{"cells":[{"attachments":{},"cell_type":"markdown","metadata":{"_cell_guid":"b5d748ec-ba93-440b-9020-647f44fe6e0f","_uuid":"aa2ef3305175ad6f2f289d18aa9d1e2e570bccd4"},"source":["# **Predictors of mental health illness**\n","\n","`Last update: 16/12/2022`\n","\n","The proccess is the following:\n","1. [Library and data loading](#Library_and_data_loading)\n","2. [Data cleaning](#Data_cleaning)\n","3. [Encoding data](#Encoding_data)\n","4. [Covariance Matrix. Variability comparison between categories of variables](#Covariance_Matrix)\n","5. [Some charts to see data relationship](#Some_charts_to_see_data_relationship)\n","6. [Scaling and fitting](#Scaling_and_fitting)\n","7. [Tuning](#Tuning)\n","8. [Evaluating models](#Evaluating_models) \n"," 1. [Logistic Eegression](#Logistic_regressio)\n"," 2. [KNeighbors Classifier](#KNeighborsClassifier)\n"," 3. [Decision Tree Classifier](#Decision_Tree_classifier)\n"," 4. [Random Forests](#Random_Forests)\n"," 5. [Bagging](#Bagging)\n"," 6. [Boosting](#Boosting)\n"," 7. [Stacking](#Stacking)\n","9. [Predicting with Neural Network](#Predicting_with_Neural_Network)\n","10. [Success method plot](#Success_method_plot)\n","11. [Creating predictions on test set](#Creating_predictions_on_test_set)\n","12. [Submission](#Submission)\n","13. [Conclusions](#Conclusions)"]},{"cell_type":"markdown","metadata":{"_cell_guid":"dc7cd7b3-32e0-4284-b669-87d4fb6dbaf8","_uuid":"dfeb8a6c8cc31996e69537a9a25102c42ccf3e6d"},"source":["\n","## **1. Library and data loading** ##"]},{"cell_type":"code","execution_count":90,"metadata":{"_cell_guid":"507667c6-d01e-44e4-b8d7-a2d61d3eb02a","_uuid":"d59a9a91a5da35354233aaf9fc1f0dd66686349b","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["(1259, 27)\n"," Age\n","count 1.259000e+03\n","mean 7.942815e+07\n","std 2.818299e+09\n","min -1.726000e+03\n","25% 2.700000e+01\n","50% 3.100000e+01\n","75% 3.600000e+01\n","max 1.000000e+11\n","\n","RangeIndex: 1259 entries, 0 to 1258\n","Data columns (total 27 columns):\n"," # Column Non-Null Count Dtype \n","--- ------ -------------- ----- \n"," 0 Timestamp 1259 non-null object\n"," 1 Age 1259 non-null int64 \n"," 2 Gender 1259 non-null object\n"," 3 Country 1259 non-null object\n"," 4 state 744 non-null object\n"," 5 self_employed 1241 non-null object\n"," 6 family_history 1259 non-null object\n"," 7 treatment 1259 non-null object\n"," 8 work_interfere 995 non-null object\n"," 9 no_employees 1259 non-null object\n"," 10 remote_work 1259 non-null object\n"," 11 tech_company 1259 non-null object\n"," 12 benefits 1259 non-null object\n"," 13 care_options 1259 non-null object\n"," 14 wellness_program 1259 non-null object\n"," 15 seek_help 1259 non-null object\n"," 16 anonymity 1259 non-null object\n"," 17 leave 1259 non-null object\n"," 18 mental_health_consequence 1259 non-null object\n"," 19 phys_health_consequence 1259 non-null object\n"," 20 coworkers 1259 non-null object\n"," 21 supervisor 1259 non-null object\n"," 22 mental_health_interview 1259 non-null object\n"," 23 phys_health_interview 1259 non-null object\n"," 24 mental_vs_physical 1259 non-null object\n"," 25 obs_consequence 1259 non-null object\n"," 26 comments 164 non-null object\n","dtypes: int64(1), object(26)\n","memory usage: 265.7+ KB\n","None\n"]}],"source":["import numpy as np # linear algebra\n","import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","\n","from scipy import stats\n","from scipy.stats import randint\n","\n","# prep\n","from sklearn.model_selection import train_test_split\n","from sklearn import preprocessing\n","from sklearn.datasets import make_classification\n","from sklearn.preprocessing import binarize, LabelEncoder, MinMaxScaler\n","\n","# models\n","from sklearn.linear_model import LogisticRegression\n","from sklearn.tree import DecisionTreeClassifier\n","from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier\n","\n","# Validation libraries\n","from sklearn import metrics\n","from sklearn.metrics import accuracy_score, mean_squared_error, precision_recall_curve\n","from sklearn.model_selection import cross_val_score\n","\n","#Neural Network\n","from sklearn.neural_network import MLPClassifier\n","from sklearn.model_selection import RandomizedSearchCV\n","\n","#Bagging\n","from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier\n","from sklearn.neighbors import KNeighborsClassifier\n","\n","#Naive bayes\n","from sklearn.naive_bayes import GaussianNB \n","\n","#Stacking\n","from mlxtend.classifier import StackingClassifier\n","\n","\n","# Any results you write to the current directory are saved as output.\n","\n","#reading in CSV's from a file path\n","train_df = pd.read_csv('raw_datasets\\OSMI Mental Health in Tech Survey 2014.csv')\n","\n","\n","#Pandas: whats the data row count?\n","print(train_df.shape)\n"," \n","#Pandas: whats the distribution of the data?\n","print(train_df.describe())\n"," \n","#Pandas: What types of data do i have?\n","print(train_df.info())\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"9a8c2272-ba6c-477a-9710-b82d57a1804f","_uuid":"e4eef2cb6628af4e719fdbd434ccbacc1846e487"},"source":["\n","## **2. Data cleaning** ##"]},{"cell_type":"code","execution_count":91,"metadata":{"_cell_guid":"a8e060e1-18fa-4214-a6fb-f924f74af108","_kg_hide-input":true,"_kg_hide-output":true,"_uuid":"6088e9b05d062fbed2c2272924e9d8aa0e23e5b7","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":[" Total Percent\n","comments 1095 0.869738\n","state 515 0.409055\n","work_interfere 264 0.209690\n","self_employed 18 0.014297\n","seek_help 0 0.000000\n","obs_consequence 0 0.000000\n","mental_vs_physical 0 0.000000\n","phys_health_interview 0 0.000000\n","mental_health_interview 0 0.000000\n","supervisor 0 0.000000\n","coworkers 0 0.000000\n","phys_health_consequence 0 0.000000\n","mental_health_consequence 0 0.000000\n","leave 0 0.000000\n","anonymity 0 0.000000\n","Timestamp 0 0.000000\n","wellness_program 0 0.000000\n","Age 0 0.000000\n","benefits 0 0.000000\n","tech_company 0 0.000000\n","remote_work 0 0.000000\n","no_employees 0 0.000000\n","treatment 0 0.000000\n","family_history 0 0.000000\n","Country 0 0.000000\n","Gender 0 0.000000\n","care_options 0 0.000000\n"]}],"source":["#missing data\n","total = train_df.isnull().sum().sort_values(ascending=False)\n","percent = (train_df.isnull().sum()/train_df.isnull().count()).sort_values(ascending=False)\n","missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])\n","missing_data.head(20)\n","print(missing_data)\n"]},{"cell_type":"code","execution_count":92,"metadata":{"_cell_guid":"d21825da-92d6-48e2-9ab9-c63fbbbbd2b7","_uuid":"50bdd9973655b16c61711d519645df6afb2ca214","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
Age
\n","
Gender
\n","
Country
\n","
self_employed
\n","
family_history
\n","
treatment
\n","
work_interfere
\n","
no_employees
\n","
remote_work
\n","
tech_company
\n","
...
\n","
anonymity
\n","
leave
\n","
mental_health_consequence
\n","
phys_health_consequence
\n","
coworkers
\n","
supervisor
\n","
mental_health_interview
\n","
phys_health_interview
\n","
mental_vs_physical
\n","
obs_consequence
\n","
\n"," \n"," \n","
\n","
0
\n","
37
\n","
Female
\n","
United States
\n","
NaN
\n","
No
\n","
Yes
\n","
Often
\n","
6-25
\n","
No
\n","
Yes
\n","
...
\n","
Yes
\n","
Somewhat easy
\n","
No
\n","
No
\n","
Some of them
\n","
Yes
\n","
No
\n","
Maybe
\n","
Yes
\n","
No
\n","
\n","
\n","
1
\n","
44
\n","
M
\n","
United States
\n","
NaN
\n","
No
\n","
No
\n","
Rarely
\n","
More than 1000
\n","
No
\n","
No
\n","
...
\n","
Don't know
\n","
Don't know
\n","
Maybe
\n","
No
\n","
No
\n","
No
\n","
No
\n","
No
\n","
Don't know
\n","
No
\n","
\n","
\n","
2
\n","
32
\n","
Male
\n","
Canada
\n","
NaN
\n","
No
\n","
No
\n","
Rarely
\n","
6-25
\n","
No
\n","
Yes
\n","
...
\n","
Don't know
\n","
Somewhat difficult
\n","
No
\n","
No
\n","
Yes
\n","
Yes
\n","
Yes
\n","
Yes
\n","
No
\n","
No
\n","
\n","
\n","
3
\n","
31
\n","
Male
\n","
United Kingdom
\n","
NaN
\n","
Yes
\n","
Yes
\n","
Often
\n","
26-100
\n","
No
\n","
Yes
\n","
...
\n","
No
\n","
Somewhat difficult
\n","
Yes
\n","
Yes
\n","
Some of them
\n","
No
\n","
Maybe
\n","
Maybe
\n","
No
\n","
Yes
\n","
\n","
\n","
4
\n","
31
\n","
Male
\n","
United States
\n","
NaN
\n","
No
\n","
No
\n","
Never
\n","
100-500
\n","
Yes
\n","
Yes
\n","
...
\n","
Don't know
\n","
Don't know
\n","
No
\n","
No
\n","
Some of them
\n","
Yes
\n","
Yes
\n","
Yes
\n","
Don't know
\n","
No
\n","
\n"," \n","
\n","
5 rows × 24 columns
\n","
"],"text/plain":[" Age Gender Country self_employed family_history treatment \\\n","0 37 Female United States NaN No Yes \n","1 44 M United States NaN No No \n","2 32 Male Canada NaN No No \n","3 31 Male United Kingdom NaN Yes Yes \n","4 31 Male United States NaN No No \n","\n"," work_interfere no_employees remote_work tech_company ... anonymity \\\n","0 Often 6-25 No Yes ... Yes \n","1 Rarely More than 1000 No No ... Don't know \n","2 Rarely 6-25 No Yes ... Don't know \n","3 Often 26-100 No Yes ... No \n","4 Never 100-500 Yes Yes ... Don't know \n","\n"," leave mental_health_consequence phys_health_consequence \\\n","0 Somewhat easy No No \n","1 Don't know Maybe No \n","2 Somewhat difficult No No \n","3 Somewhat difficult Yes Yes \n","4 Don't know No No \n","\n"," coworkers supervisor mental_health_interview phys_health_interview \\\n","0 Some of them Yes No Maybe \n","1 No No No No \n","2 Yes Yes Yes Yes \n","3 Some of them No Maybe Maybe \n","4 Some of them Yes Yes Yes \n","\n"," mental_vs_physical obs_consequence \n","0 Yes No \n","1 Don't know No \n","2 No No \n","3 No Yes \n","4 Don't know No \n","\n","[5 rows x 24 columns]"]},"execution_count":92,"metadata":{},"output_type":"execute_result"}],"source":["#dealing with missing data\n","#Let’s get rid of the variables \"Timestamp\",“comments”, “state” just to make our lives easier.\n","train_df = train_df.drop(['comments'], axis= 1)\n","train_df = train_df.drop(['state'], axis= 1)\n","train_df = train_df.drop(['Timestamp'], axis= 1)\n","\n","train_df.isnull().sum().max() #just checking that there's no missing data missing...\n","train_df.head(5)"]},{"cell_type":"markdown","metadata":{"_cell_guid":"871f195e-d25d-426a-84f5-997b017b892c","_uuid":"7a54d86c30dab2e270e7374455178f8abcc15a7c"},"source":["**Cleaning NaN**"]},{"cell_type":"code","execution_count":93,"metadata":{"_cell_guid":"2bf70e26-afd9-4766-95ae-68d8ff9b21db","_uuid":"08b863f7d666b7e68cef056ba2a0ae033cbdeb9d","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
Age
\n","
Gender
\n","
Country
\n","
self_employed
\n","
family_history
\n","
treatment
\n","
work_interfere
\n","
no_employees
\n","
remote_work
\n","
tech_company
\n","
...
\n","
anonymity
\n","
leave
\n","
mental_health_consequence
\n","
phys_health_consequence
\n","
coworkers
\n","
supervisor
\n","
mental_health_interview
\n","
phys_health_interview
\n","
mental_vs_physical
\n","
obs_consequence
\n","
\n"," \n"," \n","
\n","
0
\n","
37
\n","
Female
\n","
United States
\n","
NaN
\n","
No
\n","
Yes
\n","
Often
\n","
6-25
\n","
No
\n","
Yes
\n","
...
\n","
Yes
\n","
Somewhat easy
\n","
No
\n","
No
\n","
Some of them
\n","
Yes
\n","
No
\n","
Maybe
\n","
Yes
\n","
No
\n","
\n","
\n","
1
\n","
44
\n","
M
\n","
United States
\n","
NaN
\n","
No
\n","
No
\n","
Rarely
\n","
More than 1000
\n","
No
\n","
No
\n","
...
\n","
Don't know
\n","
Don't know
\n","
Maybe
\n","
No
\n","
No
\n","
No
\n","
No
\n","
No
\n","
Don't know
\n","
No
\n","
\n","
\n","
2
\n","
32
\n","
Male
\n","
Canada
\n","
NaN
\n","
No
\n","
No
\n","
Rarely
\n","
6-25
\n","
No
\n","
Yes
\n","
...
\n","
Don't know
\n","
Somewhat difficult
\n","
No
\n","
No
\n","
Yes
\n","
Yes
\n","
Yes
\n","
Yes
\n","
No
\n","
No
\n","
\n","
\n","
3
\n","
31
\n","
Male
\n","
United Kingdom
\n","
NaN
\n","
Yes
\n","
Yes
\n","
Often
\n","
26-100
\n","
No
\n","
Yes
\n","
...
\n","
No
\n","
Somewhat difficult
\n","
Yes
\n","
Yes
\n","
Some of them
\n","
No
\n","
Maybe
\n","
Maybe
\n","
No
\n","
Yes
\n","
\n","
\n","
4
\n","
31
\n","
Male
\n","
United States
\n","
NaN
\n","
No
\n","
No
\n","
Never
\n","
100-500
\n","
Yes
\n","
Yes
\n","
...
