gini = 0.0\nsamples = 9\nvalue = [9, 0]", fillcolor="#e58139"] ;
155 -> 159 ;
160 [label="bmi <= 35.15\ngini = 0.375\nsamples = 12\nvalue = [3, 9]", fillcolor="#7bbeee"] ;
154 -> 160 ;
161 [label="gini = 0.0\nsamples = 5\nvalue = [0, 5]", fillcolor="#399de5"] ;
160 -> 161 ;
162 [label="avg_glucose_level <= 198.86\ngini = 0.49\nsamples = 7\nvalue = [3, 4]", fillcolor="#cee6f8"] ;
160 -> 162 ;
163 [label="gender <= 0.5\ngini = 0.48\nsamples = 5\nvalue = [3, 2]", fillcolor="#f6d5bd"] ;
162 -> 163 ;
164 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
163 -> 164 ;
165 [label="smoking_status_smokes <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
163 -> 165 ;
166 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
165 -> 166 ;
167 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
165 -> 167 ;
168 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
162 -> 168 ;
169 [label="bmi <= 21.2\ngini = 0.171\nsamples = 53\nvalue = [48, 5]", fillcolor="#e88e4e"] ;
147 -> 169 ;
170 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
169 -> 170 ;
171 [label="heart_disease <= 0.5\ngini = 0.142\nsamples = 52\nvalue = [48, 4]", fillcolor="#e78c49"] ;
169 -> 171 ;
172 [label="age <= 62.5\ngini = 0.083\nsamples = 46\nvalue = [44, 2]", fillcolor="#e68742"] ;
171 -> 172 ;
173 [label="gini = 0.0\nsamples = 32\nvalue = [32, 0]", fillcolor="#e58139"] ;
172 -> 173 ;
174 [label="bmi <= 24.0\ngini = 0.245\nsamples = 14\nvalue = [12, 2]", fillcolor="#e9965a"] ;
172 -> 174 ;
175 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
174 -> 175 ;
176 [label="work_type_Self-employed <= 0.5\ngini = 0.142\nsamples = 13\nvalue = [12, 1]", fillcolor="#e78c49"] ;
174 -> 176 ;
177 [label="gini = 0.0\nsamples = 9\nvalue = [9, 0]", fillcolor="#e58139"] ;
176 -> 177 ;
178 [label="bmi <= 30.25\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
176 -> 178 ;
179 [label="smoking_status_Unknown <= 0.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
178 -> 179 ;
180 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
179 -> 180 ;
181 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
179 -> 181 ;
182 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
178 -> 182 ;
183 [label="smoking_status_smokes <= 0.5\ngini = 0.444\nsamples = 6\nvalue = [4, 2]", fillcolor="#f2c09c"] ;
171 -> 183 ;
184 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
183 -> 184 ;
185 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
183 -> 185 ;
186 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
122 -> 186 ;
187 [label="gini = 0.0\nsamples = 30\nvalue = [30, 0]", fillcolor="#e58139"] ;
121 -> 187 ;
188 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
120 -> 188 ;
189 [label="age <= 60.5\ngini = 0.056\nsamples = 139\nvalue = [135, 4]", fillcolor="#e6853f"] ;
119 -> 189 ;
190 [label="age <= 51.5\ngini = 0.02\nsamples = 100\nvalue = [99, 1]", fillcolor="#e5823b"] ;
189 -> 190 ;
191 [label="avg_glucose_level <= 158.28\ngini = 0.077\nsamples = 25\nvalue = [24, 1]", fillcolor="#e68641"] ;
190 -> 191 ;
192 [label="gini = 0.0\nsamples = 18\nvalue = [18, 0]", fillcolor="#e58139"] ;
191 -> 192 ;
193 [label="avg_glucose_level <= 170.825\ngini = 0.245\nsamples = 7\nvalue = [6, 1]", fillcolor="#e9965a"] ;
191 -> 193 ;
194 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
193 -> 194 ;
195 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
193 -> 195 ;
196 [label="gini = 0.0\nsamples = 75\nvalue = [75, 0]", fillcolor="#e58139"] ;
190 -> 196 ;
197 [label="avg_glucose_level <= 228.38\ngini = 0.142\nsamples = 39\nvalue = [36, 3]", fillcolor="#e78c49"] ;
189 -> 197 ;
198 [label="avg_glucose_level <= 197.175\ngini = 0.1\nsamples = 38\nvalue = [36, 2]", fillcolor="#e68844"] ;
197 -> 198 ;
199 [label="gini = 0.0\nsamples = 25\nvalue = [25, 0]", fillcolor="#e58139"] ;
198 -> 199 ;
200 [label="avg_glucose_level <= 202.985\ngini = 0.26\nsamples = 13\nvalue = [11, 2]", fillcolor="#ea985d"] ;
198 -> 200 ;
201 [label="gender <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
200 -> 201 ;
202 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
201 -> 202 ;
203 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
201 -> 203 ;
204 [label="gini = 0.0\nsamples = 10\nvalue = [10, 0]", fillcolor="#e58139"] ;
200 -> 204 ;
205 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
197 -> 205 ;
206 [label="bmi <= 29.35\ngini = 0.264\nsamples = 666\nvalue = [562, 104]", fillcolor="#ea985e"] ;
0 -> 206 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
207 [label="age <= 73.5\ngini = 0.316\nsamples = 366\nvalue = [294, 72]", fillcolor="#eba069"] ;
206 -> 207 ;
208 [label="bmi <= 26.65\ngini = 0.229\nsamples = 129\nvalue = [112, 17]", fillcolor="#e99457"] ;
207 -> 208 ;
