From 2300ee4fa87cf322265188617d90f612ee01ce42 Mon Sep 17 00:00:00 2001 From: dybios Date: Thu, 7 Nov 2019 22:15:36 +0530 Subject: [PATCH] sanders: Modify wifi configs from the latest CAF merge Signed-off-by: ronaxdevil --- wifi/hostapd_default.conf | 1399 +++++++++++++++++++++++++++--- wifi/p2p_supplicant_overlay.conf | 1 + wifi/wpa_supplicant_overlay.conf | 5 +- 3 files changed, 1300 insertions(+), 105 deletions(-) diff --git a/wifi/hostapd_default.conf b/wifi/hostapd_default.conf index bda0bdd..a9ab2a9 100644 --- a/wifi/hostapd_default.conf +++ b/wifi/hostapd_default.conf @@ -2,20 +2,33 @@ # Empty lines and lines starting with # are ignored # AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for -# management frames); ath0 for madwifi +# management frames with the Host AP driver); wlan0 with many nl80211 drivers +# Note: This attribute can be overridden by the values supplied with the '-i' +# command line parameter. interface=wlan0 -# In case of madwifi and nl80211 driver interfaces, an additional configuration -# parameter, bridge, must be used to notify hostapd if the interface is -# included in a bridge. This parameter is not used with Host AP driver. +# In case of atheros and nl80211 driver interfaces, an additional +# configuration parameter, bridge, may be used to notify hostapd if the +# interface is included in a bridge. This parameter is not used with Host AP +# driver. If the bridge parameter is not set, the drivers will automatically +# figure out the bridge interface (assuming sysfs is enabled and mounted to +# /sys) and this parameter may not be needed. +# +# For nl80211, this parameter can be used to request the AP interface to be +# added to the bridge automatically (brctl may refuse to do this before hostapd +# has been started to change the interface mode). If needed, the bridge +# interface is also created. #bridge=br0 -# Driver interface type (hostap/wired/madwifi/prism54/test/none/nl80211/bsd); +# Driver interface type (hostap/wired/none/nl80211/bsd); # default: hostap). nl80211 is used with all Linux mac80211 drivers. # Use driver=none if building hostapd as a standalone RADIUS server that does # not control any wireless/wired driver. driver=nl80211 +# Driver interface parameters (mainly for development testing use) +# driver_params= + # hostapd event logger configuration # # Two output method: syslog and stdout (only usable if not forking to @@ -73,12 +86,37 @@ ctrl_interface=/data/vendor/wifi/hostapd/ctrl # SSID to be used in IEEE 802.11 management frames ssid=QualcommSoftAP +# Alternative formats for configuring SSID +# (double quoted string, hexdump, printf-escaped string) +#ssid2="test" +#ssid2=74657374 +#ssid2=P"hello\nthere" + +# UTF-8 SSID: Whether the SSID is to be interpreted using UTF-8 encoding +#utf8_ssid=1 # Country code (ISO/IEC 3166-1). Used to set regulatory domain. # Set as needed to indicate country in which device is operating. # This can limit available channels and transmit power. +# These two octets are used as the first two octets of the Country String +# (dot11CountryString) #country_code=US +# The third octet of the Country String (dot11CountryString) +# This parameter is used to set the third octet of the country string. +# +# All environments of the current frequency band and country (default) +#country3=0x20 +# Outdoor environment only +#country3=0x4f +# Indoor environment only +#country3=0x49 +# Noncountry entity (country_code=XX) +#country3=0x58 +# IEEE 802.11 standard Annex E table indication: 0x01 .. 0x1f +# Annex E, Table E-4 (Global operating classes) +#country3=0x04 + # Enable IEEE 802.11d. This advertises the country_code and the set of allowed # channels and transmit power levels based on the regulatory limits. The # country_code setting must be configured with the correct country for @@ -86,22 +124,90 @@ ssid=QualcommSoftAP # (default: 0 = disabled) #ieee80211d=1 -# Operation mode (a = IEEE 802.11a, b = IEEE 802.11b, g = IEEE 802.11g, -# n = IEEE 802.11n, g_only = IEEE 802.11g_only, n_only = IEEE 802.11n_only, -# Default: IEEE 802.11n +# Enable IEEE 802.11h. This enables radar detection and DFS support if +# available. DFS support is required on outdoor 5 GHz channels in most countries +# of the world. This can be used only with ieee80211d=1. +# (default: 0 = disabled) +#ieee80211h=1 + +# Add Power Constraint element to Beacon and Probe Response frames +# This config option adds Power Constraint element when applicable and Country +# element is added. Power Constraint element is required by Transmit Power +# Control. This can be used only with ieee80211d=1. +# Valid values are 0..255. +#local_pwr_constraint=3 + +# Set Spectrum Management subfield in the Capability Information field. +# This config option forces the Spectrum Management bit to be set. When this +# option is not set, the value of the Spectrum Management bit depends on whether +# DFS or TPC is required by regulatory authorities. This can be used only with +# ieee80211d=1 and local_pwr_constraint configured. +#spectrum_mgmt_required=1 + +# Operation mode (a = IEEE 802.11a (5 GHz), b = IEEE 802.11b (2.4 GHz), +# g = IEEE 802.11g (2.4 GHz), ad = IEEE 802.11ad (60 GHz); a/g options are used +# with IEEE 802.11n (HT), too, to specify band). For IEEE 802.11ac (VHT), this +# needs to be set to hw_mode=a. When using ACS (see channel parameter), a +# special value "any" can be used to indicate that any support band can be used. +# This special case is currently supported only with drivers with which +# offloaded ACS is used. +# Default: IEEE 802.11b hw_mode=g # Channel number (IEEE 802.11) # (default: 0, i.e., not set) -# Please note that some drivers (e.g., madwifi) do not use this value from -# hostapd and the channel will need to be configuration separately with -# iwconfig. -channel=6 +# Please note that some drivers do not use this value from hostapd and the +# channel will need to be configured separately with iwconfig. +# +# If CONFIG_ACS build option is enabled, the channel can be selected +# automatically at run time by setting channel=acs_survey or channel=0, both of +# which will enable the ACS survey based algorithm. +channel=0 + +# ACS tuning - Automatic Channel Selection +# See: http://wireless.kernel.org/en/users/Documentation/acs +# +# You can customize the ACS survey algorithm with following variables: +# +# acs_num_scans requirement is 1..100 - number of scans to be performed that +# are used to trigger survey data gathering of an underlying device driver. +# Scans are passive and typically take a little over 100ms (depending on the +# driver) on each available channel for given hw_mode. Increasing this value +# means sacrificing startup time and gathering more data wrt channel +# interference that may help choosing a better channel. This can also help fine +# tune the ACS scan time in case a driver has different scan dwell times. +# +# acs_chan_bias is a space-separated list of : pairs. It can be +# used to increase (or decrease) the likelihood of a specific channel to be +# selected by the ACS algorithm. The total interference factor for each channel +# gets multiplied by the specified bias value before finding the channel with +# the lowest value. In other words, values between 0.0 and 1.0 can be used to +# make a channel more likely to be picked while values larger than 1.0 make the +# specified channel less likely to be picked. This can be used, e.g., to prefer +# the commonly used 2.4 GHz band channels 1, 6, and 11 (which is the default +# behavior on 2.4 GHz band if no acs_chan_bias parameter is specified). +# +# Defaults: +#acs_num_scans=5 +#acs_chan_bias=1:0.8 6:0.8 11:0.8 + +# Channel list restriction. This option allows hostapd to select one of the +# provided channels when a channel should be automatically selected. +# Channel list can be provided as range using hyphen ('-') or individual +# channels can be specified by space (' ') separated values +# Default: all channels allowed in selected hw_mode +#chanlist=100 104 108 112 116 +#chanlist=1 6 11-13 + +# Exclude DFS channels from ACS +# This option can be used to exclude all DFS channels from the ACS channel list +# in cases where the driver supports DFS channels. +#acs_exclude_dfs=1 # Beacon interval in kus (1.024 ms) (default: 100; range 15..65535) beacon_int=100 -# DTIM (delivery trafic information message) period (range 1..255): +# DTIM (delivery traffic information message) period (range 1..255): # number of beacons between DTIMs (1 = every beacon includes DTIM element) # (default: 2) dtim_period=2 @@ -112,12 +218,12 @@ dtim_period=2 # (default: 2007) max_num_sta=255 -# RTS/CTS threshold; 2347 = disabled (default); range 0..2347 +# RTS/CTS threshold; -1 = disabled (default); range -1..65535 # If this field is not included in hostapd.conf, hostapd will not control # RTS threshold and 'iwconfig wlan# rts ' can be used to set it. #rts_threshold=2347 -# Fragmentation threshold; 2346 = disabled (default); range 256..2346 +# Fragmentation threshold; -1 = disabled (default); range -1, 256..2346 # If this field is not included in hostapd.conf, hostapd will not control # fragmentation threshold and 'iwconfig wlan# frag ' can be used to set # it. @@ -139,8 +245,22 @@ max_num_sta=255 # Basic rate set configuration # List of rates (in 100 kbps) that are included in the basic rate set. # If this item is not included, usually reasonable default set is used. -# This basic rates set is currently used for g-only profile -#basic_rates=60 +#basic_rates=10 