\n","
Don't know
\n","
Don't know
\n","
No
\n","
No
\n","
Some of them
\n","
Yes
\n","
Yes
\n","
Yes
\n","
Don't know
\n","
No
\n","
\n"," \n","
\n","
5 rows × 24 columns
\n","
"],"text/plain":[" Age Gender Country self_employed family_history treatment \\\n","0 37 Female United States NaN No Yes \n","1 44 M United States NaN No No \n","2 32 Male Canada NaN No No \n","3 31 Male United Kingdom NaN Yes Yes \n","4 31 Male United States NaN No No \n","\n"," work_interfere no_employees remote_work tech_company ... anonymity \\\n","0 Often 6-25 No Yes ... Yes \n","1 Rarely More than 1000 No No ... Don't know \n","2 Rarely 6-25 No Yes ... Don't know \n","3 Often 26-100 No Yes ... No \n","4 Never 100-500 Yes Yes ... Don't know \n","\n"," leave mental_health_consequence phys_health_consequence \\\n","0 Somewhat easy No No \n","1 Don't know Maybe No \n","2 Somewhat difficult No No \n","3 Somewhat difficult Yes Yes \n","4 Don't know No No \n","\n"," coworkers supervisor mental_health_interview phys_health_interview \\\n","0 Some of them Yes No Maybe \n","1 No No No No \n","2 Yes Yes Yes Yes \n","3 Some of them No Maybe Maybe \n","4 Some of them Yes Yes Yes \n","\n"," mental_vs_physical obs_consequence \n","0 Yes No \n","1 Don't know No \n","2 No No \n","3 No Yes \n","4 Don't know No \n","\n","[5 rows x 24 columns]"]},"execution_count":93,"metadata":{},"output_type":"execute_result"}],"source":["# Assign default values for each data type\n","defaultInt = 0\n","defaultString = 'NaN'\n","defaultFloat = 0.0\n","\n","# Create lists by data tpe\n","intFeatures = ['Age']\n","stringFeatures = ['Gender', 'Country', 'self_employed', 'family_history', 'treatment', 'work_interfere',\n"," 'no_employees', 'remote_work', 'tech_company', 'anonymity', 'leave', 'mental_health_consequence',\n"," 'phys_health_consequence', 'coworkers', 'supervisor', 'mental_health_interview', 'phys_health_interview',\n"," 'mental_vs_physical', 'obs_consequence', 'benefits', 'care_options', 'wellness_program',\n"," 'seek_help']\n","floatFeatures = []\n","\n","# Clean the NaN's\n","for feature in train_df:\n"," if feature in intFeatures:\n"," train_df[feature] = train_df[feature].fillna(defaultInt)\n"," elif feature in stringFeatures:\n"," train_df[feature] = train_df[feature].fillna(defaultString)\n"," elif feature in floatFeatures:\n"," train_df[feature] = train_df[feature].fillna(defaultFloat)\n"," else:\n"," print('Error: Feature %s not recognized.' % feature)\n","train_df.head(5) "]},{"cell_type":"code","execution_count":94,"metadata":{"_cell_guid":"4ec04bf5-c88f-4839-a79b-2d3ad6962599","_uuid":"4507b7c43c9663f90a9cf915dd73850e4e0f17ab","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["['female' 'male' 'trans']\n"]}],"source":["#clean 'Gender'\n","#Slower case all columm's elements\n","gender = train_df['Gender'].str.lower()\n","#print(gender)\n","\n","#Select unique elements\n","gender = train_df['Gender'].unique()\n","\n","#Made gender groups\n","male_str = [\"male\", \"m\", \"male-ish\", \"maile\", \"mal\", \"male (cis)\", \"make\", \"male \", \"man\",\"msle\", \"mail\", \"malr\",\"cis man\", \"Cis Male\", \"cis male\"]\n","trans_str = [\"trans-female\", \"something kinda male?\", \"queer/she/they\", \"non-binary\",\"nah\", \"all\", \"enby\", \"fluid\", \"genderqueer\", \"androgyne\", \"agender\", \"male leaning androgynous\", \"guy (-ish) ^_^\", \"trans woman\", \"neuter\", \"female (trans)\", \"queer\", \"ostensibly male, unsure what that really means\"] \n","female_str = [\"cis female\", \"f\", \"female\", \"woman\", \"femake\", \"female \",\"cis-female/femme\", \"female (cis)\", \"femail\"]\n","\n","for (row, col) in train_df.iterrows():\n","\n"," if str.lower(col.Gender) in male_str:\n"," train_df['Gender'].replace(to_replace=col.Gender, value='male', inplace=True)\n","\n"," if str.lower(col.Gender) in female_str:\n"," train_df['Gender'].replace(to_replace=col.Gender, value='female', inplace=True)\n","\n"," if str.lower(col.Gender) in trans_str:\n"," train_df['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True)\n","\n","#Get rid of bullshit\n","stk_list = ['A little about you', 'p']\n","train_df = train_df[~train_df['Gender'].isin(stk_list)]\n","\n","print(train_df['Gender'].unique())"]},{"cell_type":"code","execution_count":95,"metadata":{"_cell_guid":"0e211fa8-a69e-42c1-adda-375d82916db4","_uuid":"818c6a88caf07379d5012f15919d6eb46ae6d98c","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["#complete missing age with mean\n","train_df['Age'].fillna(train_df['Age'].median(), inplace = True)\n","\n","# Fill with media() values < 18 and > 120\n","s = pd.Series(train_df['Age'])\n","s[s<18] = train_df['Age'].median()\n","train_df['Age'] = s\n","s = pd.Series(train_df['Age'])\n","s[s>120] = train_df['Age'].median()\n","train_df['Age'] = s\n","\n","#Ranges of Age\n","train_df['age_range'] = pd.cut(train_df['Age'], [0,20,30,65,100], labels=[\"0-20\", \"21-30\", \"31-65\", \"66-100\"], include_lowest=True)\n","\n"]},{"cell_type":"code","execution_count":96,"metadata":{"_cell_guid":"ffa02f53-30cd-4f7e-bcd9-f74b3c0826c4","_uuid":"55b6621c02ca8d8603d815da74b15ad621b46629","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["['No' 'Yes']\n"]}],"source":["#There are only 0.014% of self employed so let's change NaN to NOT self_employed\n","#Replace \"NaN\" string from defaultString\n","train_df['self_employed'] = train_df['self_employed'].replace([defaultString], 'No')\n","print(train_df['self_employed'].unique())"]},{"cell_type":"code","execution_count":97,"metadata":{"_cell_guid":"d910581d-4b92-4919-ab5a-85b018158745","_uuid":"b934d97a22a46c36e107d2e0fdeb9f0ee74dc532","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["['Often' 'Rarely' 'Never' 'Sometimes' \"Don't know\"]\n"]}],"source":["#There are only 0.20% of self work_interfere so let's change NaN to \"Don't know\n","#Replace \"NaN\" string from defaultString\n","\n","train_df['work_interfere'] = train_df['work_interfere'].replace([defaultString], 'Don\\'t know' )\n","print(train_df['work_interfere'].unique())"]},{"cell_type":"markdown","metadata":{"_cell_guid":"b77019bf-b900-4c2b-9676-792860d89825","_uuid":"01bdb3e74278bd61fdbdda9b1f9a3085c873999b"},"source":["\n","## **3. Encoding data**"]},{"cell_type":"code","execution_count":98,"metadata":{"_cell_guid":"05a6455e-187d-4db2-bb71-4fbf2ba6d967","_uuid":"af23578fce1520cbe5fd970b13c7ddd71f442018","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["label_Age [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 72]\n","label_Gender ['female', 'male', 'trans']\n","label_Country ['Australia', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Brazil', 'Bulgaria', 'Canada', 'China', 'Colombia', 'Costa Rica', 'Croatia', 'Czech Republic', 'Denmark', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'India', 'Ireland', 'Israel', 'Italy', 'Japan', 'Latvia', 'Mexico', 'Moldova', 'Netherlands', 'New Zealand', 'Nigeria', 'Norway', 'Philippines', 'Poland', 'Portugal', 'Romania', 'Russia', 'Singapore', 'Slovenia', 'South Africa', 'Spain', 'Sweden', 'Switzerland', 'Thailand', 'United Kingdom', 'United States', 'Uruguay', 'Zimbabwe']\n","label_self_employed ['No', 'Yes']\n","label_family_history ['No', 'Yes']\n","label_treatment ['No', 'Yes']\n","label_work_interfere [\"Don't know\", 'Never', 'Often', 'Rarely', 'Sometimes']\n","label_no_employees ['1-5', '100-500', '26-100', '500-1000', '6-25', 'More than 1000']\n","label_remote_work ['No', 'Yes']\n","label_tech_company ['No', 'Yes']\n","label_benefits [\"Don't know\", 'No', 'Yes']\n","label_care_options ['No', 'Not sure', 'Yes']\n","label_wellness_program [\"Don't know\", 'No', 'Yes']\n","label_seek_help [\"Don't know\", 'No', 'Yes']\n","label_anonymity [\"Don't know\", 'No', 'Yes']\n","label_leave [\"Don't know\", 'Somewhat difficult', 'Somewhat easy', 'Very difficult', 'Very easy']\n","label_mental_health_consequence ['Maybe', 'No', 'Yes']\n","label_phys_health_consequence ['Maybe', 'No', 'Yes']\n","label_coworkers ['No', 'Some of them', 'Yes']\n","label_supervisor ['No', 'Some of them', 'Yes']\n","label_mental_health_interview ['Maybe', 'No', 'Yes']\n","label_phys_health_interview ['Maybe', 'No', 'Yes']\n","label_mental_vs_physical [\"Don't know\", 'No', 'Yes']\n","label_obs_consequence ['No', 'Yes']\n","label_age_range ['0-20', '21-30', '31-65', '66-100']\n"]},{"data":{"text/html":["