209 [label="avg_glucose_level <= 238.14\ngini = 0.15\nsamples = 61\nvalue = [56, 5]", fillcolor="#e78c4b"] ;
208 -> 209 ;
210 [label="bmi <= 22.85\ngini = 0.128\nsamples = 58\nvalue = [54, 4]", fillcolor="#e78a48"] ;
209 -> 210 ;
211 [label="ever_married <= 0.5\ngini = 0.255\nsamples = 20\nvalue = [17, 3]", fillcolor="#ea975c"] ;
210 -> 211 ;
212 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
211 -> 212 ;
213 [label="Residence_type_Rural <= 0.5\ngini = 0.188\nsamples = 19\nvalue = [17, 2]", fillcolor="#e89050"] ;
211 -> 213 ;
214 [label="gini = 0.0\nsamples = 11\nvalue = [11, 0]", fillcolor="#e58139"] ;
213 -> 214 ;
215 [label="gender <= 0.5\ngini = 0.375\nsamples = 8\nvalue = [6, 2]", fillcolor="#eeab7b"] ;
213 -> 215 ;
216 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
215 -> 216 ;
217 [label="avg_glucose_level <= 156.08\ngini = 0.245\nsamples = 7\nvalue = [6, 1]", fillcolor="#e9965a"] ;
215 -> 217 ;
218 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
217 -> 218 ;
219 [label="work_type_Self-employed <= 0.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
217 -> 219 ;
220 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
219 -> 220 ;
221 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
219 -> 221 ;
222 [label="avg_glucose_level <= 62.19\ngini = 0.051\nsamples = 38\nvalue = [37, 1]", fillcolor="#e6843e"] ;
210 -> 222 ;
223 [label="avg_glucose_level <= 61.65\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
222 -> 223 ;
224 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
223 -> 224 ;
225 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
223 -> 225 ;
226 [label="gini = 0.0\nsamples = 34\nvalue = [34, 0]", fillcolor="#e58139"] ;
222 -> 226 ;
227 [label="avg_glucose_level <= 246.835\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
209 -> 227 ;
228 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
227 -> 228 ;
229 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
227 -> 229 ;
230 [label="avg_glucose_level <= 76.885\ngini = 0.291\nsamples = 68\nvalue = [56, 12]", fillcolor="#eb9c63"] ;
208 -> 230 ;
231 [label="gini = 0.0\nsamples = 13\nvalue = [13, 0]", fillcolor="#e58139"] ;
230 -> 231 ;
232 [label="bmi <= 29.25\ngini = 0.341\nsamples = 55\nvalue = [43, 12]", fillcolor="#eca470"] ;
230 -> 232 ;
233 [label="avg_glucose_level <= 78.755\ngini = 0.324\nsamples = 54\nvalue = [43, 11]", fillcolor="#eca16c"] ;
232 -> 233 ;
234 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
233 -> 234 ;
235 [label="bmi <= 28.55\ngini = 0.306\nsamples = 53\nvalue = [43, 10]", fillcolor="#eb9e67"] ;
233 -> 235 ;
236 [label="gender <= 0.5\ngini = 0.361\nsamples = 38\nvalue = [29, 9]", fillcolor="#eda876"] ;
235 -> 236 ;
237 [label="smoking_status_never smoked <= 0.5\ngini = 0.236\nsamples = 22\nvalue = [19, 3]", fillcolor="#e99558"] ;
236 -> 237 ;
238 [label="bmi <= 27.15\ngini = 0.42\nsamples = 10\nvalue = [7, 3]", fillcolor="#f0b78e"] ;
237 -> 238 ;
239 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
238 -> 239 ;
240 [label="avg_glucose_level <= 90.19\ngini = 0.48\nsamples = 5\nvalue = [2, 3]", fillcolor="#bddef6"] ;
238 -> 240 ;
241 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
240 -> 241 ;
242 [label="gini = 0.0\nsamples = 3\nvalue = [0, 3]", fillcolor="#399de5"] ;
240 -> 242 ;
243 [label="gini = 0.0\nsamples = 12\nvalue = [12, 0]", fillcolor="#e58139"] ;
237 -> 243 ;
244 [label="avg_glucose_level <= 83.18\ngini = 0.469\nsamples = 16\nvalue = [10, 6]", fillcolor="#f5cdb0"] ;
236 -> 244 ;
245 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
244 -> 245 ;
246 [label="bmi <= 26.95\ngini = 0.408\nsamples = 14\nvalue = [10, 4]", fillcolor="#efb388"] ;
244 -> 246 ;
247 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
246 -> 247 ;
248 [label="age <= 71.5\ngini = 0.278\nsamples = 12\nvalue = [10, 2]", fillcolor="#ea9a61"] ;
246 -> 248 ;
249 [label="hypertension <= 0.5\ngini = 0.165\nsamples = 11\nvalue = [10, 1]", fillcolor="#e88e4d"] ;
248 -> 249 ;
250 [label="gini = 0.0\nsamples = 9\nvalue = [9, 0]", fillcolor="#e58139"] ;
249 -> 250 ;
251 [label="avg_glucose_level <= 166.86\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
249 -> 251 ;
252 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
251 -> 252 ;
253 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
251 -> 253 ;
254 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
248 -> 254 ;
255 [label="smoking_status_smokes <= 0.5\ngini = 0.124\nsamples = 15\nvalue = [14, 1]", fillcolor="#e78a47"] ;
235 -> 255 ;
256 [label="gini = 0.0\nsamples = 13\nvalue = [13, 0]", fillcolor="#e58139"] ;
255 -> 256 ;
257 [label="avg_glucose_level <= 82.305\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
255 -> 257 ;
258 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