20 +#basic_rates=10 20 55 110 +#basic_rates=60 120 240 + +# Beacon frame TX rate configuration +# This sets the TX rate that is used to transmit Beacon frames. If this item is +# not included, the driver default rate (likely lowest rate) is used. +# Legacy (CCK/OFDM rates): +# beacon_rate= +# HT: +# beacon_rate=ht: +# VHT: +# beacon_rate=vht: +# +# For example, beacon_rate=10 for 1 Mbps or beacon_rate=60 for 6 Mbps (OFDM). +#beacon_rate=10 # Short Preamble # This parameter can be used to enable optional use of short preamble for @@ -156,7 +276,7 @@ max_num_sta=255 # Station MAC address -based authentication # Please note that this kind of access control requires a driver that uses # hostapd to take care of management frame processing and as such, this can be -# used with driver=hostap or driver=nl80211, but not with driver=madwifi. +# used with driver=hostap or driver=nl80211, but not with driver=atheros. # 0 = accept unless in deny list # 1 = deny unless in accept list # 2 = use external RADIUS server (accept/deny lists are searched first) @@ -165,8 +285,8 @@ macaddr_acl=0 # Accept/deny lists are read from separate files (containing list of # MAC addresses, one per line). Use absolute path name to make sure that the # files can be read on SIGHUP configuration reloads. -accept_mac_file=/data/vendor/wifi/hostapd/hostapd.accept -deny_mac_file=/data/vendor/wifi/hostapd/hostapd.deny +accept_mac_file=/data/hostapd/hostapd.accept +deny_mac_file=/data/hostapd/hostapd.deny # IEEE 802.11 specifies two authentication algorithms. hostapd can be # configured to allow both of these or only one. Open system authentication @@ -186,15 +306,37 @@ auth_algs=3 # requests for broadcast SSID ignore_broadcast_ssid=0 +# Do not reply to broadcast Probe Request frames from unassociated STA if there +# is no room for additional stations (max_num_sta). This can be used to +# discourage a STA from trying to associate with this AP if the association +# would be rejected due to maximum STA limit. +# Default: 0 (disabled) +#no_probe_resp_if_max_sta=0 + +# Additional vendor specific elements for Beacon and Probe Response frames +# This parameter can be used to add additional vendor specific element(s) into +# the end of the Beacon and Probe Response frames. The format for these +# element(s) is a hexdump of the raw information elements (id+len+payload for +# one or more elements) +#vendor_elements=dd0411223301 + +# Additional vendor specific elements for (Re)Association Response frames +# This parameter can be used to add additional vendor specific element(s) into +# the end of the (Re)Association Response frames. The format for these +# element(s) is a hexdump of the raw information elements (id+len+payload for +# one or more elements) +#assocresp_elements=dd0411223301 + # TX queue parameters (EDCF / bursting) # default for all these fields: not set, use hardware defaults # tx_queue__ -# queues: data0, data1, data2, data3, after_beacon, beacon +# queues: data0, data1, data2, data3 # (data0 is the highest priority queue) # parameters: # aifs: AIFS (default 2) -# cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023) -# cwmax: cwMax (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023); cwMax >= cwMin +# cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, +# 16383, 32767) +# cwmax: cwMax (same values as cwMin, cwMax >= cwMin) # burst: maximum length (in milliseconds with precision of up to 0.1 ms) for # bursting # @@ -267,11 +409,16 @@ ignore_broadcast_ssid=0 # note - txop_limit is in units of 32microseconds # note - acm is admission control mandatory flag. 0 = admission control not # required, 1 = mandatory -# note - here cwMin and cmMax are in exponent form. the actual cw value used -# will be (2^n)-1 where n is the value given here +# note - Here cwMin and cmMax are in exponent form. The actual cw value used +# will be (2^n)-1 where n is the value given here. The allowed range for these +# wmm_ac_??_{cwmin,cwmax} is 0..15 with cwmax >= cwmin. # wmm_enabled=1 # +# WMM-PS Unscheduled Automatic Power Save Delivery [U-APSD] +# Enable this flag if U-APSD supported outside hostapd (eg., Firmware/driver) +#uapsd_advertisement_enabled=1 +# # Low priority / AC_BK = background wmm_ac_bk_cwmin=4 wmm_ac_bk_cwmax=10 @@ -317,10 +464,10 @@ wmm_ac_vo_acm=0 # 128-bit (152-bit) WEP is used. # Only the default key must be supplied; the others are optional. # default: not set -#wep_key0=1234567890 -#wep_key1=1234567890 -#wep_key2=1234567890 -#wep_key3=1234567890 +#wep_key0=123456789a +#wep_key1="vwxyz" +#wep_key2=0102030405060708090a0b0c0d +#wep_key3=".2.4.6.8.0.23" # Station inactivity limit # @@ -341,42 +488,77 @@ wmm_ac_vo_acm=0 # Enable/disable internal bridge for packets between associated stations. # -# When IEEE 802.11 is used in managed mode, packets are usually send through -# the AP even if they are from a wireless station to another wireless station. -# This functionality requires that the AP has a bridge functionality that sends -# frames back to the same interface if their destination is another associated -# station. In addition, broadcast/multicast frames from wireless stations will -# be sent both to the host system net stack (e.g., to eventually wired network) -# and back to the wireless interface. -# -# The internal bridge is implemented within the wireless kernel module and it -# bypasses kernel filtering (netfilter/iptables/ebtables). If direct -# communication between the stations needs to be prevented, the internal -# bridge can be disabled by setting bridge_packets=0. -# -# Note: If this variable is not included in hostapd.conf, hostapd does not -# change the configuration and iwpriv can be used to set the value with -# 'iwpriv wlan# param 10 0' command. If the variable is in hostapd.conf, -# hostapd will override possible iwpriv configuration whenever configuration -# file is reloaded. -# -# default: do not control from hostapd (80211.o defaults to 1=enabled) -#bridge_packets=1 +# The inactivity polling can be disabled to disconnect stations based on +# inactivity timeout so that idle stations are more likely to be disconnected +# even if they are still in range of the AP. This can be done by setting +# skip_inactivity_poll to 1 (default 0). +#skip_inactivity_poll=0 + +# Disassociate stations based on excessive transmission failures or other +# indications of connection loss. This depends on the driver capabilities and +# may not be available with all drivers. +#disassoc_low_ack=1 # Maximum allowed Listen Interval (how many Beacon periods STAs are allowed to # remain asleep). Default: 65535 (no limit apart from field size) #max_listen_interval=100 +# WDS (4-address frame) mode with per-station virtual interfaces +# (only supported with driver=nl80211) +# This mode allows associated stations to use 4-address frames to allow layer 2 +# bridging to be used. +#wds_sta=1 + +# If bridge parameter is set, the WDS STA interface will be added to the same +# bridge by default. This can be overridden with the wds_bridge parameter to +# use a separate bridge. +#wds_bridge=wds-br0 + +# Start the AP with beaconing disabled by default. +#start_disabled=0 + # Client isolation can be used to prevent low-level bridging of frames between # associated stations in the BSS. By default, this bridging is allowed. #ap_isolate=1 +# BSS Load update period (in BUs) +# This field is used to enable and configure adding a BSS Load element into +# Beacon and Probe Response frames. +#bss_load_update_period=50 + +# Fixed BSS Load value for testing purposes +# This field can be used to configure hostapd to add a fixed BSS Load element +# into Beacon and Probe Response frames for testing purposes. The format is +# :: +#bss_load_test=12:80:20000 + +# Multicast to unicast conversion +# Request that the AP will do multicast-to-unicast conversion for ARP, IPv4, and +# IPv6 frames (possibly within 802.1Q). If enabled, such frames are to be sent +# to each station separately, with the DA replaced by their own MAC address +# rather than the group address. +# +# Note that this may break certain expectations of the receiver, such as the +# ability to drop unicast IP packets received within multicast L2 frames, or the +# ability to not send ICMP destination unreachable messages for packets received +# in L2 multicast (which is required, but the receiver can't tell the difference +# if this new option is enabled). +# +# This also doesn't implement the 802.11 DMS (directed multicast service). +# +#multicast_to_unicast=0 + +# Send broadcast Deauthentication frame on AP start/stop +# Default: 1 (enabled) +#broadcast_deauth=1 + ##### IEEE 802.11n related configuration ###################################### # ieee80211n: Whether IEEE 802.11n (HT) is enabled # 0 = disabled (default) # 1 = enabled # Note: You will also need to enable WMM for full HT functionality. +# Note: hw_mode=g (2.4 GHz) and hw_mode=a (5 GHz) is used to specify the band. ieee80211n=1 #require_ht=1 @@ -385,7 +567,7 @@ ieee80211n=1 # LDPC coding capability: [LDPC] = supported # Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary # channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz -# with secondary channel below the primary channel +# with secondary channel above the primary channel # (20 MHz only if neither is set) # Note: There are limits on which channels can be used with HT40- and # HT40+. Following table shows the channels that may be available for @@ -395,6 +577,10 @@ ieee80211n=1 # 5 GHz 40,48,56,64 