"]},"metadata":{},"output_type":"display_data"}],"source":["#correlation matrix\n","corrmat = train_df.corr()\n","f, ax = plt.subplots(figsize=(12, 9))\n","sns.heatmap(corrmat, vmax=.8, square=True);\n","plt.show()\n","\n","#treatment correlation matrix\n","k = 10 #number of variables for heatmap\n","cols = corrmat.nlargest(k, 'treatment')['treatment'].index\n","cm = np.corrcoef(train_df[cols].values.T)\n","sns.set(font_scale=1.25)\n","hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)\n","plt.show()\n","\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"f71d0c3d-8554-4478-b1d5-7aa461fcb7bb","_uuid":"22adfaf19848e1103804bf8737cb5656fcac5388"},"source":["\n","## **5. Some charts to see data relationship** "]},{"cell_type":"markdown","metadata":{"_cell_guid":"2af9fb8b-79ac-4444-95b0-210c704afef9","_uuid":"39488f9878f2ab937c4ce888eb82eba133fb175c"},"source":["Distribiution and density by Age"]},{"cell_type":"code","execution_count":101,"metadata":{"_cell_guid":"89387b66-3a36-4b3f-98a4-254253452056","_uuid":"e7288897925d3f340ba4c2e73d2ef61c6ca28c4f","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stderr","output_type":"stream","text":["C:\\Users\\puran\\AppData\\Local\\Temp\\ipykernel_20412\\1394260443.py:3: UserWarning: \n","\n","`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n","\n","Please adapt your code to use either `displot` (a figure-level function with\n","similar flexibility) or `histplot` (an axes-level function for histograms).\n","\n","For a guide to updating your code to use the new functions, please see\n","https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n","\n"," sns.distplot(train_df[\"Age\"], bins=24)\n"]},{"data":{"text/plain":["Text(0.5, 0, 'Age')"]},"execution_count":101,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABAAAAALLCAYAAABn4vDOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUdb7/8feZmfRCEiABQgeT0EJRioAFRHAFFRUVFQXUu6suimtZdb0/96pXd1kW9doeXLmACxbABUVEsS0uiiCiwNJ7CC0JaaROZjJzfn+EzBISIAnJzCTzej4eefDgtO/nO+fLkPM532KYpmkKAAAAAAA0axZfBwAAAAAAABofCQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAQINatmyZkpOTq/307t1bQ4YM0aRJk7Ro0SK5XK5q577++utKTk7Whx9+WK+yi4qKNG/evFof/9RTTyk5OVk//PCDZ1tycrIuv/zyepV/PnfddZeSk5N16NAhzza3260lS5YoMzPTs63yM3zllVcaJQ5/N3LkSCUnJ6u8vLze17jQttRYfvzxRyUnJ+vxxx+vsv3w4cP66KOPGrSsmtqbN5SWlmrAgAFKTk7WrFmzvFo2AODcbL4OAADQPKWkpGjUqFGev5eWlionJ0c//PCD/vjHP+rTTz/VnDlzFBYW5jlm0KBBmjZtmnr27FmvMseMGSOr1ap77rmnVsePGjVKiYmJ6tChQ73Kq6sbb7xRgwYNUosWLTzbHnvsMX322Wf68ssvPdt69OihadOm6ZJLLvFKXPCexMRETZs2TcnJyZ5tu3bt0i233KIxY8boxhtv9GF0DWPVqlUqLi5WeHi4li5dqoceekjBwcG+DgsAIBIAAIBG0qNHDz300EPVthcXF+vpp5/WF198oSeffFKvvfaaZ9/gwYM1ePDgepeZnZ2thISEWh8/atSoKkmKxnbTTTdV25adnV1tW48ePdSjRw9vhAQva9++fbV/FydPnpTD4fBRRA1v6dKlioiI0B133KE5c+bo66+/1rXXXuvrsAAAYggAAMDLIiIiNGPGDHXu3FlffPGFNm/e7OuQADSQ9PR0bdy4UUOGDNG4ceMkSR988IGPowIAVCIBAADwurCwME2ZMkWStGLFCs/2msZt2+12zZo1S9ddd5369eunSy65RHfddZc+++wzzzGVY+YlKTMzU8nJyXrqqack/Xuc/88//6wJEyaod+/eGjlypI4dO1bjHACVdu7cqSlTpqhfv34aPHiwHnnkER04cKDKMecaq19TXU4fk33kyBElJydrw4YNkqTRo0dr5MiR57xufn6+ZsyYoVGjRql3794aPHiwHnjggWpJlMprv/jii/rpp5901113qX///howYIB+/etfa/v27We5M9WtX79e06ZN0/Dhw9W7d29dfPHFuu2227R06dIqx1WObX/nnXf01Vdf6ZZbblHfvn01aNAgPfLII0pPT6927fT0dD3++OMaNmyY+vXrpylTpmjHjh21jk2SysvL9fbbb+uaa65RamqqxowZo3ffffesx5/5GQ4dOlSPPvqo9u/ff0H1cbvdevvtt3XjjTd6PutbbrlF77//vkzTrHbdyjkAnnrqKd19992SKv4tJCcna9myZbrvvvuUnJysn376qVodCgoKlJqaqptvvrlWn1FeXp6efvppDRo0SP3799ekSZO0Zs0az/6ysjLPvtLS0mrnr1mzRsnJyZoxY8Z5y1q6dKlM09QVV1yhlJQUde/eXRs2bKj2+VZyu93629/+pnHjxqlv37668sor9eqrr2rdunVKTk7W66+/XuX42t4/AEDNSAAAAHxi0KBBkuR5AD6bRx55RG+//bbi4+N15513auzYsdq7d69+97vfafHixZL+PWZequhhMG3atGpd+x9++GGFhYXprrvuUp8+fdSuXbuzlllYWKhJkybp5MmTuuOOO9S3b199/vnnuvXWW7Vnz54LqbZHdHS0pk2bpsTEREkVyYHKB8GaHD9+XDfeeKPmzZunuLg43XnnnRoyZIi+++473XHHHfr444+rnbNx40ZNmTJFVqtVt99+uwYMGKB//vOfmjRpknJzc88b49///ndNmTJFmzdv1siRIzVlyhQNGzZM27dv1x/+8IcaH7Q//fRTPfTQQ2rVqpUmTZqkrl276vPPP9fdd98tp9PpOW7//v265ZZbtGLFCvXp00e33nqr8vLyNGnSJOXl5dXmI5Rpmvrtb3+rWbNmyTAM3XbbbUpKStKLL77oaRuny8rK0oQJEzRv3jy1a9dOd999t4YNG6avvvpKEyZM0M8//1zv+rz44ouaNWuWQkNDNXHiRN10003Kzs7Wc889d87JHEeNGuUZ95+UlKRp06apR48enof7mu7rZ599prKyshqHlNRk2rRp+v777zV+/HhdffXV2rZtm3796197rh0SEqKxY8eqpKSkylwUlSqPO1/Cwe126+OPP1ZQUJDGjBkjSbrhhhskqcb7IUlPPPGEXnrpJZWVlemWW27RkCFDNHfuXD377LPVjq3P/QMAnMEEAKABLV261ExKSjKffPLJcx5XUlJiJiUlmYMGDfJse+2118ykpCRzyZIlpmma5u7du82kpCTz8ccfr3Juenq62atXL3P06NFVticlJZmXXXZZlW1PPvmkmZSUZE6cONF0uVw17lu7dm2VayQlJZnTp0+vcvySJUvMpKQkc9KkSdXq+vLLL1er35l1MU3TnDRpkpmUlGSmpaWdc1tN17333nvNpKQk880336xSzrZt28x+/fqZvXv3No8dO2aapmkePnzYU48FCxZUOf6pp54yk5KSzDlz5lSL+XQOh8McNGiQOXToUDMnJ6fKvn/+859mUlKSedNNN3m2rV+/3lPmN99849nudrvNyZMnm0lJSeZnn33m2T5lyhQzKSnJXLZsmWeb0+k0H3/8cc91nE7nOWNcvny5mZSUZN57772m3W73bP/222/NlJSUap//gw8+aCYlJZmLFy+ucp0dO3aYffr0MUeMGOEpsy71KSwsNFNSUsw77rijynXz8vLMIUOGmP369TMdDkeV6z722GPVPrvTt5WVlZmDBg0yL7744ip1M03TvPXWW83evXub+fn55/x8KtvW6NGjzby8vCr17devnzlgwACzsLDQNE3T3Lp1q5mUlGTec889Va5RUFBg9unTx5wwYcI5yzLNis89KSnJfPDBBz3bMjIyzJSUFHPgwIFmaWlpleO/+uorz7/NoqIiz/bNmzebPXv2NJOSkszXXnvNs70u9w8AUDN6AAAAfCIoKEhSxdJ9Z2Oe6jp94MCBKm+sO3TooM8//1zLly+vdXljxoyRxVK7//aCgoL09NNPVzn+lltuUa9evbRhwwYdP3681uU2hMzMTH333Xfq2rWrHnzwwSr7evXqpXvvvVcOh0PLli2rsi86Olp33HFHlW2Vwwxq6pJ/OpfLpeeee04zZsxQXFxclX1DhgyRpBrf1CclJXnKkCTDMHTllVdWKTMrK0vr1q1Tr169qsx6b7PZ9Mwzz3jaxvlU3v8nnnhCISEhnu1XXHGFrr766irHZmdn65tvvvH0Njhdjx49dMMNN+jo0aNau3ZtnetjmqZM09Tx48d15MgRz7ExMTFaunSpvvvuu1rXqVJwcLCuu+46FRYW6ptvvvFsP3jwoDZv3qxRo0ZVWU3iXKZPn66YmJgq9Z04caKKioo81+7du7dSUlL0ww8/VFmSsi69DSrbX+Vbf0lKSEjQpZdeqpMnT+rzzz+v8fgnnnhCERERnu19+/bV9ddfX+XY+t4/AEBVrAIAAPCJ4uJiSaryi/+ZkpOTNXDgQP3000+64oordPHFF2vo0KG6/PLLlZKSUqfy6rLUX2JiYo2rCfTv31/bt2/Xjh071LZt2zqVfyEqx8UPHDiwxv2VywXu3LmzyvYOHTrIarVW2RYVFSVJVbqv1yQ0NFTXXHONJOno0aPat2+fjhw54nkAlSqSBGfq0qVLtW1nlrlz506ZpqnU1NRqx8bExKh79+7V6lKTHTt2KDw8XElJSdX2XXzxxfriiy88f9++fbtM05TD4ag2rlySMjIyPNe84oor6lSfqKgoXX/99Vq+fLlGjx6t1NRUDRs2TMOHD1ffvn1rnXg604QJE7Rw4UItX77cM4v+Rx99JKnmFSXOpqblJPv16yepor6VD+w33XSTXnrpJX366ae69957PeVVDhE4l/z8fP3jH/9QdHS0J0FSafz48Vq7dq0WLVpUJeHzr3/9S1artcZ2MHDgwCoJrfrePwBAVSQAAAA+Ufmm9HwP5nPmzNH8+fP16aefat26dVq3bp1mzZqlzp076w9/+EOtf9kPCwurdWytW7eucXtlsqKkpKTW12oIhYWFkv794HmmymTFmRO4nf5WvJJhGJJUZWK6s9m0aZP+8pe/6JdffpEkWSwWde7cWQMHDtTWrVtrvEZN672fWWZBQcE563P62+pzKSwsVExMjOf657rGyZMnJUm7d+/W7t27z3rNyuMq1aY+kvTSSy8pNTVVy5Yt0+bNm7Vp0ya98cYbSkhI0KOPPqrx48fXqk6nS0lJUa9evfT9998rJydHsbGx+uSTT5SQkKBhw4bV+jqtWrWqtq2mtnz99ddr5syZ+vjjj3XvvfcqLS1NmzZt0rhx4xQdHX3OMj755BM5HA45HA716dOnxmM2b96sXbt2eZJ3+fn5io2Nlc1W/dfRMxNw9b1/AICqSAAAAHyicvK/mt5Oni4sLEwPPvigHnzwQWVkZGj9+vX6+uuv9dVXX+m3v/2tVq1apfbt2zdobJUPqGeq7Bpd2fX6XA/TDZkkiIyMrFL+mSrjre2Dc20cP35c99xzj0zT1FNPPaVLL71UnTt3VmhoqMrKys46qVttVMZ5ts+5tp9dTEyMioqKZJpmtSTAmdeofOC9/fbb9V//9V91jPj8bDabJk2a5Jlgcf369fr222/12Wef6cknn1T79u3P29ZrcvPNN+v555/XqlWrdNFFF+n48eO6//7769SroLCwsNpwgTPbsiTFxsZq5MiR+uKLL7R3715PD4q6dP8fN25cjb16duzYoa1bt+qDDz7Qc889J6ninhQXF9d4/84cGtTY9w8AAgVzAAAAvM7hcHjWBj99vPCZNm/erD//+c+eLudt2rTR+PHj9cYbb+imm26S0+nUpk2bGjy+tLS0ag8gLpdLmzdvlsViUe/evSX9ex6DyuEMpzt06FCDxdOzZ09JFZ9HeXl5tf0//vijJNXYFb6+vvzyS5WUlOiee+7R1KlTlZKSotDQUEnS3r17JdWuF0FNevXqJavV6ulZcLqSkhLP9c+nd+/eKi0t1bZt26rt27JlS5W/9+jRQ1JFt/OarFy5Uq+++qp27dpVq7JPt3//fs2aNUurV6+WJMXFxenaa6/VX/7yF91///2SKlZkOJuaejBUGjdunEJCQvT11197xuuf3o2+NrZu3VptW2U8Z76tr5zpv7K8tm3b6tJLLz3n9bdv366dO3eqY8eOmjVrlp5//vlqP5Wz+q9YscLz76Xy/tX0mZ+5tGVj3j8ACCQkAAAAXlVWVqann35ahw4d0nXXXed5uK1JUVGR5s+fr9dff11ut9uz3TRNHT16VFLVIQRBQUE1PiDXJ8Y333yzyra5c+cqLS1No0aN8kyK161bN0nS2rVr5XA4PMdu2bKlyjrr51KZRDhX3G3atNHw4cN1+PBhvfXWW1X27dq1S3PnzlVwcLBnnHhDqHzYz87OrrL95MmT+u///u/zxnwucXFxuuqqq7Rnzx797W9/82w3TVMvv/xyrXsAVE4GN2PGjCoJm59//lkrV66scmy7du08SxieXqZUMcnkc889p7ffftvT26IuLBaL3n77bb3yyiuy2+1V9tVmqEtlF/iaPs8WLVpo1KhR2rBhgz7//HMNGDBAnTt3rlN8b775ZpW4Nm7cqE8++UTx8fEaMWJElWMvu+wytWnTRh9++KFnfoDz9TZYunSpJJ1zmENqaqpSUlJUXFysFStWSKqYWFOS/vrXv1YZvrJr165qPUwa8/4BQCBhCAAAoFHs3LmzymRdZWVlysjI0A8//KCcnBwNHjxYzz///DmvMXToUF155ZX69ttvdd1112no0KGyWq1av369du7cqTFjxngmM5Oktm3bKj09XX/4wx80aNCgeo27lioeuN9//31t27ZNqamp2r59u9atW6fExET9v//3/zzH9ejRQ/3799emTZt088036/LLL1dGRoa+/PJL9e/f3zPM4VwqJxN84YUXdMkll2jatGk1Hvf888/rzjvv1Jtvvqm1a9eqX79+yszM1DfffCO3260XXnihThMdns+IESMUExOjxYsXKyMjQ8nJycrOztY//vEPlZaWKjIyUoWFhSovL69xDPf5/Od//qe2bduml156SatXr1ZycrJ++eUX7d69W23atPFM6nYuI0eO1M0336ylS5fq+uuv14gRI5SXl6cvv/xSiYmJSktLq3L8Cy+8oDvvvFMvvfSSvvjiC/Xt21f5+flatWqVSkpK9Mwzz9RrOEmXLl10++2364MPPtCvfvUrjRgxQqGhodqyZYs2btyofv36afTo0Wc9v7INrFmzRjNmzNBVV11VZbjAzTffrJUrVyozM1MPPfRQnePLzc3VDTfcoJEjRyorK0tffPGFbDabZs6cWW2OA4vFovHjx2v27NmSzt/93+FwaOXKlTIM45y9eaSKhM3zzz+vRYsWaeLEibrmmms0evRoffnll7rhhht0+eWXKz8/X1999ZXCw8NVXFxcJfnQWPcPAAIJPQAAAI1i165deuONNzw/77zzjtavX6+ePXtqxowZmj9/vsLDw895DYvFoldffVWPP/64rFarPvroIy1atEiGYejpp5/WrFmzqhz/7LPPqlOnTvrkk088s6XXR8eOHTV//nw5nU4tXLhQe/bs0W233aYPP/xQ8fHxVY596623dNtttyk3N1cLFizQ/v379cILL+iee+6pVVn333+/+vfvr59//lkLFy4867KIiYmJWrZsmSZPnqzs7Gy99957+umnnzRy5Eh98MEHdZoVvjbi4+O1YMECjRgxQtu2bdPChQv1yy+/6PLLL9eyZct0zTXXyOl01nvZtYSEBC1evFi33Xab9u/frw8++EAWi0Xz5s1Tx44da32dF198Uc8++6wiIiL04YcfatOmTZo2bZr+4z/+o9qxlZ/hlClTlJWVpYULF2rNmjUaMGCA5s2bp7vvvrtedZEqEhrPPfecWrZsqZUrV+rdd99VXl6eHnroIc2fP/+cywC2bdtWjz32mEJDQ/Xuu+/qhx9+qLJ/6NChatmypcLCwvSrX/2qzrEtWLBAycnJWrx4sVavXq1hw4Zp0aJFnuUczzRu3DhJFfNzdOrU6ZzX/vrrr5Wfn6+BAwee9+H7uuuuU2hoqHbu3OkZojFr1iw98sgjkqRFixbp559/1q9//Wv95je/kaQq3xGNef8AIFAYZn0H8AEAAKDRHTt2TFdddZVuuOEG/fnPf2708pYvX67f//73+tOf/tTgiaXTZWRkKDw8vMYVBl555RXNnj1br776ar2SHgCAmtEDAAAAwE+ZpumZA+OOO+5o9PKKioo0d+5cxcTENOicEjWZN2+eBg4cqC+//LLK9uzsbH300UcKCgrSwIEDGzUGAAg0zAEAAADgZ7KzszV16lSdPHlSmZmZuuqqq5Samtpo5X399dd64403dOTIERUWFurpp5/2TATZWCZMmKDFixfrscce01VXXaWOHTsqJyfHM6zg6aefVqtWrRo1BgAINCQAAAAA/ExcXJzKyspUUFCgMWPGeFZeaCxt2rRRVlaWrFar7r//fk2ePLlRy5Mqlq1cunSp/u///k8bNmzQN998o8jISPXu3Vt33323rrjiikaPAQACDXMAAAAAAAAQAJgDAAAAAACAAEACAAAAAACAAOCXcwBkZ2frlVde0Zo1a1RYWKiUlBQ99NBDGjZs2HnPTU9P16xZs7RhwwbZ7Xb1799fjz76qHr37u055qmnnjrv+tALFizQ4MGDL7guAAAAAAD4A7+bA6C4uFgTJ05Uenq6Jk+erISEBC1ZskR79uzRnDlzNHz48LOem5mZqQkTJsjpdOquu+5SRESEFi5cqJycHC1atEgpKSmSpE2bNik9Pb3a+Xl5eZoxY4batm2rjz/+uMZ1aWvDNE253X71saIRWCwG9xleQ3uDN9He4C20NXgT7Q3e5O32ZrEYMgzjvMf5XQLgf//3f/Xyyy9r9uzZGjFihKSKpMD48eNlsVi0atWqs1bs2Wef1d///nctW7bM87CflZWlsWPHqnfv3po/f/45y77//vv1/fff64MPPlCfPn3qXQeXy63c3OJ6nw//Z7NZFBsboby8YpWXu30dDpo52hu8ifYGb6GtwZtob/AmX7S3uLgIWa3nH+Hvd3MALF++XJ06dfI8/EtSRESEbr31VqWlpWnLli01nudyubRixQoNHjzY8/AvSfHx8Ro7dqzWrVunzMzMs5a7YsUKrV69WlOmTLmgh38AAAAAAPyRXyUACgsLdeDAAaWmplbbV/lQfrYEwN69e1VSUnLWc03T1NatW2s81+Fw6JVXXlF8fLweeOCBC6gBAAAAAAD+ya8SAJmZmTJNU23btq22Lz4+XpJ09OjRs54rqV7nLlmyREePHtUDDzygiIiIesUOAAAAAIA/86tVAAoLCyVJYWFh1faFh4dLkkpLS+t8buW2ms41TVMLFy5UXFycbrrppvoFXgObza9yK2hgleNrajPOBrhQtDd4E+0N3kJbgzfR3uBN/tze/CoB4HZXTJBQ0yR/lXMVnm0CwHOdW8liqX4DfvjhB6WlpWnatGkKDQ2tc8w1l2MoNpaeBIEgOrp6wgloLLQ3eBPtDd5CW4M30d7gTf7Y3vwqAVDZ/d5ut1fbV/n2Pioqqt7nRkZGVtv35ZdfSpLGjh1bj4hr5nabKigoabDrwf9YrRZFR4epoKBULhczyaJx0d7gTbQ3eAttDd5Ee4M3+aK9RUeH1arHgV8lANq3by9JNc7Wn5WVJanmMf4Xcu63336r5ORkde3atX5BnwXLiwQGl8vNvYbX0N7gTbQ3eAttDd5Ee4M3+WN786tBCZGRkercuXONs/VXbqtpln9J6tKliyIiIs55bt++fatsP3z4sDIyMjRs2LALDR0AAAAAAL/mVwkASRo3bpz27dunNWvWeLYVFxdryZIl6tatm2c5wDMFBwdr9OjRWrt2rfbs2ePZnpWVpZUrV+qyyy5TXFxclXN27NghSWe9JgAAAAAAzYVfDQGQpKlTp2r58uWaPn26pkyZotatW2vJkiU6duyY5syZ45nkb9OmTUpPT9ewYcPUqlUrSdLDDz+s1atXa/LkyZo6dapCQkK0cOFCuVwuPfHEE9XKSktLkyQlJiZ6rX4AAAAAAPiC3/UAiIyM1HvvvaerrrpK7733nmbOnKmwsDDNnTtXQ4cO9Ry3ePFi/f73v9f+/fs929q1a6f3339fffv21ezZs/XGG2+oU6dOevfdd5WcnFytrNzcXElnn1gQAAAAAIDmwjAr19dDg3G53MrNLfZ1GGhENptFsbERyssr9ruJPdD80N7gTbQ3eAttDd5Ee4M3+aK9xcVF1GoVAL/rAQAAAAAAABoeCQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAIACQAAAAAAAAKAzdcBAACaJ8MwvFqeaZpeLQ8AAKCpIQEAAGhwLkl2u9OrZYaG2GT1aokAAABNCwkAAECDMgxDdrtTO9Jy5Sx3e6XMIJtFPTvHKTI0iJ4AAAAAZ0ECAADQKJzlbjmcLl+HAQAAgFOYBBAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABAAgAAAAAAgABg83UAAADvMAzDS+V4pRgAAADUEQkAAAgALkl2u9MrZVkshtxeKQkAAAB1QQIAAJo5wzBktzu1Iy1XzvLGfzQPD7WpU9toGaIrAAAAgD8hAQAAAcJZ7pbD6Wr0coKDmF4GAADAH/FbGgAAAAAAAYAEAAAAAAAAAYAEAAAAAAAAAYAEAAAAAAAAAYBJAAFAFTPle4tpml4rCwAAAKhEAgBAwHNJstudXisvNMQmq9dKAwAAACqQAAAQ0AzDkN3u1I60XDnL3Y1eXpDNop6d4xQZGkRPAAAAAHgVCQAAkOQsd8vhdPk6DAAAAKDRMAkgAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABgAQAAAAAAAABwC8TANnZ2XrmmWd02WWXqV+/fpo4caLWrl1bq3PT09M1ffp0XXrpperfv7/uuecebdu2rcZjd+3apfvvv18DBw7UwIEDddddd+nnn39uyKoAAAAAAOAX/C4BUFxcrKlTp+rTTz/VjTfeqCeeeEKlpaW677779P3335/z3MzMTN1555368ccfNWnSJE2fPl2HDh3SpEmTtGvXrirHbtq0SR+i31cAACAASURBVBMnTtTu3bv1m9/8Rg888ICOHj2qyZMna9OmTY1ZRQAAAAAAvM7m6wDO9O6772rPnj2aPXu2RowYIUkaP368xo8frxdeeEGrVq2SYRg1nvvmm28qJydHy5YtU0pKiiTp2muv1dixYzVjxgzNnz9fkmSapp555hmFh4dr0aJFSkhIkCSNHTtWo0eP1uuvv6558+Z5obYAAAAAAHiH3/UAWL58uTp16uR5+JekiIgI3XrrrUpLS9OWLVtqPM/lcmnFihUaPHiw5+FfkuLj4zV27FitW7dOmZmZkqSNGzdq//79uu+++zwP/5KUkJCgJ598UsOHD2+k2gEAAAAA4Bt+lQAoLCzUgQMHlJqaWm1fnz59JOmsCYC9e/eqpKTkrOeapqmtW7dKkjZs2CBJuvzyyyVJbrdbJSUlkqQ77rhD99xzz4VXBgAAAAAAP+JXCYDMzEyZpqm2bdtW2xcfHy9JOnr06FnPlVSrcw8cOCBJCgkJ0WOPPaZ+/fqpf//+Gj16tL744osLrwgAAAAAAH7Gr+YAKCwslCSFhYVV2xceHi5JKi0trfO5ldsqzy0oKJBhGLrvvvvUrl07vfTSS7Lb7Zo7d66mT5+ul19+Wddee+0F1cVm86vcChqY1Wqp8ieaLsOQDIsh66mfxma1GDIshmw2Q6ZZu/IutL15u44Ww5BhGLJYJaur8cuT6ve5omZ8v8FbaGvwJtobvMmf25tfJQDcbrck1TjJn2maZ913vnMrWSwVN8DpdMo0TcXHx2vevHmec66++mqNHj1af/7zn3XNNdd4jq8ri8VQbGxEvc5F0xIdXT3hhKbH4S5RWFiwbEHuRi8ryGZRWGiwYmLC63zuhbQ3b9YxLNQmm82qsNBg2WyNX550YZ8rasb3G7yFtgZvor3Bm/yxvflVAiAiouKh2W63V9tX+fY+Kiqq3udGRkZK+nePgNtvv71KwqBFixYaM2aMFi9erAMHDqh79+71qofbbaqgoKRe56JpsFotio4OU0FBqVwu7zzgoHEYhlRqd6q01CGH09Xo5QUHWVVqdyg/39SpvOZ5XWh783YdDdOt8nKXSu0OORyNX55Uv88VNeP7Dd5CW4M30d7gTb5ob9HRYbXqceBXCYD27dtL+vd4/tNlZWVJqnmMf13PbdOmjSSpZcuW1Y5t1aqVJKmoqKhOsZ+pvJwvlkDgcrm5102cYRgy3aZcp34am8ttynSbKi83PT2ban1uPdubt+voNivq5nbJK+VJF/a5omZ8v8FbaGvwJtobvMkf25tfDUqIjIxU586dPbP1n65yW02z/EtSly5dFBERcc5z+/btW+Uae/furXbsoUOHJEmJiYn1qAEAAAAAAP7JrxIAkjRu3Djt27dPa9as8WwrLi7WkiVL1K1bN89ygGcKDg7W6NGjtXbtWu3Zs8ezPSsrSytXrtRll12muLg4SdKoUaMUGRmpd955p8qb/vT0dH311VcaOHCgWrdu3Ug1BAAAAADA+/xqCIAkTZ06VcuXL9f06dM1ZcoUtW7dWkuWLNGxY8c0Z84cz5j9TZs2KT09XcOGDfN023/44Ye1evVqTZ48WVOnTlVISIgWLlwol8ulJ554wlNGVFSU/vjHP+rJJ5/UhAkTNHHiRNntdi1YsEBWq1X/+Z//6ZO6AwAAAADQWPwuARAZGan33ntPM2fO1HvvvSen06mUlBTNnTtXQ4YM8Ry3ePFiffTRR1qwYIEnAdCuXTu9//77mjlzpmbPni2r1arU1FS99tprSk5OrlLO9ddfr9atW+utt97S//zP/8hms+mSSy7R7373OyUlJXm1zgAAAAAANDbDZLakBudyuZWbW+zrMNCIbDaLYmMjlJdX7HcTe6BuDMNQkd2pLfuyvbYKQN/urRQZGlTryeoutL15u46R4UHq1j5Guw7mqcxZ3ujlSfX7XFEzvt/gLbQ1eBPtDd7ki/YWFxdRq1UA/G4OAAAAAAAA0PBIAAAAAAAAEABIAAAAAAAAEAD8bhJAAADqwzAqfiTDK+Ux1wAAAGhqSAAAAJo8q9WQxWJRYWm5JO88mIeG2GT1SkkAAAANgwQAAKDJs1oMlTrKtf/wSTnKG3+lgyCbRT07x7HqAAAAaFJIAAAAmg