257 -> 258 ;
259 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
257 -> 259 ;
260 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
232 -> 260 ;
261 [label="work_type_Private <= 0.5\ngini = 0.356\nsamples = 237\nvalue = [182, 55]", fillcolor="#eda775"] ;
207 -> 261 ;
262 [label="bmi <= 17.6\ngini = 0.296\nsamples = 133\nvalue = [109, 24]", fillcolor="#eb9d65"] ;
261 -> 262 ;
263 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
262 -> 263 ;
264 [label="bmi <= 29.25\ngini = 0.288\nsamples = 132\nvalue = [109, 23]", fillcolor="#ea9c63"] ;
262 -> 264 ;
265 [label="bmi <= 26.15\ngini = 0.279\nsamples = 131\nvalue = [109, 22]", fillcolor="#ea9a61"] ;
264 -> 265 ;
266 [label="age <= 79.5\ngini = 0.187\nsamples = 67\nvalue = [60, 7]", fillcolor="#e89050"] ;
265 -> 266 ;
267 [label="avg_glucose_level <= 132.52\ngini = 0.089\nsamples = 43\nvalue = [41, 2]", fillcolor="#e68743"] ;
266 -> 267 ;
268 [label="gini = 0.0\nsamples = 32\nvalue = [32, 0]", fillcolor="#e58139"] ;
267 -> 268 ;
269 [label="avg_glucose_level <= 182.725\ngini = 0.298\nsamples = 11\nvalue = [9, 2]", fillcolor="#eb9d65"] ;
267 -> 269 ;
270 [label="heart_disease <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
269 -> 270 ;
271 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
270 -> 271 ;
272 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
270 -> 272 ;
273 [label="gini = 0.0\nsamples = 8\nvalue = [8, 0]", fillcolor="#e58139"] ;
269 -> 273 ;
274 [label="smoking_status_never smoked <= 0.5\ngini = 0.33\nsamples = 24\nvalue = [19, 5]", fillcolor="#eca26d"] ;
266 -> 274 ;
275 [label="bmi <= 19.6\ngini = 0.153\nsamples = 12\nvalue = [11, 1]", fillcolor="#e78c4b"] ;
274 -> 275 ;
276 [label="smoking_status_Unknown <= 0.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
275 -> 276 ;
277 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
276 -> 277 ;
278 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
276 -> 278 ;
279 [label="gini = 0.0\nsamples = 10\nvalue = [10, 0]", fillcolor="#e58139"] ;
275 -> 279 ;
280 [label="gender <= 0.5\ngini = 0.444\nsamples = 12\nvalue = [8, 4]", fillcolor="#f2c09c"] ;
274 -> 280 ;
281 [label="avg_glucose_level <= 80.215\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
280 -> 281 ;
282 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
281 -> 282 ;
283 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
281 -> 283 ;
284 [label="avg_glucose_level <= 99.72\ngini = 0.346\nsamples = 9\nvalue = [7, 2]", fillcolor="#eca572"] ;
280 -> 284 ;
285 [label="avg_glucose_level <= 89.025\ngini = 0.444\nsamples = 6\nvalue = [4, 2]", fillcolor="#f2c09c"] ;
284 -> 285 ;
286 [label="hypertension <= 0.5\ngini = 0.32\nsamples = 5\nvalue = [4, 1]", fillcolor="#eca06a"] ;
285 -> 286 ;
287 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
286 -> 287 ;
288 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
286 -> 288 ;
289 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
285 -> 289 ;
290 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
284 -> 290 ;
291 [label="bmi <= 27.15\ngini = 0.359\nsamples = 64\nvalue = [49, 15]", fillcolor="#eda876"] ;
265 -> 291 ;
292 [label="age <= 80.5\ngini = 0.488\nsamples = 19\nvalue = [11, 8]", fillcolor="#f8ddc9"] ;
291 -> 292 ;
293 [label="avg_glucose_level <= 79.015\ngini = 0.498\nsamples = 15\nvalue = [7, 8]", fillcolor="#e6f3fc"] ;
292 -> 293 ;
294 [label="gini = 0.0\nsamples = 3\nvalue = [0, 3]", fillcolor="#399de5"] ;
293 -> 294 ;
295 [label="Residence_type_Urban <= 0.5\ngini = 0.486\nsamples = 12\nvalue = [7, 5]", fillcolor="#f8dbc6"] ;
293 -> 295 ;
296 [label="hypertension <= 0.5\ngini = 0.278\nsamples = 6\nvalue = [5, 1]", fillcolor="#ea9a61"] ;
295 -> 296 ;
297 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
296 -> 297 ;
298 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
296 -> 298 ;
299 [label="smoking_status_smokes <= 0.5\ngini = 0.444\nsamples = 6\nvalue = [2, 4]", fillcolor="#9ccef2"] ;
295 -> 299 ;
300 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4]", fillcolor="#399de5"] ;
299 -> 300 ;
301 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
299 -> 301 ;
302 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
292 -> 302 ;
303 [label="avg_glucose_level <= 62.88\ngini = 0.263\nsamples = 45\nvalue = [38, 7]", fillcolor="#ea985d"] ;
291 -> 303 ;
304 [label="age <= 76.5\ngini = 0.5\nsamples = 6\nvalue = [3, 3]", fillcolor="#ffffff"] ;
303 -> 304 ;
305 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
304 -> 305 ;
306 [label="heart_disease <= 0.5\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
304 -> 306 ;
307 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
306 -> 307 ;
308 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