36,44,52,60 # (depending on the location, not all of these channels may be available # for use) +# Please note that 40 MHz channels may switch their primary and secondary +# channels if needed or creation of 40 MHz channel maybe rejected based +# on overlapping BSSes. These changes are done automatically when hostapd +# is setting up the 40 MHz channel. # Spatial Multiplexing (SM) Power Save: [SMPS-STATIC] or [SMPS-DYNAMIC] # (SMPS disabled if neither is set) # HT-greenfield: [GF] (disabled if not set) @@ -408,19 +594,217 @@ ieee80211n=1 # Maximum A-MSDU length: [MAX-AMSDU-7935] for 7935 octets (3839 octets if not # set) # DSSS/CCK Mode in 40 MHz: [DSSS_CCK-40] = allowed (not allowed if not set) -# PSMP support: [PSMP] (disabled if not set) +# 40 MHz intolerant [40-INTOLERANT] (not advertised if not set) # L-SIG TXOP protection support: [LSIG-TXOP-PROT] (disabled if not set) -# QcHostapd: -# LOWER byte for associated stations -# UPPER byte for overlapping stations -# each byte will have the following info -# bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 -# OBSS RIFS LSIG_TXOP NON_GF HT20 FROM_11G FROM_11B FROM_11A -# bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 -# OBSS RIFS LSIG_TXOP NON_GF HT_20 FROM_11G FROM_11B FROM_11A -#ht_capab=[HT40-] [SHORT-GI-20] [SHORT-GI-40] +#ht_capab=[HT40-][SHORT-GI-20][SHORT-GI-40] ht_capab=[SHORT-GI-20] [GF] [DSSS_CCK-40] [LSIG-TXOP-PROT] -#ht_capab=[LDPC] [HT40-] [HT40+] [SMPS-STATIC] [SMPS-DYNAMIC] [GF] [SHORT-GI-20] [SHORT-GI-40] [TX-STBC] [RX-STBC1] [RX-STBC12] [RX-STBC123] [DELAYED-BA] [MAX-AMSDU-7935] [DSSS_CCK-40] [PSMP] [LSIG-TXOP-PROT] + +# Require stations to support HT PHY (reject association if they do not) +#require_ht=1 + +# If set non-zero, require stations to perform scans of overlapping +# channels to test for stations which would be affected by 40 MHz traffic. +# This parameter sets the interval in seconds between these scans. Setting this +# to non-zero allows 2.4 GHz band AP to move dynamically to a 40 MHz channel if +# no co-existence issues with neighboring devices are found. +#obss_interval=0 + +##### IEEE 802.11ac related configuration ##################################### + +# ieee80211ac: Whether IEEE 802.11ac (VHT) is enabled +# 0 = disabled (default) +# 1 = enabled +# Note: You will also need to enable WMM for full VHT functionality. +# Note: hw_mode=a is used to specify that 5 GHz band is used with VHT. +#ieee80211ac=1 + +# vht_capab: VHT capabilities (list of flags) +# +# vht_max_mpdu_len: [MAX-MPDU-7991] [MAX-MPDU-11454] +# Indicates maximum MPDU length +# 0 = 3895 octets (default) +# 1 = 7991 octets +# 2 = 11454 octets +# 3 = reserved +# +# supported_chan_width: [VHT160] [VHT160-80PLUS80] +# Indicates supported Channel widths +# 0 = 160 MHz & 80+80 channel widths are not supported (default) +# 1 = 160 MHz channel width is supported +# 2 = 160 MHz & 80+80 channel widths are supported +# 3 = reserved +# +# Rx LDPC coding capability: [RXLDPC] +# Indicates support for receiving LDPC coded pkts +# 0 = Not supported (default) +# 1 = Supported +# +# Short GI for 80 MHz: [SHORT-GI-80] +# Indicates short GI support for reception of packets transmitted with TXVECTOR +# params format equal to VHT and CBW = 80Mhz +# 0 = Not supported (default) +# 1 = Supported +# +# Short GI for 160 MHz: [SHORT-GI-160] +# Indicates short GI support for reception of packets transmitted with TXVECTOR +# params format equal to VHT and CBW = 160Mhz +# 0 = Not supported (default) +# 1 = Supported +# +# Tx STBC: [TX-STBC-2BY1] +# Indicates support for the transmission of at least 2x1 STBC +# 0 = Not supported (default) +# 1 = Supported +# +# Rx STBC: [RX-STBC-1] [RX-STBC-12] [RX-STBC-123] [RX-STBC-1234] +# Indicates support for the reception of PPDUs using STBC +# 0 = Not supported (default) +# 1 = support of one spatial stream +# 2 = support of one and two spatial streams +# 3 = support of one, two and three spatial streams +# 4 = support of one, two, three and four spatial streams +# 5,6,7 = reserved +# +# SU Beamformer Capable: [SU-BEAMFORMER] +# Indicates support for operation as a single user beamformer +# 0 = Not supported (default) +# 1 = Supported +# +# SU Beamformee Capable: [SU-BEAMFORMEE] +# Indicates support for operation as a single user beamformee +# 0 = Not supported (default) +# 1 = Supported +# +# Compressed Steering Number of Beamformer Antennas Supported: +# [BF-ANTENNA-2] [BF-ANTENNA-3] [BF-ANTENNA-4] +# Beamformee's capability indicating the maximum number of beamformer +# antennas the beamformee can support when sending compressed beamforming +# feedback +# If SU beamformer capable, set to maximum value minus 1 +# else reserved (default) +# +# Number of Sounding Dimensions: +# [SOUNDING-DIMENSION-2] [SOUNDING-DIMENSION-3] [SOUNDING-DIMENSION-4] +# Beamformer's capability indicating the maximum value of the NUM_STS parameter +# in the TXVECTOR of a VHT NDP +# If SU beamformer capable, set to maximum value minus 1 +# else reserved (default) +# +# MU Beamformer Capable: [MU-BEAMFORMER] +# Indicates support for operation as an MU beamformer +# 0 = Not supported or sent by Non-AP STA (default) +# 1 = Supported +# +# VHT TXOP PS: [VHT-TXOP-PS] +# Indicates whether or not the AP supports VHT TXOP Power Save Mode +# or whether or not the STA is in VHT TXOP Power Save mode +# 0 = VHT AP doesn't support VHT TXOP PS mode (OR) VHT STA not in VHT TXOP PS +# mode +# 1 = VHT AP supports VHT TXOP PS mode (OR) VHT STA is in VHT TXOP power save +# mode +# +# +HTC-VHT Capable: [HTC-VHT] +# Indicates whether or not the STA supports receiving a VHT variant HT Control +# field. +# 0 = Not supported (default) +# 1 = supported +# +# Maximum A-MPDU Length Exponent: [MAX-A-MPDU-LEN-EXP0]..[MAX-A-MPDU-LEN-EXP7] +# Indicates the maximum length of A-MPDU pre-EOF padding that the STA can recv +# This field is an integer in the range of 0 to 7. +# The length defined by this field is equal to +# 2 pow(13 + Maximum A-MPDU Length Exponent) -1 octets +# +# VHT Link Adaptation Capable: [VHT-LINK-ADAPT2] [VHT-LINK-ADAPT3] +# Indicates whether or not the STA supports link adaptation using VHT variant +# HT Control field +# If +HTC-VHTcapable is 1 +# 0 = (no feedback) if the STA does not provide VHT MFB (default) +# 1 = reserved +# 2 = (Unsolicited) if the STA provides only unsolicited VHT MFB +# 3 = (Both) if the STA can provide VHT MFB in response to VHT MRQ and if the +# STA provides unsolicited VHT MFB +# Reserved if +HTC-VHTcapable is 0 +# +# Rx Antenna Pattern Consistency: [RX-ANTENNA-PATTERN] +# Indicates the possibility of Rx antenna pattern change +# 0 = Rx antenna pattern might change during the lifetime of an association +# 1 = Rx antenna pattern does not change during the lifetime of an association +# +# Tx Antenna Pattern Consistency: [TX-ANTENNA-PATTERN] +# Indicates the possibility of Tx antenna pattern change +# 0 = Tx antenna pattern might change during the lifetime of an association +# 1 = Tx antenna pattern does not change during the lifetime of an association +#vht_capab=[SHORT-GI-80][HTC-VHT] +# +# Require stations to support VHT PHY (reject association if they do not) +#require_vht=1 + +# 0 = 20 or 40 MHz operating Channel width +# 1 = 80 MHz channel width +# 2 = 160 MHz channel width +# 3 = 80+80 MHz channel width +#vht_oper_chwidth=1 +# +# center freq = 5 GHz + (5 * index) +# So index 42 gives center freq 5.210 GHz +# which is channel 42 in 5G band +# +#vht_oper_centr_freq_seg0_idx=42 +# +# center freq = 5 GHz + (5 * index) +# So index 159 gives center freq 5.795 GHz +# which is channel 159 in 5G band +# +#vht_oper_centr_freq_seg1_idx=159 + +# Workaround to use station's nsts capability in (Re)Association Response frame +# This may be needed with some deployed devices as an interoperability +# workaround for beamforming if the AP's capability is greater than the +# station's capability. This is disabled by default and can be enabled by +# setting use_sta_nsts=1. +#use_sta_nsts=0 + +##### IEEE 802.11ax related configuration ##################################### + +#ieee80211ax: Whether IEEE 802.11ax (HE) is enabled +# 0 = disabled (default) +# 1 = enabled +ieee80211ax=1 + +#he_su_beamformer: HE single user beamformer support +# 0 = not supported (default) +# 1 = supported +he_su_beamformer=1 + +#he_su_beamformee: HE single user beamformee support +# 0 = not supported (default) +# 1 = supported +he_su_beamformee=1 + +#he_mu_beamformer: HE multiple user beamformer support +# 0 = not supported (default) +# 1 = supported +he_mu_beamformer=1 + +# he_bss_color: BSS color +# 0 = no BSS color (default) +# unsigned integer = BSS color +he_bss_color=15 + +#he_default_pe_duration: The duration of PE field in an HE PPDU in us +# Possible values are 0 us (default), 4 us, 8 us, 12 us, and 16 us +he_default_pe_duration=4 + +#he_twt_required: Whether TWT is required +# 0 = not required (default) +# 1 = required +he_twt_required=1 + +#he_rts_threshold: Duration of STA transmission +# 0 = not set (default) +# unsigned integer = duration in units of 16 us +he_rts_threshold=16 ##### IEEE 802.1X-2004 related configuration ################################## @@ -465,6 +849,17 @@ eapol_key_index_workaround=0 # is only used by one station. #use_pae_group_addr=1 +# EAP Re-authentication Protocol (ERP) authenticator (RFC 6696) +# +# Whether to initiate EAP authentication with EAP-Initiate/Re-auth-Start before +# EAP-Identity/Request +#erp_send_reauth_start=1 +# +# Domain name for EAP-Initiate/Re-auth-Start. Omitted