1nudsrSx0CAAA0RSQAACCAuU1TZQ6Xypwuz58Op1sutym325TbrPhTRsVbdothyGoxZLNZFBZsU2iIVaHBVoUEWWUY3hl7DwAAgPohAQAAAaDE7tSx7GJl5pboZLFDxaVOFZU6VVzqlLsBerBbLIZaRAQrNipECXFhcpabXumKDwAAgNojAQAAzVBugV3bDuZq28FcpR0vUPZJ+1mPNSQFB1kVEmQ59ae1YlI9w5DFUvFjnuoJ4HabcrlNOcvdsjtcKnWUy+F0y+02lVdYprzCMh04VqB12zJlMQwlxIUpsXWE2reOVHREsPc+AAAAAFRDAgAAmon0zEKt356prQdzdPREcbX9UeFBio0KUUxkiKLCgxQZVvETFmqT5QK677vcpopLncovKlN+kUOFJQ7lFzqUU2DX8ZwSHc8p0cZdJ9QyOlQ9u8SqU0KULBaGCwAAAHgbCQAAaMJK7OX6cWem1mw5pkMZhZ7thiF1bRetPl1aKqljjFq2CNPeI/mNMkGe1WIoOiJY0RHB6pggRYYHqVv7GK3fmqGDx07qyIliZeaVKKfAru+2HNcvoSfUo3OsLmofoyCbpcHjAQAAQM1IAABAE5RXWKaV69L0/b+Oy1HullTxIN4/qbUuSW5dsURdWJAkyTAMFdmdXo8xJjJEPbvEqWeXONkd5dqdnq/d6fkqtpdr464T2ro/V4N6xqtzmygmEAQAAPACEgAA0IQUljj0+fp0ffPLETlPPfgntorQZaltdWnvNooK989x9qHBNvXt3kq9usTpwLECbT+Yq8ISp77bclxpxws1uGeCwkP5LwkAAKAx8dsWADQB5S63Pvn+oD79IU12R0U3/u6JLXTjZV2U0im2ybxBt1ktSuoQo26JLbTtQI627s/R4awiZeSWaGBKvLolRjeZugAAADQ1JAAAwM8dySrS3Hd+0v4jJyVJHeMjddMVXdWna8sm+7BstRjq272VOiZE6YetGcopsOuHbRnKPlmqQT0TLmhSQgAAANSMBAAA+CmX261VP6Zr+fcHVe4yFRFq0x2jkjS4V/N5QI6NCtGvhnTU9oO52rQ3W3sOn5Td4dLw1LayWZkgEAAAoCGRAAAAP5RbYNdbH2/TgWMFkqRBPdto0tUXeSb2a04sFkN9urVUdESwvttyXOmZRfp64xGNGJCokCCrr8MDAABoNkgAAICfScso0Gt//5fyixwKC7Fp0ugkXXdFd+Xnl6j81MR/zVGnNlEKCbZq9S9HlZVXqi9+TNeoS9orPLT5JT0AAAB8gf6VAOBHftlzQn9+7xflFzmU2CpCz00dqMv6tmuyY/3rqk1cuK4Z3FFhITblFzn09cYjcpS7fB0WAABAs0ACAAD8gGmaWvVjut5ctlUOp1u9usTp6UkXq1VMmK9D87rYqBD9anBHhYVYlV/k0Hebj8vtNn0dFgAAQJNHAgAAfMw0TS395wEtWb1PpqQR/RP1yC2pCg8N3FFakeFBGjGgvawWQ0ezi7VxV5avQwIAAGjySAAAgI99uu6QPlt/SJJ028jumjQ6SVYLX8+tWoRqeGpbSdKu9HztPJTn44gAAACaNn7DBAAf+uqnw/pozQFJ0q0jumvMoI4BM96/Njq1idKApFaSpI07s3TkRJGPIwIAAGi6SAAAgI+s2XJMH3yzV5J0w/AuumZwRx9H5J96dYlT98QWMiV9/6/jKi0r93VIAAAATRIJAADwgZ92Zupvn++SJI0Z1EHXD+vs24D8mGEYGtwrQXHRIXI43Vq3LUOmyaSAAAAAdUUCAAC87MiJIv3fpztkSrqyf6JuHdGdbv/nYbUYGtanrSyGoSMninXgWIGvQwIAAGhySAAAgBeVOVyau2KHHOVu9e4Sp0lXJ/HwX0uxUSHqe1FLSdKGnVkqtjt9HBEAAEDTQgIAALzENE19u+mosk/a1apFqH59fS9ZLDz810WvznFq1SJUznK3ftjKUAAAAIC6IAEAAF6yZV+ODmcVKchq0bSbUhUZFuTrkJoci8XQsD5tZLUYOp5Tor1HTvo6JAAAgCaDBAAAeMGRrCL9a3+OJOm2q7qrU5soH0fUdLWIDFH/i04tDbgrSyV2VgUAAACoDRIAANDISsvK9f3W45KkHp1jNbhXGx9H1PSldI5VqxahKneZ2rIv29fhAAAANAkkAACgEZmmqfXbM+VwuhUXHaIhPPw3CIth6JKU1pKkfUdOKuek3ccRAQAA+D8SAADQiNIyCnU4q0iGIc/YdTSM+NhwdUyIlClp3bYMX4cDAADg90gAAEAjsTvKtWFHliSpT9eWio0K9XFEzc+ApNayGFJ6ZpF2p+f5OhwAAAC/RgIAABrJjzuyVOZ0KTYqRH26tfR1OM1SdESwkjvGSpJWfH9QbpYFBAAAOCsSAADQCA5lFOpQRqEMQxram67/jalPt5YKCbLoeHaJ9h7O93U4AAAAfosEAAA0sDKnSz/uyJQk9e4Sp5Yt6PrfmEKDrbo4JV6StHF3lpzlbh9HBAAA4J9IAABAA9u6P0d2h0stIoKV2p2u/97Qp2uc4qJDVGIv1x56AQAAANSIBAAANKCCYod2HaqYjG5gj3hZLXzNeoPVatGogR0kSTvS8uRy0wsAAADgTPxmCgAN6Jc9J+Q2pcRWEWrXKsLX4QSUi1PiFRFqU2lZufYfLfB1OAAAAH6HBAAANJDM3BKlZxbJkHRxcmtfhxNwbFaL+nStGHKx/WAuKwIAAACcgQQAADQA0zS1cVeWJOmiDi0UExXi44gCU0qnWAUHWVRY4tShjEJfhwMAAOBXSAAAQAM4cKxAOQVlCrJa1Ld7K1+HE7CCbFb16BQrSdp2IFcmvQAAAAA8SAAAwAUqd7m1aU+2JKlPtziFhdh8HFFgS+kYK5vVUF5hmY5lF/s6HAAAAL9BAgAALtDOQ3kqKStXRKjN8/YZvhMSbFVShxhJ0tYDuT6OBgAAwH+QAACAC+Asd2vHwYpl//pd1EpWK1+r/qBn51hZDCkrr1RZeSW+DgcAAMAv8JsqAFyAvUfyVeZ0KTIsSF3aRvs6HJwSHhqkroktJEk70vJ8HA0AAIB/IAEAAPXkcrm1/WBFF/M+XeNksRg+jginqxyOcTirSCV2p4+jAQAA8D0SAABQT3uPnlRpmUvhoTbP22b4j9ioECXEhsk0pT2HT/o6HAAAAJ8jAQAA9eBym9p+aoK53l3iZOXtv19K6lgxGeDeI/lyu1kSEAAABDYSAABQDweOnVSxvVxhIVZ1b8/bf3/VMSFKocFWlZa5dDiryNfhAAAA+BQJAACoI7fb1LZTb/97dY6TjZn//ZbVYuiiUwma3en5Po4GAADAt/itFQDqKC2jQIUlToUEWXXRqfXm4b8u6hAjQ1JGbonyi8p8HQ4AAIDPkAAAgDowTVPbD1YsK9ezc6yCbHyN+rvIsCAlxkdKkvYcphcAAAAIXPzmCgB1kJlXqrzCMtmshmeCOfi/5FM9NfYfLZCz3O3jaAAAAHyDBAAA1MGuQxVv/7u0jVZIkNXH0aC22rUKV1R4kJzlbh08XuDrcAAAAHyCBAAA1FJxqdMzk3xKp1gfR4O6MAxDSad6ATAMAAAABCoSAABQS7sP58s0pYS4MMVGhfg6HNRRt8RoWQwpt6BMeYVMBggAAAIPCQAAqAWXy629h09KklI68va/KQoNtimxdcVkgPuPnvRxNAAAAN5HAgAAauHg8UKVOV0KD7Wpw6kZ5dH0dEuMliQdPF4gt9v0cTQAAADeRQIAAM7DNE3tSq+Y/C+lY4wsFsPHEaG+EltHKiTIqtIyl47nFPs6HAAAAK8iAQAA53Ei367cgjJZLYa6t2fpv6bMajHUpW2UpIolAQEAAAIJCQAAOI/Tl/4LDWbpv6auW2ILSVJ6VpEcTpePowEAAPAeEgAAcA52R7kOZRZKkpI78fa/OYiLDlFMZLDcblNpGYW+DgcAAMBrSAAAwDkcOFYg05RaRoeqZXSor8NBAzAMw9MLgNUAAABAICEBAABnYZqmZ5x4t/bRPo4GDalL22gZqpjfoaDY4etwAAAAvIIEAACcRW5BmfIKy2SxGOrSlgRAcxIealO7VhGSpP3HmAwQAAAEBhIAAHAW+051D+8YX7F0HJqXrokVSZ0DR0/KNE0fRwMAAND4SAAAQA1cLrcOHj/V/f/UeHE0Lx3jIxVks6jYXq6s/FJfhwMAANDoSAAAQA0OZxXJ4XQrPNSmtq3CfR0OGoHValHH+EhJUtpxVgMAAADNHwkAAKjBvsrJ/9pFy2IYPo4GjaVz2yhJ0qGMQrndDAMAAADNm83XAdQkOztbr7zyitasWaPCwkKlpKTooYce0rBhw857bnp6umbNmqUNGzbIbrerf//+evTRR9W7d+8qxx05ckRXXXVVjdcYPny45s6d2yB1AdD0lNidOp5dLInu/81d25YRCg6yyO5wKTOvRG1bRvg6JAAAgEbjdwmA4uJiTZ06Venp6Zo8ebISEhK0ZMkS3XfffZozZ46GDx9+1nMzMzN15513yul06q677lJERIQWLlyoSZMmadGiRUpJSfEcu3v3bknSb37zG3Xr1q3KdeLj4xuncgCahP1HC2RKio8NU3REsK/DQSOyWAx1SojS3iMnlXa8kAQAAABo1vwuAfDuu+9qz549mj17tkaMGCFJGj9+vMaPH68XXnhBq1atknGW7rhvvvmmcnJytGzZMs/D/rXXXquxY8dqxowZmj9/vufYygTAxIkT1a5du0auFYCmwjRNz+z/vP0PDJ3bViQADmUWanDPBFksDPkAAADNk9/NAbB8+XJ16tTJ8/AvSREREbr11luVlpamLVu21Hiey+XSihUrNHjw4Cpv+uPj4zV27FitW7dOmZmZnu27d+9WREQED/8Aqsg+aVdhiVM2q6HObaJ8HQ68ICEuXKHBVjmcbh3PKfZ1OAAAAI3GrxIAhYWFOnDggFJTU6vt69OnjySdNQGwd+9elZSUnPVc0zS1detWz7bdu3froosukiS53W6VlrIEFIB/zwbf4dQScWj+LIahTqeSPQdZDQAAADRjfvXbbWZmpkzTVNu2bavtqxyXf/To0bOeK6lW55aVlSk9PV1ut1v33nuv+vbtq379+ulXv/qVPvvsswapC4Cmx22aSsuomP2/c9toH0cDb6pcDeBwZpFcLrePowEAAGgcfjUHQGFhxZuXsLCwavvCwyvW4T7bm/pznVu5rfLcPXv2yOVyadeuXZo8ebLuvPNOZWZm6p133tHvfvc7nTx5UrfffvsF1cXGm8NmzWq1VPkTTZdhSIbFkNViKCffrtIyl4JtFnVoHSFrI4wFt1oMGRZDNpsh06zd9S+0vZ1ex8ao05kshiHDMGSxSlaXd8bTX2iZbePCFR5qU4m9XMdzSjw9As6mPvexqeD7Dd5CW4M30d7gTf7c3vwqAeB2V7x1qWmSP9M0z7rvfOdWslgqbkBMTIymT5+u/v3769JLL/Xsv+666zRu3DjNnDlT1113nSIjI+tVD4vFUGwsM0kHgujo6gknND0Od4nCwoJ1+ETF+O+u7VsoKqpx7m2QzaKw0GDFxITX+dwLaW+VdbQFNf7b7bBQm2w2q8JCg2WzeedtekOUeVGHWG3Ze0LpWcXq0bXVOY+9kPvYVPD9Bm+hrcGbaG/wJn9sb36VAIiIqHhottvt1fZVvr2Piqr5rUxtzq18oO/QoYMefPDBasdFRkbqxhtv1FtvvaV//etfGjp0aD1qIbndpgoKSup1LpoGq9Wi6OgwFRSU0l24iTMMqdTuVHFxmfYdyZckdWwdoZKSskYpLzjIqlK7Q/n5pk7lNc/rQttbZR1LSx1yOF11Pr/O5ZlulZe7VGp3yOFo/PIaqswOrcO1Za+UdvykThaUnnMOiPrcx6aC7zd4C20N3kR7gzf5or1FR4fVqseBXyUA2rdvL0lVZuuvlJWVJanmMf4Xeu7pWrWqeOtTXHxhM0GXl/PFEghcLjf3uokzDEOm29ThE0WyO1wKCbIqPjZcLnfjPNW53KZMt6nyctPTs6nW59azvVXW0XXqp7G5zYq6uV3ySnkNVWZsVIgiw4JUVOpUembhOeeBuJD72FTw/QZvoa3Bm2hv8CZ/bG9+NSghMjJSnTt3rjJbf6XKbTXN8i9JXbp0UURExDnP7du3ryTpnXfe0ahRo7R58+Zqx+7fv19SRS8BAIHjwLGKyf86tYlkHfgAZZy2GkB6ZpGPowEAAGh4fpUAkKRx48Zp3759WrNmjWdbcXGxlixZom7dunmWAzxTcHCwRo8erbVr12rPnj2e7VlZWVq5cqUuu+wyxcXFSZI6d+6sw4cP629/+1uVa6SlpWnZsmVKSUlRSkpKI9QOgD8qd7mVdvzU7P9tmP0/kHVMqBgqduQEqwEAAIDmx6+GAEjS1KlTtXz5ck2fPl1TpkxR69attWTJEh07dkxz5szxTPK3adMmpaena9iwYZ5u+w8//LBWr16tyZMna+rUqQoJCdHChQvlcrn0xBNPeMq48sorNWbMGH322WcqKirSiBEjlJmZqffff182m01/+tOffFJ3AL6x61CeHE63wkKsio/zv8la4D2tWoR6VgM4llOiDvH1mwwWAADAH/ldAiAyMlLvvfeeZs6cqffee09Op1MpKSmaO3euhgwZ4jlu8eLF+uijj7RgwQJPAqBdu3Z6//33NXPmTM2ePVtWq1Wpqal67bXXlJycXKWcv/71r0pOTtYnn3yil156SRERERo+fLgefvhhdenSxat1BuBbv+w+IUnqlBAlyzlWEkHzZxiGOsZHald6vtIzCkkAAACAZsUwm+vsRT7kcrmVm3thkwjCv9lsFsXGRigvr9jvJvZA3TjL3Zr+2neyO1y6ZnBHxcc2bg+A4CCr+nZvpcjQoFpPHneh7c0wDBXZndqyL9srqwBEhgepW/sY7TqYpzJneaOX19BlZuSW6MsNhxUcZNGtI7rXOCdEfe5jU8H3G7yFtgZvor3Bm3zR3uLiImq1CoDfzQEAAN609UCO7A6XIkJtah0T6utw4AfiY8MUGmyVw+lWRi5LugIAgOaDBACAgPbzqe7/XdpFe+YYQWCzGIan6396ZqGPowEAAGg4JAAABKxyl1tb9mdLYvZ/VNUx4d/LAbqbWRd/AAAQuEgAAAhYew7nq8RersiwIGb/RxVtWoYryGaR3eHSifxSX4cDAADQIEgAAAhYm/ZUvP3v060ls/+jCqvltGEAGUU+jgYAAKBhkAAAEJBM09SmfRXj//t0benjaOCPOib8ex6A5jbTPwAACEwkAAAEpPTMIuUWlCk4yKLkTjG+Dgd+qF2rCNmshort5cotKPN1OAAAABeMBACAgPTLnn+//Q+2WX0cDfyRzWpRu1YRkqRDrAYAAACaARIAAALSpr0VCYABF7X2cSTwZ5WrARzJYh4AAADQ9JEAABBwsvJLdeREsSyGodTurXwdDvxYYusIGYaUX+RQYYnD1+EAAABcEBIAAALO5lPd/5M6tFBkWJCPo4E/CwmyKiE2XJJ0mF4AAACgiSMBACDg/LK3Yvm//kl0/8f5VS4HeDiTBAAAAGjaSAAACCgFJQ7tPZIvSep/Ed3/cX7t4