306 -> 308 ;
309 [label="avg_glucose_level <= 92.78\ngini = 0.184\nsamples = 39\nvalue = [35, 4]", fillcolor="#e88f50"] ;
303 -> 309 ;
310 [label="gini = 0.0\nsamples = 19\nvalue = [19, 0]", fillcolor="#e58139"] ;
309 -> 310 ;
311 [label="bmi <= 29.15\ngini = 0.32\nsamples = 20\nvalue = [16, 4]", fillcolor="#eca06a"] ;
309 -> 311 ;
312 [label="gender <= 0.5\ngini = 0.266\nsamples = 19\nvalue = [16, 3]", fillcolor="#ea995e"] ;
311 -> 312 ;
313 [label="gini = 0.0\nsamples = 10\nvalue = [10, 0]", fillcolor="#e58139"] ;
312 -> 313 ;
314 [label="smoking_status_formerly smoked <= 0.5\ngini = 0.444\nsamples = 9\nvalue = [6, 3]", fillcolor="#f2c09c"] ;
312 -> 314 ;
315 [label="age <= 75.5\ngini = 0.245\nsamples = 7\nvalue = [6, 1]", fillcolor="#e9965a"] ;
314 -> 315 ;
316 [label="heart_disease <= 0.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
315 -> 316 ;
317 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
316 -> 317 ;
318 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
316 -> 318 ;
319 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
315 -> 319 ;
320 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
314 -> 320 ;
321 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
311 -> 321 ;
322 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
264 -> 322 ;
323 [label="smoking_status_Unknown <= 0.5\ngini = 0.418\nsamples = 104\nvalue = [73, 31]", fillcolor="#f0b78d"] ;
261 -> 323 ;
324 [label="hypertension <= 0.5\ngini = 0.378\nsamples = 79\nvalue = [59, 20]", fillcolor="#eeac7c"] ;
323 -> 324 ;
325 [label="age <= 78.5\ngini = 0.312\nsamples = 62\nvalue = [50, 12]", fillcolor="#eb9f69"] ;
324 -> 325 ;
326 [label="avg_glucose_level <= 61.6\ngini = 0.137\nsamples = 27\nvalue = [25, 2]", fillcolor="#e78b49"] ;
325 -> 326 ;
327 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
326 -> 327 ;
328 [label="bmi <= 24.15\ngini = 0.074\nsamples = 26\nvalue = [25, 1]", fillcolor="#e68641"] ;
326 -> 328 ;
329 [label="smoking_status_never smoked <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
328 -> 329 ;
330 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
329 -> 330 ;
331 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
329 -> 331 ;
332 [label="gini = 0.0\nsamples = 23\nvalue = [23, 0]", fillcolor="#e58139"] ;
328 -> 332 ;
333 [label="avg_glucose_level <= 107.125\ngini = 0.408\nsamples = 35\nvalue = [25, 10]", fillcolor="#efb388"] ;
325 -> 333 ;
334 [label="smoking_status_never smoked <= 0.5\ngini = 0.227\nsamples = 23\nvalue = [20, 3]", fillcolor="#e99457"] ;
333 -> 334 ;
335 [label="gini = 0.0\nsamples = 11\nvalue = [11, 0]", fillcolor="#e58139"] ;
334 -> 335 ;
336 [label="age <= 79.5\ngini = 0.375\nsamples = 12\nvalue = [9, 3]", fillcolor="#eeab7b"] ;
334 -> 336 ;
337 [label="heart_disease <= 0.5\ngini = 0.5\nsamples = 4\nvalue = [2, 2]", fillcolor="#ffffff"] ;
336 -> 337 ;
338 [label="avg_glucose_level <= 71.035\ngini = 0.444\nsamples = 3\nvalue = [1, 2]", fillcolor="#9ccef2"] ;
337 -> 338 ;
339 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
338 -> 339 ;
340 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
338 -> 340 ;
341 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
337 -> 341 ;
342 [label="bmi <= 26.5\ngini = 0.219\nsamples = 8\nvalue = [7, 1]", fillcolor="#e99355"] ;
336 -> 342 ;
343 [label="avg_glucose_level <= 82.885\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
342 -> 343 ;
344 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
343 -> 344 ;
345 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
343 -> 345 ;
346 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
342 -> 346 ;
347 [label="ever_married <= 0.5\ngini = 0.486\nsamples = 12\nvalue = [5, 7]", fillcolor="#c6e3f8"] ;
333 -> 347 ;
348 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
347 -> 348 ;
349 [label="smoking_status_never smoked <= 0.5\ngini = 0.346\nsamples = 9\nvalue = [2, 7]", fillcolor="#72b9ec"] ;
347 -> 349 ;
350 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4]", fillcolor="#399de5"] ;
349 -> 350 ;
351 [label="heart_disease <= 0.5\ngini = 0.48\nsamples = 5\nvalue = [2, 3]", fillcolor="#bddef6"] ;
349 -> 351 ;
352 [label="age <= 80.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
351 -> 352 ;
353 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
352 -> 353 ;
354 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
352 -> 354 ;
355 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
351 -> 355 ;
356 [label="avg_glucose_level <= 82.24\ngini = 0.498\nsamples = 17\nvalue = [9, 8]", fillcolor="#fcf1e9"] ;
324 -> 356 ;
357 [label="avg_glucose_level <= 64.685\ngini = 0.408\nsamples = 7\nvalue = [2, 5]", fillcolor="#88c4ef"] ;
356 -> 357 ;
358 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