from the message if not +# set (no local ER server). This is also used by the integrated EAP server if +# ERP is enabled (eap_server_erp=1). +#erp_domain=example.com + ##### Integrated EAP server ################################################### # Optionally, hostapd can be configured to use an integrated EAP server @@ -478,6 +873,8 @@ eapol_key_index_workaround=0 eap_server=1 # Path for EAP server user database +# If SQLite support is included, this can be set to "sqlite:/path/to/sqlite.db" +# to use SQLite database instead of a text file. #eap_user_file=/etc/hostapd.eap_user # CA certificate (PEM or DER file) for EAP-TLS/PEAP/TTLS @@ -496,6 +893,11 @@ eap_server=1 # Passphrase for private key #private_key_passwd=secret passphrase +# Server identity +# EAP methods that provide mechanism for authenticated server identity delivery +# use this value. If not set, "hostapd" is used as a default. +#server_id=server.example.com + # Enable CRL verification. # Note: hostapd does not yet support CRL downloading based on CDP. Thus, a # valid CRL signed by the CA is required to be included in the ca_cert file. @@ -507,6 +909,31 @@ eap_server=1 # 2 = check all CRLs in the certificate path #check_crl=1 +# TLS Session Lifetime in seconds +# This can be used to allow TLS sessions to be cached and resumed with an +# abbreviated handshake when using EAP-TLS/TTLS/PEAP. +# (default: 0 = session caching and resumption disabled) +#tls_session_lifetime=3600 + +# Cached OCSP stapling response (DER encoded) +# If set, this file is sent as a certificate status response by the EAP server +# if the EAP peer requests certificate status in the ClientHello message. +# This cache file can be updated, e.g., by running following command +# periodically to get an update from the OCSP responder: +# openssl ocsp \ +# -no_nonce \ +# -CAfile /etc/hostapd.ca.pem \ +# -issuer /etc/hostapd.ca.pem \ +# -cert /etc/hostapd.server.pem \ +# -url http://ocsp.example.com:8888/ \ +# -respout /tmp/ocsp-cache.der +#ocsp_stapling_response=/tmp/ocsp-cache.der + +# Cached OCSP stapling response list (DER encoded OCSPResponseList) +# This is similar to ocsp_stapling_response, but the extended version defined in +# RFC 6961 to allow multiple OCSP responses to be provided. +#ocsp_stapling_response_multi=/tmp/ocsp-multi-cache.der + # dh_file: File path to DH/DSA parameters file (in PEM format) # This is an optional configuration file for setting parameters for an # ephemeral DH key exchange. In most cases, the default RSA authentication does @@ -516,15 +943,39 @@ eap_server=1 # is in DSA parameters format, it will be automatically converted into DH # params. This parameter is required if anonymous EAP-FAST is used. # You can generate DH parameters file with OpenSSL, e.g., -# "openssl dhparam -out /etc/hostapd.dh.pem 1024" +# "openssl dhparam -out /etc/hostapd.dh.pem 2048" #dh_file=/etc/hostapd.dh.pem +# OpenSSL cipher string +# +# This is an OpenSSL specific configuration option for configuring the default +# ciphers. If not set, the value configured at build time ("DEFAULT:!EXP:!LOW" +# by default) is used. +# See https://www.openssl.org/docs/apps/ciphers.html for OpenSSL documentation +# on cipher suite configuration. This is applicable only if hostapd is built to +# use OpenSSL. +#openssl_ciphers=DEFAULT:!EXP:!LOW + +# Fragment size for EAP methods +#fragment_size=1400 + +# Finite cyclic group for EAP-pwd. Number maps to group of domain parameters +# using the IANA repository for IKE (RFC 2409). +#pwd_group=19 + # Configuration data for EAP-SIM database/authentication gateway interface. # This is a text string in implementation specific format. The example # implementation in eap_sim_db.c uses this as the UNIX domain socket name for # the HLR/AuC gateway (e.g., hlr_auc_gw). In this case, the path uses "unix:" -# prefix. +# prefix. If hostapd is built with SQLite support (CONFIG_SQLITE=y in .config), +# database file can be described with an optional db= parameter. #eap_sim_db=unix:/tmp/hlr_auc_gw.sock +#eap_sim_db=unix:/tmp/hlr_auc_gw.sock db=/tmp/hostapd.db + +# EAP-SIM DB request timeout +# This parameter sets the maximum time to wait for a database request response. +# The parameter value is in seconds. +#eap_sim_db_timeout=1 # Encryption key for EAP-FAST PAC-Opaque values. This key must be a secret, # random value. It is configured as a 16-octet value in hex format. It can be @@ -535,9 +986,9 @@ eap_server=1 # EAP-FAST authority identity (A-ID) # A-ID indicates the identity of the authority that issues PACs. The A-ID # should be unique across all issuing servers. In theory, this is a variable -# length field, but due to some existing implementations required A-ID to be +# length field, but due to some existing implementations requiring A-ID to be # 16 octets in length, it is strongly recommended to use that length for the -# field to provided interoperability with deployed peer implementation. This +# field to provid interoperability with deployed peer implementations. This # field is configured in hex format. #eap_fast_a_id=101112131415161718191a1b1c1d1e1f @@ -571,6 +1022,10 @@ eap_server=1 # EAP method is enabled, the peer will be allowed to connect without TNC. #tnc=1 +# EAP Re-authentication Protocol (ERP) - RFC 6696 +# +# Whether to enable ERP on the EAP server. +#eap_server_erp=1 ##### IEEE 802.11f - Inter-Access Point Protocol (IAPP) ####################### @@ -585,9 +1040,16 @@ eap_server=1 # The own IP address of the access point (used as NAS-IP-Address) own_ip_addr=127.0.0.1 -# Optional NAS-Identifier string for RADIUS messages. When used, this should be -# a unique to the NAS within the scope of the RADIUS server. For example, a -# fully qualified domain name can be used here. +# NAS-Identifier string for RADIUS messages. When used, this should be unique +# to the NAS within the scope of the RADIUS server. Please note that hostapd +# uses a separate RADIUS client for each BSS and as such, a unique +# nas_identifier value should be configured separately for each BSS. This is +# particularly important for cases where RADIUS accounting is used +# (Accounting-On/Off messages are interpreted as clearing all ongoing sessions +# and that may get interpreted as applying to all BSSes if the same +# NAS-Identifier value is used.) For example, a fully qualified domain name +# prefixed with a unique identifier of the BSS (e.g., BSSID) can be used here. +# # When using IEEE 802.11r, nas_identifier must be set and must be between 1 and # 48 octets long. #nas_identifier=ap.example.com @@ -631,24 +1093,42 @@ own_ip_addr=127.0.0.1 # 60 (1 minute). #radius_acct_interim_interval=600 +# Request Chargeable-User-Identity (RFC 4372) +# This parameter can be used to configure hostapd to request CUI from the +# RADIUS server by including Chargeable-User-Identity attribute into +# Access-Request packets. +#radius_request_cui=1 + # Dynamic VLAN mode; allow RADIUS authentication server to decide which VLAN # is used for the stations. This information is parsed from following RADIUS # attributes based on RFC 3580 and RFC 2868: Tunnel-Type (value 13 = VLAN), # Tunnel-Medium-Type (value 6 = IEEE 802), Tunnel-Private-Group-ID (value -# VLANID as a string). vlan_file option below must be configured if dynamic -# VLANs are used. Optionally, the local MAC ACL list (accept_mac_file) can be -# used to set static client MAC address to VLAN ID mapping. +# VLANID as a string). Optionally, the local MAC ACL list (accept_mac_file) can +# be used to set static client MAC address to VLAN ID mapping. # 0 = disabled (default) # 1 = option; use default interface if RADIUS server does not include VLAN ID # 2 = required; reject authentication if RADIUS server does not include VLAN ID #dynamic_vlan=0 +# Per-Station AP_VLAN interface mode +# If enabled, each station is assigned its own AP_VLAN interface. +# This implies per-station group keying and ebtables filtering of inter-STA +# traffic (when passed through the AP). +# If the sta is not assigned to any VLAN, then its AP_VLAN interface will be +# added to the bridge given by the "bridge" configuration option (see above). +# Otherwise, it will be added to the per-VLAN bridge. +# 0 = disabled (default) +# 1 = enabled +#per_sta_vif=0 + # VLAN interface list for dynamic VLAN mode is read from a separate text file. # This list is used to map VLAN ID from the RADIUS server to a network # interface. Each station is bound to one interface in the same way as with # multiple BSSIDs or SSIDs. Each line in this text file is defining a new # interface and the line must include VLAN ID and interface name separated by # white space (space or tab). +# If no entries are provided by this file, the station is statically mapped +# to . interfaces. #vlan_file=/etc/hostapd.vlan # Interface where 802.1q tagged packets should appear when a RADIUS server is @@ -658,6 +1138,70 @@ own_ip_addr=127.0.0.1 # to the bridge. #vlan_tagged_interface=eth0 +# Bridge (prefix) to add the wifi and the tagged interface to. This gets the +# VLAN ID appended. It defaults to brvlan%d if no tagged interface is given +# and br%s.