ysmAszKL5Xd4fJxNAAAAPVHAgBAQNmyL1umWbHGe6sWYb4OB01AVHiwYiKDZZrS0RP0AgAAAE0XCQAAAWVzZfd/Zv9HHXRgNQAAANAMkAAAEDCc5W7tSMuTJPVj9n/UQYdTwwCOZhfL5Xb7OBoAAID6IQEAIGDsPZKvMqdLLSKC1SEh0tfhoAlpGR2qsBCbyl2mMnJKfR0OAABAvZAAABAw/rU/R5LUu2ucLIbh42jQlBiG4ekFcDir0MfRAAAA1A8JAAABY+uBigRAaje6/6PuPMsBZhXLNE0fRwMAAFB3JAAABIQT+aU6nlMii2GoV+dYX4eDJqhNXLhsVkOlZeXKPmn3dTgAAAB1RgIAQECofPvfPTFa4aFBPo4GTZHValG7VhXDANIzGAYAAACaHhIAAALC1lPj//t0a+njSNCUVQ4DOJRJAgAAADQ9Nl8HAABnMhp4gj5nuUs7D1Us/5farVWV6zMXIOoisXWkDEm5BWXKOWlXJL1JAABAE0ICAIBfcUmy250Nes2dh3LlKHerRUSwYqNDVHTa9S0WQ6zqjtoKDbYqPjZMmXml2nogR50SonwdEgAAQK2RAADgNwzDkN3u1I60XDnLG+6xfN22DElSm5bhnqUAK4WH2tSpbbQM0RUAtdMhPrIiAbA/R+Mu7ezrcAAAAGqNBAAAv+Msd8vhdDXY9dJPjdduExde7brBQUyFgrppHx+pjbtPaN/RkyqxOxUWwn+lAACgaeA3XwDNWkGxQ4UlThmG1LZVuK/DQTMQHRGsmMgQud1mtR4lAAAA/owEAIBm7Wh2sSQpPjZMwTarj6NBc9GpTcVqAJv2nvBxJAAAALVHAgBAs3bsREUCILF1pI8jQXPSqU3F5H9bD+So3MU0kgAAoGkgAQCg2XK53MrILZEkJbaK8HE0aE5ax4QpKjxIpWUu7U7P93U4AAAAtUICAECzlZVfKpfbVFiITTGRwb4OB82IYRjq3bWlJIYBAACApoMEAIBm61h2xdv/ti3DZRgs84eG1ef/s3fn0W2Vd/7HP1ebJe/7EpLYjhOyQLZCISFAobR0IGkJtEOhpIRQOivLaTkMnaGn8+vQllDoMIe2TFq2lp20DU2h2+kShiaEPYSsxE7iOLET77sla7u/P2QZgp3EtmRfWXq/zvFpI+nq+cq6yNJHz/d5BgKAd2taZJqmxdUAlPdbqgAAIABJREFUAACcGgEAgKR1tDXS/z+F1f8xDmaX58rlsKmtq191jT1WlwMAAHBKBAAAkpLPH1RbV78kqTSf/n/En8th1xmV+ZIiswAAAAASHQEAgKR0rDUy/T8306V0t8PiapCsFp9eJIl1AAAAwORAAAAgKTW0Rvv/+fYf42dhVaEMSXWNPWrr8lldDgAAwEkRAABIOqZp6mhLpP+/jP5/jKPsDJeqpuZIkrZV0wYAAAASGwEAgKTT3RdQry8omyGV5BEAYHwtnlUoiXUAAABA4iMAAJB0oqv/F+V65HTwMofxtWhmJADYe6hdfb6gxdUAAACcGO+MASSdo9H+/0L6/zH+ygoyVJqfrlDY1M6DrVaXAwAAcEIEAACSStg0B3cAKCtg+j8mxqJoGwDrAAAAgARGAAAgqbR2+uQPhuV02FSQ7ba6HKSI6DoA7+1vVTAUtrgaAACA4REAAEgqRz/07b/NZlhcDVJF1ZQcZaU71dcfVPXhDqvLAQAAGBYBAICkMrj9H9P/MYFsNkMLqyKzALaxGwAAAEhQBAAAkkYgGFZzh1dSZGE2YCJ9eB0A0zQtrgYAAGAoAgAASaOp3auwKWW4HcpKd1pdDlLMGRX5cjpsaun0qb651+pyAAAAhiAAAJA0jrVF+v9LC9JlGPT/Y2KlueyaV54nSdpW3WxxNQAAAEMRAABIGo3RACCf/n9YY/HpRZKkd1kHAAAAJCACAABJwR8MqbXLJ0kqIQCARRZWFciQdPBot9q7+60uBwAA4DgEAACSQlO7V6YpZXqcyvTQ/w9r5GSmacaUbEnSdmYBAACABEMAACApHGv9oP8fsFJ0N4Bt1QQAAAAgsRAAAEgKH/T/eyyuBKlu0azIOgB7DrXJ5w9aXA0AAMAHCAAATHr+QEhtXZF+axYAhNWmFKSrONejYMjUzgNtVpcDAAAwiAAAwKTX2O6VKSkr3al0N/3/sJZhGINtAOwGAAAAEgkBAIBJb7D/n2//kSAWDwQA22taFAqHLa4GAAAgggAAwKTX2E4AgMQyc2qOMtwO9fqCqjnSaXU5AAAAkggAAExy/f4P+v9LCACQIOw2mxZUsRsAAABILAQAACa16Lf/ORkupbsdFlcDfCDaBvBudYtM07S4GgAAAAIAAJNcY5tXklTC9n9IMGdU5sthN9TU4VXDwDoVAAAAViIAADCpHWuj/x+JyZPm0NzyfEnSu9XNFlcDAABAAABgEvP5g2rvpv8fiWvRh9oAAAAArEYAAGDSik7/z8l0yZNG/z8Sz6KZkQDgQEOXOnv6La4GAACkOgIAAJMW2/8h0eVlpamiNEumpO37W60uBwAApDgCAACTVnQGQHEeCwAicUV3A3hnH+sAAAAAaxEAAJiU/IHQB/3/ecwAQOL62OxiSdLu2jZ5+4MWVwMAAFIZAQCASam5I/Ltf1a6U+lu+v+RuKYUpKs0P13BkKn3aAMAAAAWIgAAMCkx/R+ThWEYOmt2kSTpbdoAAACAhQgAAExKje2RAIDp/5gMPnZ6JADYsb9V/kDI4moAAECqIgAAMOkEQ2G1dg4EAPnMAEDiqyjNUn52mvoDIe2qbbO6HAAAkKIIAABMOi2dPoVNyZNmV6bHaXU5wCkZhjE4C+Cd92kDAAAA1iAAADDpNLX1SYpM/zcMw+JqgJE5ayAAeLemRcFQ2OJqAABAKiIAADDpRPv/WQAQk8msqbnKSneq1xfU+4c7rC4HAACkoIQMAFpaWnTXXXfpggsu0KJFi3TNNddoy5YtIzq2rq5Ot912m5YuXarFixfrxhtv1M6dO0953C9/+UvNnj1bGzZsiLV8AOMoHDYHtwAsyWcBQEweNpuhxbMKJdEGAAAArJFwAUBvb6/WrFmjl156SVdeeaXuuOMOeb1e3XTTTdq8efNJj21sbNR1112n119/XatWrdJtt92mQ4cOadWqVdq7d+8Jjzt8+LC+973vxfuhABgHbd0+BUOmXE6bcjNdVpcDjMrHTi+WJL2zr1lh07S4GgAAkGocVhfwUU899ZT27dundevW6eKLL5YkrVy5UitXrtTdd9+tP/zhDyfs+f3xj3+s1tZWbdiwQXPmzJEkXX755Vq+fLnuvfdePf7440OOCYfDuvPOOxUIBMbvQQGIm8a2gen/uR76/zHpzC3PkyfNrs5evw7Ud2nm1ByrSwIAACkk4WYAbNy4UeXl5YMf/iUpIyNDV199tWpra7V9+/ZhjwuFQnrxxRd17rnnDn74l6Ti4mItX75cW7duVWNj45DjHn74Ye3atUv/+I//GP8HAyDumqL9/0z/xyTkdNi0sCrSBvD2viaLqwEAAKkmoQKA7u5uHThwQAsWLBhy3fz58yXphAFAdXW1+vr6TnisaZrasWPHcZfv3r1bP/zhD3X77bersrIyDo8AwHgyTXMwAChhAUBMUtHtAN9+v1kmbQAAAGACJVQA0NjYKNM0VVZWNuS64uJI32R9ff0Jj5U04mP7+/t1xx136Oyzz9aXv/zlmGsHMP46e/zqD4TksBsqyHZbXQ4wJvOrCuRy2tTS6VPtsW6rywEAACkkodYA6O6OvBHyeIZ+s5eeHpnu6/V6R31s9LIPH3v//fersbFRjzzyyLj0ETscCZWtIM7sdttx/4v4MAzJsBmyD/x8VHT1/6Jcj5xx+m/MZhgyDEM2u2QPjf+aAnabIcNmyOEwZJojGy/W8+1Uv9d4m+jfqRVjjuV5jHI4bFo8q0iv727UW+83a9a03HGqcmx4fcNE4VzDROJ8w0RK5PMtoQKAcDgsScN+II9OkzzRh/WTHRtls0WegK1bt+rJJ5/U2rVrh50xECubzVBeXkbc7xeJJzubaejx5g/3yeNxyeEMD7mupatfkjS1JEvp6WlxGc/jdsjhsMvjdsnhGDpmvDkdNnncLuXmjn4Ng1jOt5P9XuNton+nVozpdNiUPsbnUZI++fHpen13o95+v0n//IWFCbmgJa9vmCica5hInG+YSIl4viVUAJCREfnQ7PP5hlwX/fY+KytrzMdmZmaqq6tL3/jGN7R06VJdeOGFamtrkxTZflCS+vr61NbWpqysLDmdzjE9jnDYVFdX35iOxeRgt9uUne1RV5dXodDEfMBJBYYheX0Beb1++QOhIdc3NPdIkvIzXerr64/PmGZYwWBIXp9ffv/QMePN5bTL6/Oro8PUSNu/Yz3fTvV7jbeJ/p1aMaYnzSGfP6C6ox0jfh4/rCgnTS6nTU3tXr3yzmFVlGWP6Lj0NIcc4zyLg9c3TBTONUwkzjdMJCvOt+xsz4hmHCRUADB16lRJGna1/qamyGrJJ/rGfqTH7tmzR8eOHdOxY8e0dOnSIbe9++67dffdd+uJJ57QueeeO7YHIikY5IUlFYRCYZ7rODIMQ2bYVGjg58N6fQH1+oIyDCk/2z3k+rEKm6ZM01Q4pLjd58mEwqbMsKlg0Bz1AnBjPd9O9nsdDxP9O7VkTEPy9ge1/3Cn/MGxBQ7TijO1v75Lf3ztkM49o/SUt3c6bJpXka9Mt3NCFg/k9Q0ThXMNE4nzDRMpEc+3hAoAMjMzVVFRMWS1fkmDlw23yr8kVVZWKiMj46THLly4UHa7XY8//viQ27z++utat26dvvKVr+j8888/bitBANaLrv6fl5UWt/5/IFaBYHjMsyqiAcD+hi4tmlWYkG0AAAAguSRUACBJK1as0I9+9CO98soruvDCCyVFpuevX79eVVVVg9sBfpTL5dKll16qF198Ufv27dPpp58uKfLt/29/+1tdcMEFys/PlySdd955Q45vb2+XJM2cOXPY6wFYq3kgACjOTbxeKmAsTivMkMNuqM8XVEunT0Wc2wAAYJwlXACwZs0abdy4UbfddptuuOEGFRUVaf369WpoaNDDDz88+A3Jtm3bVFdXp2XLlqmwsFCSdOutt2rTpk1avXq11qxZo7S0ND355JMKhUK64447rHxYAGLUFN0BII8PSUgOdrtN04ozdfBot2qPdhMAAACAcZdw82gzMzP19NNP65JLLtHTTz+t++67Tx6PR48++uhx38w///zz+rd/+zft379/8LIpU6bomWee0cKFC7Vu3Tr96Ec/Unl5uZ566inNnj3biocDIA4CwbDauyOL/hUTACCJRBf/O9TYPSF9/QAAILUl3AwASSopKdH9999/0tusXbtWa9euHXJ5VVWV1q1bN+oxly9fruXLl4/6OADjr6XTK9OUMtwOZbjHtjsHkIimFKTL6bCpzxdUc4ePgAsAAIyrhJsBAAAfFV0AkOn/SDbRNgBJOnSs2+JqAABAsospAOjq6opXHQBwQk0sAIgkVlGaJUmqPUYbAAAAGF8xBQAXXHCBvv71r2vz5s28aQEwLsKmqZYOnyT6/5GcygojbQDe/qAa27xWlwMAAJJYTAHA7Nmz9bvf/U5f/epXddFFF+mBBx5QbW1tnEoDAKmju1+BUFhOu025WWlWlwPEnd1mU/nALIADR5lZBwAAxk9MAcD69ev1+9//XjfddJMMw9BPfvITXXbZZbruuuv0q1/9Sr29vfGqE0CKim7/V5jrlm1gG1Ag2cyI7gZwrFuhUNjiagAAQLKKeRHAyspK3X777dq0aZMeeeQRXX755dq9e7fuuusunX/++frGN76hN954Ix61AkhBzdH+f6b/I4mV5HuU7nYoEAzrSDPhOQAAGB9x2wXAMAydf/75+sEPfqDXXntNDzzwgPLz87Vx40atXr1an/70p/XYY4+pr68vXkMCSAGDOwCwACCSmGEYqiyLtAEcpA0AAACMk7huAxgMBvXnP/9Zd955p775zW+qvr5eaWlpuvTSS2Wz2fT9739fK1asUHV1dTyHBZCk+nwB9fqCMkQAgORXOdAGcKSpV/5AyOJqAABAMnLE4062b9+uX//61/r973+vzs5OmaapBQsW6POf/7yWL1+uzMzIHscvvPCC/uM//kPf/OY39fzzz8djaABJLPrtf25WmpyOuOaVQMLJy0pTbqZLHT1+HTrWrVnTcq0uCQAAJJmYAoCHHnpIGzduVF1dnUzTVEFBgW644QZ9/vOf18yZM4fc/sorr9RPf/pT7du3L5ZhAaSI6AKA9P8jFRiGocop2dq2r0UHjnYRAAAAgLiLKQB48MEHZbfb9YlPfEJf+MIXdNFFF8nhOPldTpkyRQsXLoxlWAApYnABQKb/I0VUlkUCgMY2r3q9AWV4nFaXBAAAkkhMAcDtt9+ulStXqqioaMTHPProo7EMCSBFBIJhtXX3S5KKmAGAFJHpcao4z6Omdq8OHu3SmTMKrC4JAAAkkZiaag8cOKD33nvvpLf59a9/rTVr1sQyDIAU1Nblk2lKnjSHMtxxWa4EmBRmDCwGePBot8WVAACAZBNTAPDCCy9o7969J73Nm2++qbfeeiuWYQCkoOaO6PZ/bhmGYXE1wMQpL82SzZDau/vVPjALBgAAIB5G9bXa448/rp///OdDLvvFL34x7O2DwaBaW1s1ffr0sVcIICW1dPoksf0fUk+ay67TijJ1uKlH++s7dfacYqtLAgAASWJUAcDVV1+tRx55RK2trZIiKxb39PSop6dn+Dt3ODRt2jR961vfir1SACnDNM3BGQCFuW6LqwEm3sypOTrc1KMDDV362OlFstmYBQMAAGI3qgAgIyNDW7ZsGfz3nDlzdPPNN+vmm2+Oe2EAUlePNyBvf0iGIRVkEwAg9ZxWmCG3yy6fP6QjzT2aXpJldUkAACAJxLQGwD333KNPfepT8aoFACRJTQPb/+Vnpclhj+llCpiUbDZDVadFFgOsOdJpcTUAACBZxLS09pVXXhmvOgBgUHN7dPo//f9IXVWn5WjXwXbVt/TK2x+Uy2m3uiQAADDJjSoAuOiii7RmzRqtXr168N8jYRiGNm3aNOriAKSmxvboDgAEAEhduZlpKsp1q7nDp/0DawEAAADEYlQBwLFjx9Td3X3cvwEgngLBsFq7ojsA0P+P1FZ1Wk4kADjSqcWzCq0uBwAATHKjCgD27t170n8DQKyONPcoHDaV5rQr0+O0uhzAUhVlWXpzT5M6e/2Da2MAAACMFatrAUgotUe7JEW+/TcMtj5DanM57CovjewAsO9wh8XVAACAyS4uAcD27dsH/38oFNJPfvITfeUrX9G3v/1t1dfXx2MIACni4NFImxH9/0DEzKk5kqQDDV3qD4QsrgYAAExmMQUAPT09+tKXvqRrrrlG7e3tkqQf/OAH+p//+R9t2bJFzz77rL74xS+yVgCAEYvOACik/x+QJJXkeZSV7lQgGNa7+5qtLgcAAExiMQUAP/3pT/XOO+9o6dKlkqT+/n4999xzysvL01NPPaXvfe976ujo0EMPPRSXYgEkt/bufrV398uQVJjDDABAiuykU3VaZBbAlh0E6gAAYOxiCgD+9Kc/adGiRXrssceUl5en1157TX19fbriiit09tln66qrrtIll1yiv/3tb/GqF0ASO9DQKUnKy06T08ESJUDUrKk5Mgzp4NEu1TV2n/oAAACAYcT0DruhoUFnn3324L83b94swzB04YUXDl5WXl6u1tbWWIYBkCL2N0Sm/xfT/w8cx5PmUEVZtiRp0zbW1gEAAGMTUwCQkZEhv98/+O8tW7bI6XTqYx/72OBlzc3NysvLi2UYAClif31kBkBxXrrFlQCJZ2555G/p1p3H5O0PWlwNAACYjGIKAKqqqvTyyy+rr69PW7du1YEDB3TuuecqLS1NklRbW6s//vGPOv300+NSLIDkFQyFP9gCMI8ZAMBHlRWkqzQ/Xf2BkF7dyVoAAABg9GIKAK6//nodPnxY559/vm666SYZhqFVq1ZJkn72s5/pqquuks/n04033hiXYgEkr/rmXvmDYXnSHMrNdFldDpBwDMPQ+QvLJEkvD7QBGIYxDj/R8ax6pAAAYLw4Yjn405/+tP77v/9bDz/8sCTpuuuu0yc+8QlJUl9fn7KysvSd73xncJcAADiR/QMLAFaUZsngkwcwhN1uaOmZZfrN3w6qvqVX2/e3aubUnLiPY9gM+cN98voCSnPaZY/7CAAAwCoxBQCSdNlll+myyy4bcvn111+vf/7nf+aNPIARifb/V5RlWVwJkJjsNkMypJlTc7S7tl0vbjmoT541dVzG8XhcCgaCmj09T5lup0zTjPs4AABg4sUcAJxIZmbmeN01gCQU3QGgoixbgWDY4mqAxDV7ep5217ar9miXOnv65UmL759yu82QwxlWkP8OAQBIOjG/a6ipqdGzzz6rQ4cOKRAIDPstgWEY+vnPfx7rUACSVHefX03tXkmRFoDqI50WVwQkrsIcjwpz3Grp9KnmSKfmVxVYXRIAAJgkYgoAtm7dqq9+9asKBk++HRFtAABO5sDAt/9lBelKdzstrgZIfLOn56plxzG9f7hDZ1Tmy2bj7ywAADi1mAKAhx56SKFQSLfccos++clPKiuLxbsAjF50AcCqKfFf0AxIRhWlWXr7/Wb1+YI61NityrJsq0sCAACTQEwBwM6dO/WZz3xG//qv/xqvegCkoP31kRkAM07jQwwwEna7TbOn52p7Tat217azewYAABgRWywHOxwOTZkyJV61AEhB4bCpg0cjAcDM05gBAIzU6dNyZbMZau30qbnDa3U5AABgEogpADjrrLP09ttvx6sWACmoobVXPn9IaU67Titk9xBgpDxpDs2YEpk1s7u23eJqAADAZBBTAPD1r39d1dXVuu+++9TZyardAEZvf33ktaOyLIuFzIBRmleeJ0k63Nij7j6/xdUAAIBEF9MaAA8++KCmTJmixx57TI899phyc3OVlpY25HaGYWjTpk2xDAUgSe0f2AGgiun/wKjlZqVpSmG6Glr6tPdQhz4+t9jqkgAAQAKLKQD485//fNy/29uZgghgdKJbALIDADA28yry1dDSp+ojHVo4s0Aup93qkgAAQIKKKQDYu3dvvOoAkIL6fAE1tPRK0mAvM4DRKStIV26mSx09flUf6dQZlflWlwQAABJUTGsAAEAsDh7tliQV5bqVneGyuBpgcjIMQ3MrImsB7DnUrnDYtLgiAACQqGKaARB18OBBbdiwQbt371ZnZ6d++ctf6uWXX1Z3d7dWrFjB3sQAhhVdAJD+fyA2M8qytW1fi/p8QR082sV/UwAAYFgxBwBPPvmk7r33XgWDQUka/LD/xhtv6PHHH9emTZt0//33y2ZjsgGA4+2n/x+IC7vdprkVedq2r0U7D7RpxpRswncAADBETJ/K//a3v+m73/2uysvLdf/99+vaa68dvG7FihU644wz9Pvf/16/+tWvYi4UQHIxTVMHGiIzAOj/B2I3e1qunA6bOnv9OtzUY3U5AAAgAcUUADz66KMqKirSc889pxUrVqigoGDwunnz5umJJ55QaWmp1q9fH3OhAJJLY7tXvb6gnA6bphVnWl0OMOm5nHbNmZ4rSdqxv02myVoAAADgeDEFADt37tSll16qrKysYa9PT0/XJZdcokOHDsUyDIAkFO3/ryjNksNOixAQD3Mr8mS3GWrt8uloa5/V5QAAgAQT07vuYDAou/3k+w2bpqlAIBDLMACS0IGB/n+m/wPx43Y5dPq0gVkAB1otrgYAACSamAKAGTNmaOvWrQqHw8NeHwgEtHnzZlVWVsYyDIAkdOBoNABgAUAgnuZV5slmSI1tXjW1e60uBwAAJJCYAoArr7xS1dXVuuuuu9Tb23vcdZ2dnbrzzjtVV1enK664IqYiASQXfyCkIwOLlFWWDd9CBGBsMtxOzRjYBnAnswAAAMCHxLQN4HXXXactW7bohRde0IsvviiPxyMpsgPAoUOHFAgEtHTpUq1atSouxQJIDnVNPQqFTWVnuFSQ7ba6HCDpnFmZr/1HOnWkuVdtXT7l898ZAABQjDMAbDabHnroIf37v/+7ysvL1d3dLdM0VVNTo9LSUn3ta1/Tww8/fMp1AgCklsH+/zL2KgfGQ3aGS+UDs2u21zALAAAARMQ0A0CKhACrV6/W6tWr5fV61dXVpYyMDGVmsq0XgOEdHOj/r2QBQGDcLKwq0KGj3Trc1KPWTp8KcpgFAABAqhtzAPDee+/pN7/5jd588001Njaqp6dHGRkZmj59us4++2xdccUVmjNnTjxrBZAkDjREtgCcUUYAAIyXnMw0VU7J1oGGLm2vadEnz5pqdUkAAMBiow4A+vv7deedd+qPf/yjTNM87rrOzk7t2LFDO3bs0M9+9jN97nOf07e//W253XzrACCiu8+v5g6fJBYABMbbgqoCHTzapSPNvWrp8Kow12N1SQAAwEKjCgDC4bBuuukmvfnmm6qoqNANN9ygc845R1OmTJHT6VRvb6+OHDmi119/Xc8++6w2btyopqYmPfbYY/T5ApD0wfT/0vx0pbudFlcDJLfsDJdmlGVrf0OX3q1p1afOZhYAAACpbFSLAP7iF7/Qm2++qc985jP69a9/rWuuuUYzZsyQ2+2W3W5Xdna25s2bpzVr1uill17S8uXL9dprr+nFF18cr/oBTDLRBQArmf4PTIgFMwtkGFJDS6+a271WlwMAACw0qgDgpZdeUklJidauXXvKaf0ul0v33HOP8vPz9dJLL8VUJIDkcfBotyRpBgsAAhMiK92lqtNyJEnv1rRYXA0AALDSqAKAmpoanXfeefJ4RtZD6HK5dN5552nv3r1jKg5AcjFNc7AFgAAAmDgLZkRmARxt7VNjW5/V5QAAAIuMKgDo6elRQUHBqAYoLS1Ve3v7qI4BkJyaO7zq8QbksBuaVsxWocBEyUx3atbUyCyAbdUtQxbxBQAAqWFUAUAgEBj1iv5paWkKBoOjOgZAcor2/08vyZLDPqqXHwAxml9VILvNUFO7V/XNvVaXAwAALMA7cAAT5kB0+j8LAAITLsPt1JzyXEnSO/uamQUAAEAKIgAAMGEORncAoP8fsMSZlQVyOmzq6PEPrscBAABSh2O0B/zlL39RfX39iG+/Z8+e0Q4BIAkFQ2EdauyRxAKAgFXSXHadWZmvbdUtere6VeWl2bLbDKvLAgAAE2TUAcCePXtG/aHeMHhzAaS6w009CobCynA7VJw7sp1EAMTf3Io87a1rV483oH2HOzS3PM/qkgAAwAQZVQBwzz33jFcdABJUvAK82qPdkqQZU3Jksw3ffURWCIw/h92mhVWFem13o3bsb9XM03LkdNARCABAKhhVAHDllVeOVx0AElBIks8XiMt9vX84sh3oaUUZ6jnBfdpshsJxGQ3AycycmqNdtW3q7gtod22bFs4stLokAAAwAUbdAgAgNRiGIZ8v8uEgEIz9Y/n7hzskSWHT1PaalmFvk+52qLwsW4aYCgCMJ5vN0OJZhXpl+1HtOtim06flypPGWwIAAJIdf+0BnFQgGJY/EIrpPvyBkDp7/JKk3EzXCe/P5WQaMjBRykuzVFjbrpZOn96tbtHSM0utLgkAAIwz3m0DGHctnT5JUqbHKbeL3BFIBIZh6Ow5RZKkmiOdau/ut7giAAAw3hIyAGhpadFdd92lCy64QIsWLdI111yjLVu2jOjYuro63XbbbVq6dKkWL16sG2+8UTt37hxyu3A4rOeee06f+9zntHDhQl100UVau3atenp64v1wgJQXDQAKc9wWVwLgw4rz0jW9JFOmpLffb7K6HAAAMM4SLgDo7e3VmjVr9NJLL+nKK6/UHXfcIa/Xq5tuukmbN28+6bGNjY267rrr9Prrr2vVqlW67bbbdOjQIa1atUp79+497rb33Xef/vM//1NTp07VN77xDX3605/WU089peuvv15+v388HyKQcgYDgFwCACDRnDW7SDZDamjpU31zr9XlAACAcZRwc3Gfeuop7du3T+vWrdPFF18sSVq5cqVWrlypu+++W3/4wx9OuC3Zj3/8Y7W2tmrDhg2aM2eOJOnyyy9YzoHJAAAgAElEQVTX8uXLde+99+rxxx+XJB08eFCPPfaYPvOZz+jBBx8cPH7atGn67ne/q9/97ndauXLlOD9SIDWYpqmWDq8kqTDHY3E1AD4qK92l2dPztOdQu95+v0lTizOsLgkAAIyThJsBsHHjRpWXlw9++JekjIwMXX311aqtrdX27duHPS4UCunFF1/UueeeO/jhX5KKi4u1fPlybd26VY2NjZKkhoYGLVy4UNdee+1x97FkyRJJ0p49e+L9sICU1esLyucPyTCk/Ow0q8sBMIwFVQVyOW3q6PGr+nCn1eUAAIBxklABQHd3tw4cOKAFCxYMuW7+/PmSdMIAoLq6Wn19fSc81jRN7dixQ5K0bNkyrV+/XkuXLj3udrt375YklZWVxfQ4AHwgOv0/LytNDntCveQAGJDmsmtBVYEkadu+5ph3/gAAAIkpod6NNzY2yjTNYT+AFxcXS5Lq6+tPeKw0/If3kx0bDAZVV1enZ555RnfffbemT5+uq666asyPAcDxPpj+T/8/kMhmT89TVrpTXn9I21gQEACApJRQawB0d3dLkjyeoX3C6enpkiSv1zvqY6OXDXfsm2++qRtuuGHwdt/61reUnZ09+uI/wuFIqGwFcWYf+CbbnsTfaBuGZNgM2Qd+xqp1YAZAcZ7nlPdjMwwZhiGbXbKHxj7maEz0mHabIcNmyOEwZJojGy/W8y1ez+VIpcLzmIyP0W4zdPacYm16p17vVjdrbkXeqM9VYDRS4W8pEgfnGyZSIp9vCRUAhMNhSRp2kT/TNE943amOjbLZhj4BZWVl+uEPf6iuri49+eST+upXv6r/9//+n6655ppR1//BOIby8lhEKRVkZyf3onb+cJ88HpcczvCYjg+HTbV2RfYWn1aao/T0k68B4HE75HDY5XG75HCMbczRmugxnQ6bPG6XcnPTR31sLOdbrM/laKTC85isj3FupUt76zp0tKVXb+1t1kVnTR/TuQqMRrL/LUVi4XzDRErE8y2hAoCMjMiHZp/PN+S66Lf3WVlZYz42MzNzyHUVFRWqqKiQJC1fvlxXXHGFvv/97+uzn/3s4H2OVjhsqqurb0zHYnKw223Kzvaoq8urUGhi3vxPNMOQvL6AvF7/mPuB27p8CobCcjpsctmlvr7+k49phhUMhuT1+eX3T0wP8kSP6XLa5fX51dFhaiDXPKVYz7d4PJejGi8Fnsdkfowfn1Os32w+qD21bdp3qFUu28jPVWA0UuFvKRIH5xsmkhXnW3a2Z0QzDhIqAJg6daqkD/r5P6ypKdKPeKIF+mI5Nsrj8ehTn/qUHn30UR08eFBnnnnmyIv/iGCQF5ZUEAqFk/a5NgxDZthUaOBnLBrbI+FbQbZbpimFTvEpImyaMk1T4ZDGPOZoTfSYobApM2wqGDQHZzaN+Ngxnm/xeC5HIxWex2R+jAXZaZo1LVfVhzu04eX9mj01d9zGAqTk/luKxMP5homUiOdbQjUlZGZmqqKiYnC1/g+LXjbcKv+SVFlZqYyMjJMeu3DhQknSj370Iy1dulT79+8fctve3l5JktvNgmVArKI7ALAA4PEMI/pjjPDnw8eN9JihxwMjteTMMtlthqqPdOrdmharywEAAHGSUAGAJK1YsUI1NTV65ZVXBi/r7e3V+vXrVVVVNbgd4Ee5XC5deuml2rJli/bt2zd4eVNTk37729/qggsuUH5+vqRIWNDW1qbHH3/8uPs4cuSIXnrpJVVWVqqqqmocHh2QWgZ3AMglAIiy2w3ZbDZ1e4Pq8QVG9NPZF1BTW586+0Z2+4/+9PYHlVjZMxJddoZL8we2BVz/1xoFmS4LAEBSSKgWAElas2aNNm7cqNtuu0033HCDioqKtH79ejU0NOjhhx8eXORv27Ztqqur07Jly1RYWChJuvXWW7Vp0yatXr1aa9asUVpamp588kmFQiHdcccdg2Ncdtll2rBhg37xi1+os7NTy5Yt07Fjx/Tss88qHA5r7dq1J11MEMCpBYJhdfb4JUmFOYm3AIpV7DZDXn9Q+w93yh8cWR+33WbI43HJ6/WPaep3utuh8rJsGeJ1DSO3eFahao506lhbn17eVq9PnT3N6pIAAECMEi4AyMzM1NNPP6377rtPTz/9tAKBgObMmaNHH31US5YsGbzd888/rxdeeEFPPPHEYAAwZcoUPfPMM7rvvvu0bt062e12LViwQA8++KBmz549eKzNZtP//u//6qc//al+85vf6K9//auysrJ03nnn6eabb+bbfyAOWrt8MhX58JnuTriXGssFguERL8hntxlyOCO3H0sA4HIm3GQvTAIup12XLy3X+r/WaOPmg1p6Zqky3E6rywIAADFIyHflJSUluv/++096m7Vr12rt2rVDLq+qqtK6detOOYbL5dLNN9+sm2++ecx1Ajgx+v+Bye+8+WXa8t5R1bf06jeba3Xtp2ZZXRIAAIgBXwsBGBeD/f8EAMCkZbcZ+uIlkQ/9f33niI61scUtAACTGQEAgHHxwQwA+v+ByWz+jALNn1GgUNjU+r/WWF0OAACIAQEAgLjr8wXV5wtKkgqYAQBMel/85EzZDEPv1rRoT22b1eUAAIAxIgAAEHctnZHp/7mZLjkdvMwAk92UwgxdtHiKJOnZv9QoPIbFKAEAgPV4Zw4g7lo6Bqb/5zL9H0gWV5xfKU+aQ0eae7R5x1GrywEAAGNAAAAg7tgBAEg+WekufW5ZhSRpwysH5O0PWlsQAAAYNQIAAHEVNs3BFoCiXAIAIJlcctZUFed51NXr1+9eO2R1OQAAYJQIAADEVWePX8GQKYfdUE5mmtXlAIgjh92mqy+eKUn64xuHB7f7BAAAkwMBAIC4in77X5Dtls0wLK4GQLwtnlWoOdNzFQyF9cv/2291OQAAYBQIAADEFQsAAsnNMAxdc8ksGZLe2NOkmiOdVpcEAABGiAAAQFyxACCQ/KaXZGnZgjJJ0rN/qVbYZFtAAAAmAwIAAHETCIbV0d0viQUAgWR31YUzlOay6+DRLr2+u9HqcgAAwAgQAACIm9Yun0xJ6WkOpbudVpcDYBzlZqZp