357 -> 358 ;
359 [label="gini = 0.0\nsamples = 5\nvalue = [0, 5]", fillcolor="#399de5"] ;
357 -> 359 ;
360 [label="avg_glucose_level <= 237.3\ngini = 0.42\nsamples = 10\nvalue = [7, 3]", fillcolor="#f0b78e"] ;
356 -> 360 ;
361 [label="ever_married <= 0.5\ngini = 0.219\nsamples = 8\nvalue = [7, 1]", fillcolor="#e99355"] ;
360 -> 361 ;
362 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
361 -> 362 ;
363 [label="gini = 0.0\nsamples = 7\nvalue = [7, 0]", fillcolor="#e58139"] ;
361 -> 363 ;
364 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
360 -> 364 ;
365 [label="Residence_type_Urban <= 0.5\ngini = 0.493\nsamples = 25\nvalue = [14, 11]", fillcolor="#f9e4d5"] ;
323 -> 365 ;
366 [label="avg_glucose_level <= 151.4\ngini = 0.375\nsamples = 12\nvalue = [9, 3]", fillcolor="#eeab7b"] ;
365 -> 366 ;
367 [label="bmi <= 20.8\ngini = 0.18\nsamples = 10\nvalue = [9, 1]", fillcolor="#e88f4f"] ;
366 -> 367 ;
368 [label="avg_glucose_level <= 87.09\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
367 -> 368 ;
369 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
368 -> 369 ;
370 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
368 -> 370 ;
371 [label="gini = 0.0\nsamples = 8\nvalue = [8, 0]", fillcolor="#e58139"] ;
367 -> 371 ;
372 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
366 -> 372 ;
373 [label="bmi <= 23.8\ngini = 0.473\nsamples = 13\nvalue = [5, 8]", fillcolor="#b5daf5"] ;
365 -> 373 ;
374 [label="gender <= 0.5\ngini = 0.375\nsamples = 4\nvalue = [3, 1]", fillcolor="#eeab7b"] ;
373 -> 374 ;
375 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
374 -> 375 ;
376 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0]", fillcolor="#e58139"] ;
374 -> 376 ;
377 [label="heart_disease <= 0.5\ngini = 0.346\nsamples = 9\nvalue = [2, 7]", fillcolor="#72b9ec"] ;
373 -> 377 ;
378 [label="avg_glucose_level <= 66.515\ngini = 0.219\nsamples = 8\nvalue = [1, 7]", fillcolor="#55abe9"] ;
377 -> 378 ;
379 [label="avg_glucose_level <= 59.03\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
378 -> 379 ;
380 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
379 -> 380 ;
381 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
379 -> 381 ;
382 [label="gini = 0.0\nsamples = 6\nvalue = [0, 6]", fillcolor="#399de5"] ;
378 -> 382 ;
383 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
377 -> 383 ;
384 [label="avg_glucose_level <= 219.865\ngini = 0.191\nsamples = 300\nvalue = [268, 32]", fillcolor="#e89051"] ;
206 -> 384 ;
385 [label="hypertension <= 0.5\ngini = 0.145\nsamples = 255\nvalue = [235, 20]", fillcolor="#e78c4a"] ;
384 -> 385 ;
386 [label="age <= 76.5\ngini = 0.099\nsamples = 192\nvalue = [182, 10]", fillcolor="#e68844"] ;
385 -> 386 ;
387 [label="smoking_status_smokes <= 0.5\ngini = 0.017\nsamples = 114\nvalue = [113, 1]", fillcolor="#e5823b"] ;
386 -> 387 ;
388 [label="gini = 0.0\nsamples = 95\nvalue = [95, 0]", fillcolor="#e58139"] ;
387 -> 388 ;
389 [label="age <= 73.0\ngini = 0.1\nsamples = 19\nvalue = [18, 1]", fillcolor="#e68844"] ;
387 -> 389 ;
390 [label="gini = 0.0\nsamples = 16\nvalue = [16, 0]", fillcolor="#e58139"] ;
389 -> 390 ;
391 [label="work_type_Private <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
389 -> 391 ;
392 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
391 -> 392 ;
393 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
391 -> 393 ;
394 [label="bmi <= 43.15\ngini = 0.204\nsamples = 78\nvalue = [69, 9]", fillcolor="#e89153"] ;
386 -> 394 ;
395 [label="bmi <= 34.15\ngini = 0.186\nsamples = 77\nvalue = [69, 8]", fillcolor="#e89050"] ;
394 -> 395 ;
396 [label="bmi <= 34.0\ngini = 0.245\nsamples = 56\nvalue = [48, 8]", fillcolor="#e9965a"] ;
395 -> 396 ;
397 [label="avg_glucose_level <= 85.775\ngini = 0.222\nsamples = 55\nvalue = [48, 7]", fillcolor="#e99356"] ;
396 -> 397 ;
398 [label="gini = 0.0\nsamples = 19\nvalue = [19, 0]", fillcolor="#e58139"] ;
397 -> 398 ;
399 [label="bmi <= 31.95\ngini = 0.313\nsamples = 36\nvalue = [29, 7]", fillcolor="#eb9f69"] ;
397 -> 399 ;
400 [label="avg_glucose_level <= 87.16\ngini = 0.147\nsamples = 25\nvalue = [23, 2]", fillcolor="#e78c4a"] ;
399 -> 400 ;
401 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
400 -> 401 ;
402 [label="age <= 78.5\ngini = 0.08\nsamples = 24\nvalue = [23, 1]", fillcolor="#e68642"] ;
400 -> 402 ;
403 [label="avg_glucose_level <= 106.92\ngini = 0.198\nsamples = 9\nvalue = [8, 1]", fillcolor="#e89152"] ;
402 -> 403 ;
404 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
403 -> 404 ;
405 [label="avg_glucose_level <= 155.525\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
403 -> 405 ;
406 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
405 -> 406 ;
407 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