%d if a tagged interface is given, provided %s = tagged interface +# and %d = VLAN ID. +#vlan_bridge=brvlan + +# When hostapd creates a VLAN interface on vlan_tagged_interfaces, it needs +# to know how to name it. +# 0 = vlan, e.g., vlan1 +# 1 = ., e.g. eth0.1 +#vlan_naming=0 + +# Arbitrary RADIUS attributes can be added into Access-Request and +# Accounting-Request packets by specifying the contents of the attributes with +# the following configuration parameters. There can be multiple of these to +# add multiple attributes. These parameters can also be used to override some +# of the attributes added automatically by hostapd. +# Format: [:] +# attr_id: RADIUS attribute type (e.g., 26 = Vendor-Specific) +# syntax: s = string (UTF-8), d = integer, x = octet string +# value: attribute value in format indicated by the syntax +# If syntax and value parts are omitted, a null value (single 0x00 octet) is +# used. +# +# Additional Access-Request attributes +# radius_auth_req_attr=[:] +# Examples: +# Operator-Name = "Operator" +#radius_auth_req_attr=126:s:Operator +# Service-Type = Framed (2) +#radius_auth_req_attr=6:d:2 +# Connect-Info = "testing" (this overrides the automatically generated value) +#radius_auth_req_attr=77:s:testing +# Same Connect-Info value set as a hexdump +#radius_auth_req_attr=77:x:74657374696e67 + +# +# Additional Accounting-Request attributes +# radius_acct_req_attr=[:] +# Examples: +# Operator-Name = "Operator" +#radius_acct_req_attr=126:s:Operator + +# Dynamic Authorization Extensions (RFC 5176) +# This mechanism can be used to allow dynamic changes to user session based on +# commands from a RADIUS server (or some other disconnect client that has the +# needed session information). For example, Disconnect message can be used to +# request an associated station to be disconnected. +# +# This is disabled by default. Set radius_das_port to non-zero UDP port +# number to enable. +#radius_das_port=3799 +# +# DAS client (the host that can send Disconnect/CoA requests) and shared secret +#radius_das_client=192.168.1.123 shared secret here +# +# DAS Event-Timestamp time window in seconds +#radius_das_time_window=300 +# +# DAS require Event-Timestamp +#radius_das_require_event_timestamp=1 +# +# DAS require Message-Authenticator +#radius_das_require_message_authenticator=1 ##### RADIUS authentication server configuration ############################## @@ -672,6 +1216,11 @@ own_ip_addr=127.0.0.1 # The UDP port number for the RADIUS authentication server #radius_server_auth_port=1812 +# The UDP port number for the RADIUS accounting server +# Commenting this out or setting this to 0 can be used to disable RADIUS +# accounting while still enabling RADIUS authentication. +#radius_server_acct_port=1813 + # Use IPv6 with RADIUS server (IPv4 will also be supported using IPv6 API) #radius_server_ipv6=1 @@ -681,6 +1230,7 @@ own_ip_addr=127.0.0.1 # Enable WPA. Setting this variable configures the AP to require WPA (either # WPA-PSK or WPA-RADIUS/EAP based on other configuration). For WPA-PSK, either # wpa_psk or wpa_passphrase must be set and wpa_key_mgmt must include WPA-PSK. +# Instead of wpa_psk / wpa_passphrase, wpa_psk_radius might suffice. # For WPA-RADIUS/EAP, ieee8021x must be set (but without dynamic WEP keys), # RADIUS authentication server must be configured, and WPA-EAP must be included # in wpa_key_mgmt. @@ -705,12 +1255,24 @@ own_ip_addr=127.0.0.1 # configuration reloads. #wpa_psk_file=/etc/hostapd.wpa_psk +# Optionally, WPA passphrase can be received from RADIUS authentication server +# This requires macaddr_acl to be set to 2 (RADIUS) +# 0 = disabled (default) +# 1 = optional; use default passphrase/psk if RADIUS server does not include +# Tunnel-Password +# 2 = required; reject authentication if RADIUS server does not include +# Tunnel-Password +#wpa_psk_radius=0 + # Set of accepted key management algorithms (WPA-PSK, WPA-EAP, or both). The # entries are separated with a space. WPA-PSK-SHA256 and WPA-EAP-SHA256 can be # added to enable SHA256-based stronger algorithms. +# FILS-SHA256 = Fast Initial Link Setup with SHA256 +# FILS-SHA384 = Fast Initial Link Setup with SHA384 +# FT-FILS-SHA256 = FT and Fast Initial Link Setup with SHA256 +# FT-FILS-SHA384 = FT and Fast Initial Link Setup with SHA384 # (dot11RSNAConfigAuthenticationSuitesTable) -#wpa_key_mgmt=WPA-PSK -#wpa_key_mgmt=WPA-EAP +#wpa_key_mgmt=WPA-PSK WPA-EAP # Set of accepted cipher suites (encryption algorithms) for pairwise keys # (unicast packets). This is a space separated list of algorithms: @@ -728,12 +1290,24 @@ own_ip_addr=127.0.0.1 # Time interval for rekeying GTK (broadcast/multicast encryption keys) in # seconds. (dot11RSNAConfigGroupRekeyTime) +# This defaults to 86400 seconds (once per day) when using CCMP/GCMP as the +# group cipher and 600 seconds (once per 10 minutes) when using TKIP as the +# group cipher. wpa_group_rekey=86400 # Rekey GTK when any STA that possesses the current GTK is leaving the BSS. # (dot11RSNAConfigGroupRekeyStrict) #wpa_strict_rekey=1 +# The number of times EAPOL-Key Message 1/2 in the RSN Group Key Handshake is +#retried per GTK Handshake attempt. (dot11RSNAConfigGroupUpdateCount) +# This value should only be increased when stations are constantly +# deauthenticated during GTK rekeying with the log message +# "group key handshake failed...". +# You should consider to also increase wpa_pairwise_update_count then. +# Range 1..4294967295; default: 4 +#wpa_group_update_count=4 + # Time interval for rekeying GMK (master key used internally to generate GTKs # (in seconds). #wpa_gmk_rekey=86400 @@ -742,6 +1316,12 @@ wpa_group_rekey=86400 # PTK to mitigate some attacks against TKIP deficiencies. #wpa_ptk_rekey=600 +# The number of times EAPOL-Key Message 1/4 and Message 3/4 in the RSN 4-Way +# Handshake are retried per 4-Way Handshake attempt. +# (dot11RSNAConfigPairwiseUpdateCount) +# Range 1..4294967295; default: 4 +#wpa_pairwise_update_count=4 + # Enable IEEE 802.11i/RSN/WPA2 pre-authentication. This is used to speed up # roaming be pre-authenticating IEEE 802.1X/EAP part of the full RSN # authentication and key handshake before actually associating with a new AP. @@ -769,6 +1349,17 @@ wpa_group_rekey=86400 # 2 = required #ieee80211w=0 +# Group management cipher suite +# Default: AES-128-CMAC (BIP) +# Other options (depending on driver support): +# BIP-GMAC-128 +# BIP-GMAC-256 +# BIP-CMAC-256 +# Note: All the stations connecting to the BSS will also need to support the +# selected cipher. The default AES-128-CMAC is the only option that is commonly +# available in deployed devices. +#group_mgmt_cipher=AES-128-CMAC + # Association SA Query maximum timeout (in TU = 1.024 ms; for MFP) # (maximum time to wait for a SA Query response) # dot11AssociationSAQueryMaximumTimeout, 1...4294967295 @@ -779,6 +1370,13 @@ wpa_group_rekey=86400 # dot11AssociationSAQueryRetryTimeout, 1...4294967295 #assoc_sa_query_retry_timeout=201 +# disable_pmksa_caching: Disable PMKSA caching +# This parameter can be used to disable caching of PMKSA created through EAP +# authentication. RSN preauthentication may still end up using PMKSA caching if +# it is enabled (rsn_preauth=1). +# 0 = PMKSA caching enabled (default) +# 1 = PMKSA caching disabled +#disable_pmksa_caching=0 # okc: Opportunistic Key Caching (aka Proactive Key Caching) # Allow PMK cache to be shared opportunistically among configured interfaces @@ -787,6 +1385,62 @@ wpa_group_rekey=86400 # 1 = enabled #okc=1 +# SAE threshold for anti-clogging mechanism (dot11RSNASAEAntiCloggingThreshold) +# This parameter defines how many open SAE instances can be in progress at the +# same time before the anti-clogging mechanism is taken into use. +#sae_anti_clogging_threshold=5 + +# Enabled SAE finite cyclic groups +# SAE implementation are required to support group 19 (ECC group defined over a +# 256-bit prime order field). All groups that are supported by the +# implementation are enabled by default. This configuration parameter can be +# used to specify a limited set of allowed groups. The group values are listed +# in the IANA registry: +# http://www.iana.org/assignments/ipsec-registry/ipsec-registry.xml#ipsec-registry-9 +#sae_groups=19 20 21 25 26 + +# FILS Cache Identifier (16-bit value in hexdump format) +#fils_cache_id=0011 + +# FILS Realm Information +# One or more FILS realms need to be configured when FILS is enabled. This list +# of realms is used to define which realms (used in keyName-NAI by the client) +# can be used with FILS shared key authentication for ERP. +#fils_realm=example.com +#fils_realm=example.org + +# FILS DH Group for PFS +# 0 = PFS disabled with FILS shared key authentication (default) +# 1-65535 DH Group to use for FILS PFS +#fils_dh_group=0 + +# DHCP server for FILS HLP +# If configured, hostapd will act as a DHCP relay for all FILS HLP requests +# that include a DHCPDISCOVER message and send them to the specific DHCP +# server for processing. hostapd will then wait for a response from that server +# before replying with (Re)Association Response frame that encapsulates this +# DHCP response. own_ip_addr is used as the local address for the communication +# with the DHCP server. +#dhcp_server=127.0.0.1 + +# DHCP server UDP port +# Default: 67 +#dhcp_server_port=67 + +# DHCP relay UDP port on the local device +# Default: 67; 0 means not to bind any specific port +#dhcp_relay_port=67 + +# DHCP rapid commit proxy +# If set to 1, this enables hostapd to act as a DHCP rapid commit proxy to +# allow the rapid commit options (two message DHCP exchange) to be used with a +# server that supports only the four message DHCP exchange. This is disabled by +# default (= 0) and can be enabled by setting this to 1. +#dhcp_rapid_commit_proxy=0 + +# Wait time for FILS HLP (dot11HLPWaitTime) in TUs +# default: 30 TUs (= 30.72 milliseconds) +#fils_hlp_wait_time=30 ##### IEEE 802.11r configuration ############################################## @@ -806,6 +1460,7 @@ wpa_group_rekey=86400 # PMK-R1 Key Holder identifier (dot11FTR1KeyHolderID) # 6-octet identifier as a hex string. +# Defaults to BSSID. #r1_key_holder=000102030405 # Reassociation deadline in time units (TUs / 1.024 ms; range 1000..65535) @@ -813,49 +1468,76 @@ wpa_group_rekey=86400 #reassociation_deadline=1000 # List of R0KHs in the same Mobility Domain -# format: <128-bit key as hex string> +# format: <256-bit key as hex string> # This list is used to map R0KH-ID (NAS Identifier) to a destination MAC # address when requesting PMK-R1 key from the R0KH that the STA used during the # Initial Mobility Domain Association. -#r0kh=02:01:02:03:04:05 r0kh-1.example.com 000102030405060708090a0b0c0d0e0f -#r0kh=02:01:02:03:04:06 r0kh-2.example.com 00112233445566778899aabbccddeeff +#r0kh=02:01:02:03:04:05 r0kh-1.example.com 000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f +#r0kh=02:01:02:03:04:06 r0kh-2.example.com 00112233445566778899aabbccddeeff00112233445566778899aabbccddeeff # And so on.. One line per R0KH. +# Wildcard entry: +# Upon receiving a response from R0KH, it will be added to this list, so +# subsequent requests won't be broadcast. If R0KH does not reply, it will be +# blacklisted. +#r0kh=ff:ff:ff:ff:ff:ff * 00112233445566778899aabbccddeeff # List of R1KHs in the same Mobility Domain -# format: <128-bit key as hex string> +# format: <256-bit key as hex string> # This list is used to map R1KH-ID to a destination MAC address when sending # PMK-R1 key from the R0KH. This is also the list of authorized R1KHs in the MD # that can request PMK-R1 keys. -#r1kh=02:01:02:03:04:05 02:11:22:33:44:55 000102030405060708090a0b0c0d0e0f -#r1kh=02:01:02:03:04:06 02:11:22:33:44:66 00112233445566778899aabbccddeeff +#r1kh=02:01:02:03:04:05 02:11:22:33:44:55 000102030405060708090a0b0c0d0e0f000102030405060708090a0b0c0d0e0f +#r1kh=02:01:02:03:04:06 02:11:22:33:44:66 00112233445566778899aabbccddeeff00112233445566778899aabbccddeeff # And so on.. One line per R1KH. +# Wildcard entry: +# Upon receiving a request from an R1KH not yet known, it will be added to this +# list and thus will receive push notifications. +#r1kh=00:00:00:00:00:00 00:00:00:00:00:00 00112233445566778899aabbccddeeff + +# Timeout (seconds) for newly discovered R0KH/R1KH (see wildcard entries above) +# Special values: 0 -> do not expire +# Warning: do not cache implies no sequence number validation with wildcards +#rkh_pos_timeout=86400 (default = 1 day) + +# Timeout (milliseconds) for requesting PMK-R1 from R0KH using PULL request +# and number of retries. +#rkh_pull_timeout=1000 (default = 1 second) +#rkh_pull_retries=4 (default) + +# Timeout (seconds) for non replying R0KH (see wildcard entries above) +# Special values: 0 -> do not cache +# default: 60 seconds +#rkh_neg_timeout=60 + +# Note: The R0KH/R1KH keys used to be 128-bit in length before the message +# format was changed. That shorter key length is still supported for backwards +# compatibility of the configuration files. If such a shorter key is used, a +# 256-bit key is derived from it. For new deployments, configuring the 256-bit +# key is recommended. # Whether PMK-R1 push is enabled at R0KH # 0 = do not push PMK-R1 to all configured R1KHs (default) # 1 = push PMK-R1 to all configured R1KHs whenever a new PMK-R0 is derived #pmk_r1_push=1 -##### Passive scanning ######################################################## -# Scan different channels every N seconds. 0 = disable passive scanning. -#passive_scan_interval=60 +# Whether to enable FT-over-DS +# 0 = FT-over-DS disabled +# 1 = FT-over-DS enabled (default) +#ft_over_ds=1 -# Listen N usecs on each channel when doing passive scanning. -# This value plus the time needed for changing channels should be less than -# 32 milliseconds (i.e. 32000 usec) to avoid interruptions to normal -# operations. Time needed for channel changing varies based on the used wlan -# hardware. -# default: disabled (0) -#passive_scan_listen=10000 +# Whether to generate FT response locally for PSK networks +# This avoids use of PMK-R1 push/pull from other APs with FT-PSK networks as +# the required information (PSK and other session data) is already locally +# available. +# 0 = disabled (default) +# 1 = enabled +#ft_psk_generate_local=0 -# Passive scanning mode: -# 0 = scan all supported modes (802.11a/b/g/Turbo) (default) -# 1 = scan only the mode that is currently used for normal operations -#passive_scan_mode=1 - -# Maximum number of entries kept in AP table (either for passive scanning or -# for detecting Overlapping Legacy BSS Condition). The oldest entry will be +##### Neighbor table ########################################################## +# Maximum number of entries kept in AP table (either for neigbor table or for +# detecting Overlapping Legacy BSS Condition). The oldest entry will be # removed when adding a new entry that would make the list grow over this -# limit. Note! Wi-Fi certification for IEEE 802.11g requires that OLBC is +# limit. Note! WFA certification for IEEE 802.11g requires that OLBC is # enabled, so this field should not be set to 0 when using IEEE 802.11g. # default: 255 #ap_table_max_size=255 @@ -868,6 +1550,43 @@ wpa_group_rekey=86400 # default: 60 #ap_table_expiration_time=3600 +# Maximum number of stations to track on the operating channel +# This can be used to detect dualband capable stations before they have +# associated, e.g., to provide guidance on which colocated BSS to use. +# Default: 0 (disabled) +#track_sta_max_num=100 + +# Maximum age of a station tracking entry in seconds +# Default: 180 +#track_sta_max_age=180 + +# Do not reply to group-addressed Probe Request from a station that was seen on +# another radio. +# Default: Disabled +# +# This can be used with enabled track_sta_max_num configuration on another +# interface controlled by the same hostapd process to restrict Probe Request +# frame handling from replying to group-addressed Probe Request frames from a +# station that has been detected to be capable of operating on another band, +# e.g., to try to reduce likelihood of the station selecting a 2.4 GHz BSS when +# the AP operates both a 2.4 GHz and 5 GHz BSS concurrently. +# +# Note: Enabling this can cause connectivity issues and increase latency for +# discovering the AP. +#no_probe_resp_if_seen_on=wlan1 + +# Reject authentication from a station that was seen on another radio. +# Default: Disabled +# +# This can be used with enabled track_sta_max_num configuration on another +# interface controlled by the same hostapd process to reject authentication +# attempts from a station that has been detected to be capable of operating on +# another band, e.g., to try to reduce likelihood of the station selecting a +# 2.4 GHz BSS when the AP operates both a 2.4 GHz and 5 GHz BSS concurrently. +# +# Note: Enabling this can cause connectivity issues and increase latency for +# connecting with the AP. +#no_auth_if_seen_on=wlan1 ##### Wi-Fi Protected Setup (WPS) ############################################# @@ -877,6 +1596,14 @@ wpa_group_rekey=86400 # 2 = WPS enabled, configured #wps_state=2 +# Whether to manage this interface independently from other WPS interfaces +# By default, a single hostapd process applies WPS operations to all configured +# interfaces. This parameter can be used to disable that behavior for a subset +# of interfaces. If this is set to non-zero for an interface, WPS commands +# issued on that interface do not apply to other interfaces and WPS operations +# performed on other interfaces do not affect this interface. +#wps_independent=0 + # AP can be configured into a locked state where new WPS Registrar are not # accepted, but previously authorized Registrars (including the internal one) # can continue to add new Enrollees. @@ -941,11 +1668,30 @@ ap_setup_locked=1 # Config Methods # List of the supported configuration methods +# Available methods: usba ethernet label display ext_nfc_token int_nfc_token +# nfc_interface push_button keypad virtual_display physical_display +# virtual_push_button physical_push_button config_methods=label display push_button keypad -# Access point PIN for initial configuration and adding Registrars +# WPS capability discovery workaround for PBC with Windows 7 +# Windows 7 uses incorrect way of figuring out AP's WPS capabilities by acting +# as a Registrar and using M1 from the AP. The config methods attribute in that +# message is supposed to indicate only the configuration method supported by +# the AP in Enrollee role, i.e., to add an external Registrar. For that case, +# PBC shall not be used and as such, the PushButton config method is removed +# from M1 by default. If pbc_in_m1=1 is included in the configuration file, +# the PushButton config method is left in M1 (if included in config_methods +# parameter) to allow Windows 7 to use PBC instead of PIN (e.g., from a label +# in the AP). +#pbc_in_m1=1 + +# Static access point PIN for initial configuration and adding Registrars # If not set, hostapd will not allow external WPS Registrars to control the -# access point. +# access point. The AP PIN can also be set at runtime with hostapd_cli +# wps_ap_pin command. Use of temporary (enabled by user action) and random +# AP PIN is much more secure than configuring a static AP PIN here. As such, +# use of the ap_pin parameter is not recommended if the AP device has means for +# displaying a random PIN. #ap_pin=12345670 # Skip building of automatic WPS credential @@ -1007,6 +1753,443 @@ config_methods=label display push_button keypad # 12-digit, all-numeric code that identifies the consumer package. #upc=123456789012 +# WPS RF Bands (a = 5G, b = 2.4G, g = 2.4G, ag = dual band, ad = 60 GHz) +# This value should be set according to RF band(s) supported by the AP if +# hw_mode is not set. For dual band dual concurrent devices, this needs to be +# set to ag to allow both RF bands to be advertized. +#wps_rf_bands=ag + +# NFC password token for WPS +# These parameters can be used to configure a fixed NFC password token for the +# AP. This can be generated, e.g., with nfc_pw_token from wpa_supplicant. When +# these parameters are used, the AP is assumed to be deployed with a NFC tag +# that includes the matching NFC password token (e.g., written based on the +# NDEF record from nfc_pw_token). +# +#wps_nfc_dev_pw_id: Device Password ID (16..65535) +#wps_nfc_dh_pubkey: Hexdump of DH Public Key +#wps_nfc_dh_privkey: Hexdump of DH Private Key +#wps_nfc_dev_pw: Hexdump of Device Password + +##### Wi-Fi Direct (P2P) ###################################################### + +# Enable P2P Device management +#manage_p2p=1 + +# Allow cross connection +#allow_cross_connection=1 + +#### TDLS (IEEE 802.11z-2010) ################################################# + +# Prohibit use of TDLS in this BSS +#tdls_prohibit=1 + +# Prohibit use of TDLS Channel Switching in this BSS +#tdls_prohibit_chan_switch=1 + +##### IEEE 802.11v-2011 ####################################################### + +# Time advertisement +# 0 = disabled (default) +# 2 = UTC time at which the TSF timer is 0 +#time_advertisement=2 + +# Local time zone as specified in 8.3 of IEEE Std 1003.1-2004: +# stdoffset[dst[offset][,start[/time],end[/time]]] +#time_zone=EST5 + +# WNM-Sleep Mode (extended sleep mode for stations) +# 0 = disabled (default) +# 1 = enabled (allow stations to use WNM-Sleep Mode) +#wnm_sleep_mode=1 + +# BSS Transition Management +# 0 = disabled (default) +# 1 = enabled +#bss_transition=1 + +# Proxy ARP +# 0 = disabled (default) +# 1 = enabled +#proxy_arp=1 + +# IPv6 Neighbor Advertisement multicast-to-unicast conversion +# This can be used with Proxy ARP to allow multicast NAs to be forwarded to +# associated STAs using link layer unicast delivery. +# 0 = disabled (default) +# 1 = enabled +#na_mcast_to_ucast=0 + +##### IEEE 802.11u-2011 ####################################################### + +# Enable Interworking service +#interworking=1 + +# Access Network Type +# 0 = Private network +# 1 = Private network with guest access +# 2 = Chargeable public network +# 3 = Free public network +# 4 = Personal device network +# 5 = Emergency services only network +# 14 = Test or experimental +# 15 = Wildcard +#access_network_type=0 + +# Whether the network provides connectivity to the Internet +# 0 = Unspecified +# 1 = Network provides connectivity to the Internet +#internet=1 + +# Additional Step Required for Access +# Note: This is only used with open network, i.e., ASRA shall ne set to 0 if +# RSN is used. +#asra=0 + +# Emergency services reachable +#esr=0 + +# Unauthenticated emergency service accessible +#uesa=0 + +# Venue Info (optional) +# The available values are defined in IEEE Std 802.11u-2011, 7.3.1.34. +# Example values (group,type): +# 0,0 = Unspecified +# 1,7 = Convention Center +# 1,13 = Coffee Shop +# 2,0 = Unspecified Business +# 7,1 Private Residence +#venue_group=7 +#venue_type=1 + +# Homogeneous ESS identifier (optional; dot11HESSID) +# If set, this shall be identifical to one of the BSSIDs in the homogeneous +# ESS and this shall be set to the same value across all BSSs in homogeneous +# ESS. +#hessid=02:03:04:05:06:07 + +# Roaming Consortium List +# Arbitrary number of Roaming Consortium OIs can be configured with each line +# adding a new OI to the list. The first three entries are available through +# Beacon and Probe Response frames. Any additional entry will be available only +# through ANQP queries. Each OI is between 3 and 15 octets and is configured as +# a hexstring. +#roaming_consortium=021122 +#roaming_consortium=2233445566 + +# Venue Name information +# This parameter can be used to configure one or more Venue Name Duples for +# Venue Name ANQP information. Each entry has a two or three character language +# code (ISO-639) separated by colon from the venue name string. +# Note that venue_group and venue_type have to be set for Venue Name +# information to be complete. +#venue_name=eng:Example venue +#venue_name=fin:Esimerkkipaikka +# Alternative format for language:value strings: +# (double quoted string, printf-escaped string) +#venue_name=P"eng:Example\nvenue" + +# Network Authentication Type +# This parameter indicates what type of network authentication is used in the +# network. +# format: [redirect URL] +# Network Authentication Type Indicator values: +# 00 = Acceptance of terms and conditions +# 01 = On-line enrollment supported +# 02 = http/https redirection +# 03 = DNS redirection +#network_auth_type=00 +#network_auth_type=02http://www.example.com/redirect/me/here/ + +# IP Address Type Availability +# format: <1-octet encoded value as hex str> +# (ipv4_type & 0x3f) << 2 | (ipv6_type & 0x3) +# ipv4_type: +# 0 = Address type not available +# 1 = Public IPv4 address available +# 2 = Port-restricted IPv4 address available +# 3 = Single NATed private IPv4 address available +# 4 = Double NATed private IPv4 address available +# 5 = Port-restricted IPv4 address and single NATed IPv4 address available +# 6 = Port-restricted IPv4 address and double NATed IPv4 address available +# 7 = Availability of the address type is not known +# ipv6_type: +# 0 = Address type not available +# 1 = Address type available +# 2 = Availability of the address type not known +#ipaddr_type_availability=14 + +# Domain Name +# format: [,] +#domain_name=example.com,another.example.com,yet-another.example.com + +# 3GPP Cellular Network information +# format: [;][;...] +#anqp_3gpp_cell_net=244,91;310,026;234,56 + +# NAI Realm information +# One or more realm can be advertised. Each nai_realm line adds a new realm to +# the set. These parameters provide information for stations using Interworking +# network selection to allow automatic connection to a network based on +# credentials. +# format: ,[,][,][,...] +# encoding: +# 0 = Realm formatted in accordance with IETF RFC 4282 +# 1 = UTF-8 formatted character string that is not formatted in +# accordance with IETF RFC 4282 +# NAI Realm(s): Semi-colon delimited NAI Realm(s) +# EAP Method: [:<[AuthParam1:Val1]>][<[AuthParam2:Val2]>][...] +# EAP Method types, see: +# http://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml#eap-numbers-4 +# AuthParam (Table 8-188 in IEEE Std 802.11-2012): +# ID 2 = Non-EAP Inner Authentication Type +# 1 = PAP, 2 = CHAP, 3 = MSCHAP, 4 = MSCHAPV2 +# ID 3 = Inner authentication EAP Method Type +# ID 5 = Credential Type +# 1 = SIM, 2 = USIM, 3 = NFC Secure Element, 4 = Hardware Token, +# 5 = Softoken, 6 = Certificate, 7 = username/password, 9 = Anonymous, +# 10 = Vendor Specific +#nai_realm=0,example.com;example.net +# EAP methods EAP-TLS with certificate and EAP-TTLS/MSCHAPv2 with +# username/password +#nai_realm=0,example.org,13[5:6],21[2:4][5:7] + +# Arbitrary ANQP-element configuration +# Additional ANQP-elements with arbitrary values can be defined by specifying +# their contents in raw format as a hexdump of the payload. Note that these +# values will override ANQP-element contents that may have been specified in the +# more higher layer configuration parameters listed above. +# format: anqp_elem=: +# For example, AP Geospatial Location ANQP-element with unknown location: +#anqp_elem=265:0000 +# For example, AP Civic Location ANQP-element with unknown location: +#anqp_elem=266:000000 + +# GAS Address 3 behavior +# 0 = P2P specification (Address3 = AP BSSID) workaround enabled by default +# based on GAS request Address3 +# 1 = IEEE 802.11 standard compliant regardless of GAS request Address3 +# 2 = Force non-compliant behavior (Address3 = AP BSSID for all cases) +#gas_address3=0 + +# QoS Map Set configuration +# +# Comma delimited QoS Map Set in decimal values +# (see IEEE Std 802.11-2012, 8.4.2.97) +# +# format: +# [,],... +# +# There can be up to 21 optional DSCP Exceptions which are pairs of DSCP Value +# (0..63 or 255) and User Priority (0..7). This is followed by eight DSCP Range +# descriptions with DSCP Low Value and DSCP High Value pairs (0..63 or 255) for +# each UP starting from 0. If both low and high value are set to 255, the +# corresponding UP is not used. +# +# default: not set +#qos_map_set=53,2,22,6,8,15,0,7,255,255,16,31,32,39,255,255,40,47,255,255 + +##### Hotspot 2.0 ############################################################# + +# Enable Hotspot 2.0 support +#hs20=1 + +# Disable Downstream Group-Addressed Forwarding (DGAF) +# This can be used to configure a network where no group-addressed frames are +# allowed. The AP will not forward any group-address frames to the stations and +# random GTKs are issued for each station to prevent associated stations from +# forging such frames to other stations in the BSS. +#disable_dgaf=1 + +# OSU Server-Only Authenticated L2 Encryption Network +#osen=1 + +# ANQP Domain ID (0..65535) +# An identifier for a set of APs in an ESS that share the same common ANQP +# information. 0 = Some of the ANQP information is unique to this AP (default). +#anqp_domain_id=1234 + +# Deauthentication request timeout +# If the RADIUS server indicates that the station is not allowed to connect to +# the BSS/ESS, the AP can allow the station some time to download a +# notification page (URL included in the message). This parameter sets that +# timeout in seconds. +#hs20_deauth_req_timeout=60 + +# Operator Friendly Name +# This parameter can be used to configure one or more Operator Friendly Name +# Duples. Each entry has a two or three character language code (ISO-639) +# separated by colon from the operator friendly name string. +#hs20_oper_friendly_name=eng:Example operator +#hs20_oper_friendly_name=fin:Esimerkkioperaattori + +# Connection Capability +# This can be used to advertise what type of IP traffic can be sent through the +# hotspot (e.g., due to firewall allowing/blocking protocols/ports). +# format: :: +# IP Protocol: 1 = ICMP, 6 = TCP, 17 = UDP +# Port Number: 0..65535 +# Status: 0 = Closed, 1 = Open, 2 = Unknown +# Each hs20_conn_capab line is added to the list of advertised tuples. +#hs20_conn_capab=1:0:2 +#hs20_conn_capab=6:22:1 +#hs20_conn_capab=17:5060:0 + +# WAN Metrics +# format: :