405 -> 407 ;
408 [label="gini = 0.0\nsamples = 15\nvalue = [15, 0]", fillcolor="#e58139"] ;
402 -> 408 ;
409 [label="avg_glucose_level <= 111.015\ngini = 0.496\nsamples = 11\nvalue = [6, 5]", fillcolor="#fbeade"] ;
399 -> 409 ;
410 [label="avg_glucose_level <= 89.3\ngini = 0.32\nsamples = 5\nvalue = [1, 4]", fillcolor="#6ab6ec"] ;
409 -> 410 ;
411 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
410 -> 411 ;
412 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4]", fillcolor="#399de5"] ;
410 -> 412 ;
413 [label="bmi <= 32.75\ngini = 0.278\nsamples = 6\nvalue = [5, 1]", fillcolor="#ea9a61"] ;
409 -> 413 ;
414 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
413 -> 414 ;
415 [label="gini = 0.0\nsamples = 5\nvalue = [5, 0]", fillcolor="#e58139"] ;
413 -> 415 ;
416 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
396 -> 416 ;
417 [label="gini = 0.0\nsamples = 21\nvalue = [21, 0]", fillcolor="#e58139"] ;
395 -> 417 ;
418 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
394 -> 418 ;
419 [label="ever_married <= 0.5\ngini = 0.267\nsamples = 63\nvalue = [53, 10]", fillcolor="#ea995e"] ;
385 -> 419 ;
420 [label="gender <= 0.5\ngini = 0.48\nsamples = 5\nvalue = [2, 3]", fillcolor="#bddef6"] ;
419 -> 420 ;
421 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
420 -> 421 ;
422 [label="gini = 0.0\nsamples = 3\nvalue = [0, 3]", fillcolor="#399de5"] ;
420 -> 422 ;
423 [label="avg_glucose_level <= 116.13\ngini = 0.212\nsamples = 58\nvalue = [51, 7]", fillcolor="#e99254"] ;
419 -> 423 ;
424 [label="age <= 79.5\ngini = 0.067\nsamples = 29\nvalue = [28, 1]", fillcolor="#e68640"] ;
423 -> 424 ;
425 [label="gini = 0.0\nsamples = 23\nvalue = [23, 0]", fillcolor="#e58139"] ;
424 -> 425 ;
426 [label="smoking_status_formerly smoked <= 0.5\ngini = 0.278\nsamples = 6\nvalue = [5, 1]", fillcolor="#ea9a61"] ;
424 -> 426 ;
427 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
426 -> 427 ;
428 [label="bmi <= 32.0\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
426 -> 428 ;
429 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
428 -> 429 ;
430 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
428 -> 430 ;
431 [label="avg_glucose_level <= 199.87\ngini = 0.328\nsamples = 29\nvalue = [23, 6]", fillcolor="#eca26d"] ;
423 -> 431 ;
432 [label="work_type_Private <= 0.5\ngini = 0.49\nsamples = 14\nvalue = [8, 6]", fillcolor="#f8e0ce"] ;
431 -> 432 ;
433 [label="bmi <= 33.0\ngini = 0.444\nsamples = 6\nvalue = [2, 4]", fillcolor="#9ccef2"] ;
432 -> 433 ;
434 [label="gini = 0.0\nsamples = 3\nvalue = [0, 3]", fillcolor="#399de5"] ;
433 -> 434 ;
435 [label="gender <= 0.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
433 -> 435 ;
436 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
435 -> 436 ;
437 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
435 -> 437 ;
438 [label="avg_glucose_level <= 192.38\ngini = 0.375\nsamples = 8\nvalue = [6, 2]", fillcolor="#eeab7b"] ;
432 -> 438 ;
439 [label="avg_glucose_level <= 170.03\ngini = 0.5\nsamples = 4\nvalue = [2, 2]", fillcolor="#ffffff"] ;
438 -> 439 ;
440 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
439 -> 440 ;
441 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
439 -> 441 ;
442 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0]", fillcolor="#e58139"] ;
438 -> 442 ;
443 [label="gini = 0.0\nsamples = 15\nvalue = [15, 0]", fillcolor="#e58139"] ;
431 -> 443 ;
444 [label="work_type_Private <= 0.5\ngini = 0.391\nsamples = 45\nvalue = [33, 12]", fillcolor="#eeaf81"] ;
384 -> 444 ;
445 [label="avg_glucose_level <= 252.09\ngini = 0.142\nsamples = 13\nvalue = [12, 1]", fillcolor="#e78c49"] ;
444 -> 445 ;
446 [label="gini = 0.0\nsamples = 12\nvalue = [12, 0]", fillcolor="#e58139"] ;
445 -> 446 ;
447 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
445 -> 447 ;
448 [label="bmi <= 31.65\ngini = 0.451\nsamples = 32\nvalue = [21, 11]", fillcolor="#f3c3a1"] ;
444 -> 448 ;
449 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
448 -> 449 ;
450 [label="bmi <= 32.4\ngini = 0.488\nsamples = 26\nvalue = [15, 11]", fillcolor="#f8ddca"] ;
448 -> 450 ;
451 [label="hypertension <= 0.5\ngini = 0.32\nsamples = 5\nvalue = [1, 4]", fillcolor="#6ab6ec"] ;
450 -> 451 ;
452 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4]", fillcolor="#399de5"] ;
451 -> 452 ;
453 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
451 -> 453 ;
454 [label="bmi <= 33.55\ngini = 0.444\nsamples = 21\nvalue = [14, 7]", fillcolor="#f2c09c"] ;
450 -> 454 ;
455 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0]", fillcolor="#e58139"] ;
454 -> 455 ;
456 [label="age <= 66.5\ngini = 0.498\nsamples = 15\nvalue = [8, 7]", fillcolor="#fcefe6"] ;
454 -> 456 ;
457 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
456 -> 457 ;
458 [label="age <= 77.5\ngini = 0.497\nsamples = 13\nvalue = [6, 7]", fillcolor="#e3f1fb"] ;
456 -> 458 ;
459 [label="heart_disease <= 0.5\ngini = 0.463\nsamples = 11\nvalue = [4, 7]", fillcolor="#aad5f4"] ;
458 -> 459 ;
460 [label="hypertension <= 0.5\ngini = 0.494\nsamples = 9\nvalue = [4, 5]", fillcolor="#d7ebfa"] ;
459 -> 460 ;
461 [label="age <= 74.5\ngini = 0.49\nsamples = 7\nvalue = [4, 3]", fillcolor="#f8e0ce"] ;
460 -> 461 ;
462 [label="age <= 69.0\ngini = 0.48\nsamples = 5\nvalue = [2, 3]", fillcolor="#bddef6"] ;
461 -> 462 ;
463 [label="age <= 67.5\ngini = 0.444\nsamples = 3\nvalue = [2, 1]", fillcolor="#f2c09c"] ;
462 -> 463 ;
464 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
463 -> 464 ;
465 [label="bmi <= 43.15\ngini = 0.5\nsamples = 2\nvalue = [1, 1]", fillcolor="#ffffff"] ;
463 -> 465 ;
466 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1]", fillcolor="#399de5"] ;
465 -> 466 ;
467 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0]", fillcolor="#e58139"] ;
465 -> 467 ;
468 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
462 -> 468 ;
469 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
461 -> 469 ;
470 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
460 -> 470 ;
471 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2]", fillcolor="#399de5"] ;
459 -> 471 ;
472 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0]", fillcolor="#e58139"] ;
458 -> 472 ;
}

483
TestModel/testFile.ipynb Normal file
View File

@@ -0,0 +1,483 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Name</th>\n",
" <th>Platform</th>\n",
" <th>Year</th>\n",
" <th>Genre</th>\n",
" <th>Publisher</th>\n",
" <th>NA_Sales</th>\n",
" <th>EU_Sales</th>\n",
" <th>JP_Sales</th>\n",
" <th>Other_Sales</th>\n",
" <th>Global_Sales</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>Wii Sports</td>\n",
" <td>Wii</td>\n",
" <td>2006.0</td>\n",
" <td>Sports</td>\n",
" <td>Nintendo</td>\n",
" <td>41.49</td>\n",
" <td>29.02</td>\n",
" <td>3.77</td>\n",
" <td>8.46</td>\n",
" <td>82.74</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>Super Mario Bros.</td>\n",
" <td>NES</td>\n",
" <td>1985.0</td>\n",
" <td>Platform</td>\n",
" <td>Nintendo</td>\n",
" <td>29.08</td>\n",
" <td>3.58</td>\n",
" <td>6.81</td>\n",
" <td>0.77</td>\n",
" <td>40.24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>Mario Kart Wii</td>\n",
" <td>Wii</td>\n",
" <td>2008.0</td>\n",
" <td>Racing</td>\n",
" <td>Nintendo</td>\n",
" <td>15.85</td>\n",
" <td>12.88</td>\n",
" <td>3.79</td>\n",
" <td>3.31</td>\n",
" <td>35.82</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>Wii Sports Resort</td>\n",
" <td>Wii</td>\n",
" <td>2009.0</td>\n",
" <td>Sports</td>\n",
" <td>Nintendo</td>\n",
" <td>15.75</td>\n",
" <td>11.01</td>\n",
" <td>3.28</td>\n",
" <td>2.96</td>\n",
" <td>33.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>Pokemon Red/Pokemon Blue</td>\n",
" <td>GB</td>\n",
" <td>1996.0</td>\n",
" <td>Role-Playing</td>\n",
" <td>Nintendo</td>\n",
" <td>11.27</td>\n",
" <td>8.89</td>\n",
" <td>10.22</td>\n",
" <td>1.00</td>\n",
" <td>31.37</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16593</th>\n",
" <td>16596</td>\n",
" <td>Woody Woodpecker in Crazy Castle 5</td>\n",
" <td>GBA</td>\n",
" <td>2002.0</td>\n",
" <td>Platform</td>\n",
" <td>Kemco</td>\n",
" <td>0.01</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16594</th>\n",
" <td>16597</td>\n",
" <td>Men in Black II: Alien Escape</td>\n",
" <td>GC</td>\n",
" <td>2003.0</td>\n",
" <td>Shooter</td>\n",
" <td>Infogrames</td>\n",
" <td>0.01</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16595</th>\n",
" <td>16598</td>\n",
" <td>SCORE International Baja 1000: The Official Game</td>\n",
" <td>PS2</td>\n",
" <td>2008.0</td>\n",
" <td>Racing</td>\n",
" <td>Activision</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16596</th>\n",
" <td>16599</td>\n",
" <td>Know How 2</td>\n",
" <td>DS</td>\n",
" <td>2010.0</td>\n",
" <td>Puzzle</td>\n",
" <td>7G//AMES</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16597</th>\n",
" <td>16600</td>\n",
" <td>Spirits &amp; Spells</td>\n",
" <td>GBA</td>\n",
" <td>2003.0</td>\n",
" <td>Platform</td>\n",
" <td>Wanadoo</td>\n",
" <td>0.01</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.01</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>16598 rows × 11 columns</p>\n",
"</div>"
],
"text/plain": [
" Rank Name Platform \\\n",
"0 1 Wii Sports Wii \n",
"1 2 Super Mario Bros. NES \n",
"2 3 Mario Kart Wii Wii \n",
"3 4 Wii Sports Resort Wii \n",
"4 5 Pokemon Red/Pokemon Blue GB \n",
"... ... ... ... \n",
"16593 16596 Woody Woodpecker in Crazy Castle 5 GBA \n",
"16594 16597 Men in Black II: Alien Escape GC \n",