:
    :
    :
      : +# WAN Info: B0-B1: Link Status, B2: Symmetric Link, B3: At Capabity +# (encoded as two hex digits) +# Link Status: 1 = Link up, 2 = Link down, 3 = Link in test state +# Downlink Speed: Estimate of WAN backhaul link current downlink speed in kbps; +# 1..4294967295; 0 = unknown +# Uplink Speed: Estimate of WAN backhaul link current uplink speed in kbps +# 1..4294967295; 0 = unknown +# Downlink Load: Current load of downlink WAN connection (scaled to 255 = 100%) +# Uplink Load: Current load of uplink WAN connection (scaled to 255 = 100%) +# Load Measurement Duration: Duration for measuring downlink/uplink load in +# tenths of a second (1..65535); 0 if load cannot be determined +#hs20_wan_metrics=01:8000:1000:80:240:3000 + +# Operating Class Indication +# List of operating classes the BSSes in this ESS use. The Global operating +# classes in Table E-4 of IEEE Std 802.11-2012 Annex E define the values that +# can be used in this. +# format: hexdump of operating class octets +# for example, operating classes 81 (2.4 GHz channels 1-13) and 115 (5 GHz +# channels 36-48): +#hs20_operating_class=5173 + +# OSU icons +# ::::: +#hs20_icon=32:32:eng:image/png:icon32:/tmp/icon32.png +#hs20_icon=64:64:eng:image/png:icon64:/tmp/icon64.png + +# OSU SSID (see ssid2 for format description) +# This is the SSID used for all OSU connections to all the listed OSU Providers. +#osu_ssid="example" + +# OSU Providers +# One or more sets of following parameter. Each OSU provider is started by the +# mandatory osu_server_uri item. The other parameters add information for the +# last added OSU provider. +# +#osu_server_uri=https://example.com/osu/ +#osu_friendly_name=eng:Example operator +#osu_friendly_name=fin:Esimerkkipalveluntarjoaja +#osu_nai=anonymous@example.com +#osu_method_list=1 0 +#osu_icon=icon32 +#osu_icon=icon64 +#osu_service_desc=eng:Example services +#osu_service_desc=fin:Esimerkkipalveluja +# +#osu_server_uri=... + +##### Multiband Operation (MBO) ############################################### +# +# MBO enabled +# 0 = disabled (default) +# 1 = enabled +#mbo=1 +# +# Cellular data connection preference +# 0 = Excluded - AP does not want STA to use the cellular data connection +# 1 = AP prefers the STA not to use cellular data connection +# 255 = AP prefers the STA to use cellular data connection +#mbo_cell_data_conn_pref=1 + +##### Optimized Connectivity Experience (OCE) ################################# +# +# Enable OCE specific features (bitmap) +# BIT(0) - Reserved +# Set BIT(1) (= 2) to enable OCE in STA-CFON mode +# Set BIT(2) (= 4) to enable OCE in AP mode +# Default is 0 = OCE disabled +oce=2 + +##### Fast Session Transfer (FST) support ##################################### +# +# The options in this section are only available when the build configuration +# option CONFIG_FST is set while compiling hostapd. They allow this interface +# to be a part of FST setup. +# +# FST is the transfer of a session from a channel to another channel, in the +# same or different frequency bands. +# +# For detals, see IEEE Std 802.11ad-2012. + +# Identifier of an FST Group the interface belongs to. +#fst_group_id=bond0 + +# Interface priority within the FST Group. +# Announcing a higher priority for an interface means declaring it more +# preferable for FST switch. +# fst_priority is in 1..255 range with 1 being the lowest priority. +#fst_priority=100 + +# Default LLT value for this interface in milliseconds. The value used in case +# no value provided during session setup. Default is 50 ms. +# fst_llt is in 1..4294967 range (due to spec limitation, see 10.32.2.2 +# Transitioning between states). +#fst_llt=100 + +##### Radio measurements / location ########################################### + +# The content of a LCI measurement subelement +#lci= + +# The content of a location civic measurement subelement +#civic= + +# Enable neighbor report via radio measurements +#rrm_neighbor_report=1 + +# Enable beacon report via radio measurements +#rrm_beacon_report=1 + +# Publish fine timing measurement (FTM) responder functionality +# This parameter only controls publishing via Extended Capabilities element. +# Actual functionality is managed outside hostapd. +#ftm_responder=0 + +# Publish fine timing measurement (FTM) initiator functionality +# This parameter only controls publishing via Extended Capabilities element. +# Actual functionality is managed outside hostapd. +#ftm_initiator=0 +# +# Stationary AP config indicates that the AP doesn't move hence location data +# can be considered as always up to date. If configured, LCI data will be sent +# as a radio measurement even if the request doesn't contain a max age element +# that allows sending of such data. Default: 0. +#stationary_ap=0 + +##### TESTING OPTIONS ######################################################### +# +# The options in this section are only available when the build configuration +# option CONFIG_TESTING_OPTIONS is set while compiling hostapd. They allow +# testing some scenarios that are otherwise difficult to reproduce. +# +# Ignore probe requests sent to hostapd with the given probability, must be a +# floating point number in the range [0, 1). +#ignore_probe_probability=0.0 +# +# Ignore authentication frames with the given probability +#ignore_auth_probability=0.0 +# +# Ignore association requests with the given probability +#ignore_assoc_probability=0.0 +# +# Ignore reassociation requests with the given probability +#ignore_reassoc_probability=0.0 +# +# Corrupt Key MIC in GTK rekey EAPOL-Key frames with the given probability +#corrupt_gtk_rekey_mic_probability=0.0 +# +# Include only ECSA IE without CSA IE where possible +# (channel switch operating class is needed) +#ecsa_ie_only=0 + ##### Multiple BSSID support ################################################## # # Above configuration is using the default interface (wlan#, or multi-SSID VLAN @@ -1016,7 +2199,10 @@ config_methods=label display push_button keypad # hostapd will generate BSSID mask based on the BSSIDs that are # configured. hostapd will verify that dev_addr & MASK == dev_addr. If this is # not the case, the MAC address of the radio must be changed before starting -# hostapd (ifconfig wlan0 hw ether ). +# hostapd (ifconfig wlan0 hw ether ). If a BSSID is configured for +# every secondary BSS, this limitation is not applied at hostapd and other +# masks may be used if the driver supports them (e.g., swap the locally +# administered bit) # # BSSIDs are assigned in order to each BSS, unless an explicit BSSID is # specified using the 'bssid' parameter. @@ -1025,6 +2211,15 @@ config_methods=label display push_button keypad # - is not the same as the MAC address of the radio # - is not the same as any other explicitly specified BSSID # +# Alternatively, the 'use_driver_iface_addr' parameter can be used to request +# hostapd to use the driver auto-generated interface address (e.g., to use the +# exact MAC addresses allocated to the device). +# +# Not all drivers support multiple BSSes. The exact mechanism for determining +# the driver capabilities is driver specific. With the current (i.e., a recent +# kernel) drivers using nl80211, this information can be checked with "iw list" +# (search for "valid interface combinations"). +# # Please note that hostapd uses some of the values configured for the first BSS # as the defaults for the following BSSes. However, it is recommended that all # BSSes include explicit configuration of all relevant configuration items. @@ -1037,3 +2232,5 @@ config_methods=label display push_button keypad #bss=wlan0_1 #bssid=00:13:10:95:fe:0b # ... + +wowlan_triggers=any diff --git a/wifi/p2p_supplicant_overlay.conf b/wifi/p2p_supplicant_overlay.conf index e484ebe..2b27c5b 100644 --- a/wifi/p2p_supplicant_overlay.conf +++ b/wifi/p2p_supplicant_overlay.conf @@ -1,3 +1,4 @@ disable_scan_offload=1 p2p_no_group_iface=1 persistent_reconnect=1 +bss_max_count=400 diff --git a/wifi/wpa_supplicant_overlay.conf b/wifi/wpa_supplicant_overlay.conf index a1b2b09..c263fe3 100644 --- a/wifi/wpa_supplicant_overlay.conf +++ b/wifi/wpa_supplicant_overlay.conf @@ -2,8 +2,5 @@ disable_scan_offload=1 p2p_disabled=1 tdls_external_control=1 wowlan_triggers=magic_pkt -bss_max_count=512 +bss_max_count=400 interworking=1 -hs20=1 -auto_interworking=0 -bss_no_flush_when_down=1