"16595 16598 SCORE International Baja 1000: The Official Game PS2 \n",
"16596 16599 Know How 2 DS \n",
"16597 16600 Spirits & Spells GBA \n",
"\n",
" Year Genre Publisher NA_Sales EU_Sales JP_Sales \\\n",
"0 2006.0 Sports Nintendo 41.49 29.02 3.77 \n",
"1 1985.0 Platform Nintendo 29.08 3.58 6.81 \n",
"2 2008.0 Racing Nintendo 15.85 12.88 3.79 \n",
"3 2009.0 Sports Nintendo 15.75 11.01 3.28 \n",
"4 1996.0 Role-Playing Nintendo 11.27 8.89 10.22 \n",
"... ... ... ... ... ... ... \n",
"16593 2002.0 Platform Kemco 0.01 0.00 0.00 \n",
"16594 2003.0 Shooter Infogrames 0.01 0.00 0.00 \n",
"16595 2008.0 Racing Activision 0.00 0.00 0.00 \n",
"16596 2010.0 Puzzle 7G//AMES 0.00 0.01 0.00 \n",
"16597 2003.0 Platform Wanadoo 0.01 0.00 0.00 \n",
"\n",
" Other_Sales Global_Sales \n",
"0 8.46 82.74 \n",
"1 0.77 40.24 \n",
"2 3.31 35.82 \n",
"3 2.96 33.00 \n",
"4 1.00 31.37 \n",
"... ... ... \n",
"16593 0.00 0.01 \n",
"16594 0.00 0.01 \n",
"16595 0.00 0.01 \n",
"16596 0.00 0.01 \n",
"16597 0.00 0.01 \n",
"\n",
"[16598 rows x 11 columns]"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"df = pd.read_csv('vgsales.csv')\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(16598, 11)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Rank</th>\n",
" <th>Year</th>\n",
" <th>NA_Sales</th>\n",
" <th>EU_Sales</th>\n",
" <th>JP_Sales</th>\n",
" <th>Other_Sales</th>\n",
" <th>Global_Sales</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>16598.000000</td>\n",
" <td>16327.000000</td>\n",
" <td>16598.000000</td>\n",
" <td>16598.000000</td>\n",
" <td>16598.000000</td>\n",
" <td>16598.000000</td>\n",
" <td>16598.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>8300.605254</td>\n",
" <td>2006.406443</td>\n",
" <td>0.264667</td>\n",
" <td>0.146652</td>\n",
" <td>0.077782</td>\n",
" <td>0.048063</td>\n",
" <td>0.537441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>4791.853933</td>\n",
" <td>5.828981</td>\n",
" <td>0.816683</td>\n",
" <td>0.505351</td>\n",
" <td>0.309291</td>\n",
" <td>0.188588</td>\n",
" <td>1.555028</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>1.000000</td>\n",
" <td>1980.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.010000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>4151.250000</td>\n",
" <td>2003.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.060000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>8300.500000</td>\n",
" <td>2007.000000</td>\n",
" <td>0.080000</td>\n",
" <td>0.020000</td>\n",
" <td>0.000000</td>\n",
" <td>0.010000</td>\n",
" <td>0.170000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>12449.750000</td>\n",
" <td>2010.000000</td>\n",
" <td>0.240000</td>\n",
" <td>0.110000</td>\n",
" <td>0.040000</td>\n",
" <td>0.040000</td>\n",
" <td>0.470000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>16600.000000</td>\n",
" <td>2020.000000</td>\n",
" <td>41.490000</td>\n",
" <td>29.020000</td>\n",
" <td>10.220000</td>\n",
" <td>10.570000</td>\n",
" <td>82.740000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Rank Year NA_Sales EU_Sales JP_Sales \\\n",
"count 16598.000000 16327.000000 16598.000000 16598.000000 16598.000000 \n",
"mean 8300.605254 2006.406443 0.264667 0.146652 0.077782 \n",
"std 4791.853933 5.828981 0.816683 0.505351 0.309291 \n",
"min 1.000000 1980.000000 0.000000 0.000000 0.000000 \n",
"25% 4151.250000 2003.000000 0.000000 0.000000 0.000000 \n",
"50% 8300.500000 2007.000000 0.080000 0.020000 0.000000 \n",
"75% 12449.750000 2010.000000 0.240000 0.110000 0.040000 \n",
"max 16600.000000 2020.000000 41.490000 29.020000 10.220000 \n",
"\n",
" Other_Sales Global_Sales \n",
"count 16598.000000 16598.000000 \n",
"mean 0.048063 0.537441 \n",
"std 0.188588 1.555028 \n",
"min 0.000000 0.010000 \n",
"25% 0.000000 0.060000 \n",
"50% 0.010000 0.170000 \n",
"75% 0.040000 0.470000 \n",
"max 10.570000 82.740000 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[1, 'Wii Sports', 'Wii', ..., 3.77, 8.46, 82.74],\n",
" [2, 'Super Mario Bros.', 'NES', ..., 6.81, 0.77, 40.24],\n",
" [3, 'Mario Kart Wii', 'Wii', ..., 3.79, 3.31, 35.82],\n",
" ...,\n",
" [16598, 'SCORE International Baja 1000: The Official Game', 'PS2',\n",
" ..., 0.0, 0.0, 0.01],\n",
" [16599, 'Know How 2', 'DS', ..., 0.0, 0.0, 0.01],\n",
" [16600, 'Spirits & Spells', 'GBA', ..., 0.0, 0.0, 0.01]],\n",
" dtype=object)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.values"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.11 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "5819c1eaf6d552792a1bbc5e8998e6c2149ab26a1973a0d78107c0d9954e5ba0"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}

16599
TestModel/vgsales.csv Normal file

File diff suppressed because it is too large Load Diff