+ZJySdIvX96v/kDI4ooAAMCpEAAAiJvB6f98+w+khEs/Pk0F2Wlq7+7XH9+os7ocAABwCgQAAOImuiUY/f9AanA57frCRZFtAX/32iG1D7QAAQCAxEQAACBuPpgBwA4AQKo4Z26xqk7Llj8Q1oZX2BYQAIBERgAAIC76fEH1+YIyJBVkMwMASBXRbQEl6dUdx3ToWLfFFQEAgBMhAAAQFy2dken/uVlpcjp4aQFSSdWUHC2ZVyJTkW0BTbYFBAAgIfEuHUBcNHdEpv8X0P8PpKTPf6JKTodN+w536J19zVaXAwAAhkEAACAuojMAiggAgJRUkOPWZ86ZLklav6lGgWDY4ooAAMBHEQAAiFnYNNXKAoBAyrt8yXTlZLrU3OHTX94+YnU5AADgIwgAAMSss8evYMiUw24oJ9NldTkALOJ2OXTVhTMkSS++elBdfX6LKwIAAB9GAAAgZi0dken/BTlu2QzD4moAWGnZ/DJNL8mUtz+kjX87aHU5AADgQwgAAMSsOTr9P4fp/0CqsxmGrh3YFvDld+tV39xjcUUAACCKAABAzKIzAIpyWQAQgDR7ep4+dnqRTFN6/q81VpcDAAAGEAAAiEkgGFZnT6TPlxkAAKL+/uIq2W2Gdh5s03v7W60uBwAAiAAAQIxau3wyJaW7HUp3O6wuB0CCKMlL16fOnipJev6v1QqG2BYQAACrEQAAiEl0+n9hDtP/ARzvs+dVKNPj1NHWPv3fuw1WlwMAQMojAAAQk5boAoC5TP8HcLx0t1MrL6iUJG3cfFB9voDFFQEAkNoIAADEpKUjEgAUMQMAwDA+sWiKygrS1eMN6KVXD1ldDgAAKY0AAMCY9fkC6usPyjCk/GwCAABD2W02ffGTkW0B//TWYTW191lcEQAAqYsAAMCYNQ98+5+bmSang5cTAMObPyNfZ1TmKxQ29YuX91tdDgAAKYt37ADGbLD/n+n/AE7CMAx98ZMzZRjS2+836/26dqtLAgAgJREAABizwR0AcgkAAJzc1KJMfWLhFEnSc3+tUdg0La4IAIDUQwAAYEzCpqnWrugMAHYAAHBqKy+YIbfLrkPHurV15zGrywEAIOUQAAAYk86efgVDphx2QzmZLqvLATAJZGe4tOK8CknShlcOqN8fsrYgAABSDAEAgDGJLgBYmOORzTAsrgbAZPHps6eqMMet9u5+/eGNOqvLAQAgpRAAABgTFgAEMBZOh11fuKhKkvT71w+pvbvf4ooAAEgdBAAAxoQFAAGM1cfnFGvmaTnyB8La8H9sCwgAwEQhAAAwaoFgWJ09fkksAAhg9AzD0DWXzJIkbdl5TLXHuiyuCACA1EAAAGDUWjt9MiWlux1KdzusLgfAJDRjSraWnFEiSXruLzUy2RYQAIBxRwAAYNSaOyPT/4vo/wcQg89fWCWnw6Z9hzv0zr5mq8sBACDpEQAAGLXBHQBymf4PYOwKctz6zDnTJUm/2LRfgWDY4ooAAEhuBAAARsU0zcEFAIsIAADE6PIl05WT4VJTh1d/efuI1eUAAJDUCAAAjEqPNyCfPySbIRVkp1ldDoBJzu1y6KoLZ0iSXny1Vt19fosrAgAgeREAABiV6PT//Gy37HZeQgDEbtn8Mk0vzpS3P6iNmw9aXQ4AAEmLd+8ARqWZ6f8A4sxmM/TFgW0BX97WoIaWXosrAgAgOREAABiVDwIAdgAAED9zy/O0eFahwqap9ZtqrC4HAICkRAAAYMQCwbDau/slMQMAQPz9/cUzZbcZem9/q3YdbJNhGOP+AwBAKnFYXQCAyaO1yyfTlNLTHMrwOK0uB0CSKc1P18Ufm6o/v3VYz/x5n+5cdZbstvH9kO5Oc8g+riMAAJA4CAAAjBjT/wGMJ8Mw9KmPT9XftjfoaGufnv9Ltc6ozB+38ZwOm+ZV5CvT7ZRpmuM2DgAAiYIAAMCIRXcAYPo/gPGS4XbqrDlFenXHMb29t0nTijPkdvF2BQCAeGANAAAjYpqmWtgBAMAEmFOep7ysNPmDYW3b12J1OQAAJA0CAAAj0uMNyOcPyWZI+dlpVpcDIInZDEPnzC2WJFUf6VRrp8/iigAASA4EAABGJNr/n5/tlt3OSweA8VWSn67KsixJ0ht7GunRBwAgDngXD2BE6P8HMNHOml0kh91Qc4dPBxq6rC4HAIBJjwAAwIiwAwCAiZbudmp+VYEk6Z19zQoEwxZXBADA5EYAAOCUAsGw2rv7JTEDAMDEmleRp6x0p7z9Ib23nwUBAQCIBQEAgFNq7fLJNKX0NIcyPE6rywGQQuw2mz4+J7Ig4J7adnX2+C2uCACAyYsAAMApMf0fgJWmFmfqtKIMhU3pzb1NLAgIAMAYEQAAOCUWAARgtY/PKZbNMNTQ0qsjzb1WlwMAwKREAADgpEzTVHP7wAyAPAIAANbIznBpXkWeJOnNPU0KhVgQEACA0SIAAHBSnT1+9QdCstsM5WfTAgDAOvOrCuRJc6jHG9Cu2narywEAYNIhAABwUo3tfZKkwhy37DbD4moApDKnw6azZhdJknYeaFWvN2BxRQAATC4EAABOqrGN6f8AEkdlWZaK8zwKhky9ubfJ6nIAAJhUCAAAnNSxtsgMgGICAAAJwDAMnTuvWIYh1TX2qL65x+qSAACYNAgAAJxQd59fXb2RPbfZAQBAosjLcmtueWRBwNd3NynIgoAAAIwIAQCAEzrQ0CVJys10Kc1pt7gaAPjAwpmFSndHFgTcsb/V6nIAAJgUCAAAnFA0AGD6P4BE43TYdM7cYknSroNt6ujpt7giAAASHwEAgBM60NApien/ABLTtOJMTS3KUNiUXt/dKNM0rS4JAICERgAAYFj+QEiHGyOLazEDAEAiMgxD58wtkd1mqLHNOzhrCQAADI8AAMCwDh7tUihsKj3NoUyP0+pyAGBYmelOLZhZIEl6a2+zfP7gqI43jOiPMWE/AABYxWF1AcNpaWnRAw88oFdeeUXd3d2aM2eObrnlFi1btuyUx9bV1ekHP/iB3njjDfl8Pi1evFhf//rXdeaZZx53u1AopJ/97GfasGGD6urq5HK5tGjRIt1yyy1atGjReD00YNKoPhKZ/l+S7+ENK4CENq8iXwcbutTR49dbe5t1/oKyER1ntxuy2Wzq9gYlTVz7gDvNIZZVBQBYIeECgN7eXq1Zs0Z1dXVavXq1SkpKtH79et100016+OGHdf7555/w2MbGRl133XUKBAL68pe/rIyMDD355JNatWqVnnvuOc2ZM2fwtv/1X/+l5557ThdddJG+9KUvqbOzU88884xWrVqlRx55REuWLJmIhwskrJojHZKkkvx0iysBgJOz2wwtPbNUv3+tTgcaujRjSramFGaM6DivP6j9hzvlD4YmoNLI4oXzKvKV6XayZgEAYMIlXADw1FNPad++fVq3bp0uvvhiSdLKlSu1cuVK3X333frDH/5wwm8jf/zjH6u1tVUbNmwY/LB/+eWXa/ny5br33nv1+OOPS5J27dql5557TldeeaXWrl07ePxVV12lFStW6J577tHGjRvH+ZECiStsmqquj84AIAAAkPiKcj2aU56rvYc69NquRn12WYWcjpF1OgaCYfkDExMAAABgpYRbA2Djxo0qLy8f/PAvSRkZGbr66qtVW1ur7du3D3tcKBTSiy++qHPPPfe4b/qLi4u1fPlybd26VY2NjZKkV199VZL0hS984bj7KC0t1TnnnKO9e/eqt7c33g8NmDSOtvSqzxeUy2FTQbbb6nIAYEQWzypSutuhHm9A22tarC4HAICEk1ABQHd3tw4cOKAFCxYMuW7+/PmSdMIAoLq6Wn19fSc81jRN7dixQ5J07bXXauPGjYP3+WFtbW0yDEN2O915SF3Rb//Ly7Jks9H/D2BycDpsWjKvRJK0p7ZdrZ0+iysCACCxJFQA0NgY2cO3rGzo4j3FxcWSpPr6+hMeK2lEx2ZmZmrOnDlKS0s77nbvvfee3n33XS1cuFBuN996InVVH44EAFVTciyuBABGZ2pxpipKs2RK2rrrmMJh+uwBAIhKqDUAuru7JUkez9A9x9PTI33IXq931MdGLzvRsZLU2tqq22+/XZJ06623jqLq4TlG2HeIyclutx33v8lm/8AMgBlTcxQKhmWfoFkAtoEtsmx2yR5KzjHHMp7NZvvQ/4YnZMxY8DxO7jE/ON8MGTZDDoch05yYx2gYkmEzZB/4GaslZ5ToaGuv2rr6tau2TYtmFg57OyueR7sFv9dElex/S5FYON8wkRL5fEuoACAcjryxHW6Rv+hKuSdaAPBkx0ZF39R8VFNTk2688UbV1dXpn/7pn0a03eDJ2GyG8vJOvfowJr/s7KGB02TX2ulVU4dXNkOaW1Gg/fWdcjhH/6FzLDxuhxwOuzxulxyO5BwzlvHcbueEjzkZxrNizFR4jGlpTnncLuXmTuxCoP5wnzweV0yvO+npabpw8VT96Y06ba9u1enT81WYO8wXBBY8j06HzZLfayJLxr+lSFycb5hIiXi+JVQAkJER+dDs8w3t2Yt+e5+VlTXmYzMzM4dcV1NTo3/4h39QfX29rr/+en3ta18bW/EfEg6b6urqi/l+kLjsdpuysz3q6vIqFJqYN40T5bWdxyRJ5aVZMmTK6/VP2OrYhhlWMBiS1+eX35+cY45lPJvNJrfbKZ8vMBh2jveYseB5nNxjRs+3/v6AvD6/OjpMTdRudYYheX2BuLzunFbg0fSSTNU19uhPbxzSZ8+rGLKmiRXPo8tpn/Dfa6JK5r+lSDycb5hIVpxv2dmeEc04SKgAYOrUqZI+6Of/sKamJknD9/iP9di33npL//Iv/6LOzk7dcsstuvnmm8de/EcEg7ywpIJQKJx0z/Xe2jZJ0unT8mSGTYUGfiZC2DRlmqbCISXtmGMbL3KOhcPhMdU4OR7j5BozuR9j9HwzZYZNBYPmhO1XbxhGXF93zp1XosY2r9q6+vVuTYsWfqQVwIrnMWTB7zXRJePfUiQuzjdMpEQ83xKqKSEzM1MVFRWDq/V/WPSy4Vb5l6TKykplZGSc9NiFCxcOXvbWW2/pK1/5inp6evSd73wnrh/+gcns/cMdkqTTp+VaXAkAxMaT5tA58yILAb+3v1WtXewKAABIbQkVAEjSihUrVFNTo1deeWXwst7eXq1fv15VVVXDbt0nSS6XS5deeqm2bNmiffv2DV7e1NSk3/72t7rggguUn58vSWppadEtt9wiv9+vBx54QH//938/vg8KmCQ6e/062tonQwQAAJJDRWmWppdkyjSlV3ccm7Bv+gEASEQJ1QIgSWvWrNHGjRt122236YYbblBRUZHWr1+vhoYGPfzww4OL/G3btk11dXVatmyZCgsjU/puvfVWbdq0SatXr9aaNWuUlpamJ598UqFQSHfcccfgGOvWrVNbW5sWL14sn8+njRs3Dqnj7/7u74ZsEwgku+qBb/9PK8pUpsepHl/A4ooAIDaGYQy2ArR392vH/lYtmjX8rgAAACS7hAsAMjMz9fTTT+u+++7T008/rUAgoDlz5ujRRx/VkiVLBm/3/PPP64UXXtATTzwxGABMmTJFzzzzjO677z6tW7dOdrtdCxYs0IMPPqjZs2cPHvvqq69KioQI27ZtG7aO8847T0VFReP4SIHE835dJACYzbf/AJKIJ82hc88o0SvvNmjHgVZNK85UQY7b6rIAAJhwCRcASFJJSYnuv//+k95m7dq1Wrt27ZDLq6qqtG7dupMe+7vf/S6m+oBk9f7hdknS7OkEAACSS0Vplg6VZunQsW5t2XFUy88rt7okAAAmXMKtAQDAGj3egI4090qSZjEDAEASOndesdwuuzp6/Npe02p1OQAATDgCAACSPuj/LytIV06Gy+JqACD+3C6HlpxRIknadaBNjW19FlcEAMDEIgAAIOmD7f/o/weQzKaXZKmiLEumpL++Xa9Agu3PDADAeCIAACDpgwCA7f8AJLtz5pbI7bKrvbtff3jtkNXlAAAwYQgAAKjPF1RdY7ckafb0PIurAYDx5XbZtfTMUknS/71Tr6OtvRZXBADAxCAAAKCa+k6ZplSc61FeVprV5QDAuJtWnKk55bkyJb28rV7+YMjqkgAAGHcEAAAGt/9j+j+AVHL+gjLlZ6epxxvQm3uarC4HAIBxRwAAQPvqBhYAnE4AACB1uJx2Xfvp0yVJ++u7BluhAABIVgQAQIrr94dUe2yg/58ZAABSzIzTcrSgqkCS9NquRnn7gxZXBADA+CEAAFJcdX2HQmFT+dlpKshxW10OAEy4s2cXKzfTJZ8/pK27GmWaptUlAQAwLggAgBS3pzbS/z+3PE+GYVhcDQBMPLvdpgsWlslmGDrS1KOa+i6rSwIAYFwQAAApbvehSAAwrzzf4koAwDp5WW4tmhVpBXhzT6O6+/wWVwQAQPwRAAAprMcbUN1A//+c8jyLqwEAa82rzFdxnkfBkKktO44pTCsAACDJEAAAKWzvoXaZksoK0pWXlWZ1OQBgKZthaNn8Ujnshpravdo90CIFAECyIAAAUtgepv8DwHGy0l36+NxiSdK7+1rU3u2zuCIAAOKHAABIYdH+/7kVTP8HgKiZp+VoalGGwqapze8dUygctrokAADiggAASFFtXT41tvXJMKQ503OtLgcAEoZhGFp6ZqncLrvau/v1bnWr1SUBABAXBABAiopO/68ozVa622lxNQCQWDxpDi05o0SStOtgmxrb+yyuCACA2BEAACkqurjVPKb/A8Cwppdkqeq0bEnSlveOKRCkFQAAMLkRAAApyDRN7T7UJkmay/Z/AHBCH59brAy3Qz3egN7c22R1OQAAxIQAAEhBR1v71Nnjl8Nu08zTcqwuBwASlsth17IFZZKkmiOdOtzUY3FFAACMHQEAkIKi/f+zpubI5bRbXA0AJLbS/PTBdqmtO4/J5w9aXBEAAGNDAACkoN21TP8HgNFYPKtQuZku+fwhvbarUaZpWl0SAACjRgAApJhw2NT7dR2SpLksAAgAI2K323T+gjLZDKmusUcHGrqsLgkAgFEjAABSzKHGbvX1B+VJs6uiNMvqcgBg0sjPdmvhrEJJ0hu7m9TTF7C4IgAARocAAEgxuw5Gpv/PnpYnu42XAAAYjTMq81WU61EgFNaWHUdpBQAATCq8+wdSzI4DrZKk+TPyLa4EACYfm2Ho/AWlctgNNbZ7tbu23eqSAAAYMQIAIIX0+QLaXx/pWz1zRoHF1QDA5JSV7tLZc4olSdv2tai9u9/iigAAGBkCACCF7K5tV9g0VZqfrqJcj9XlAMCkNWtqjqYWZShsmtr83lGFwrQCAAASHwEAkELeG5z+z7f/ABALwzC09MxSpTntau/u1/aaFqtLAgDglAgAgBRhmqZ2RgOAKvr/ASBWnjSHlpxRIknadaBNTe1eiysCAODkCACAFHG4qUcdPX65nDbNnpZrdTkAkBTKS7M0Y0q2TEmb3zuqQDBsdUkAAJwQAQCQInYObP83Z3qenA67xdUAQPI4Z26xMtwO9XgDemtvk9XlAABwQgQAQIrYsZ/+fwAYDy6nXcvml0mSqo906khTj8UVAQAwPAIAIAV4+4Oqqe+UJM2vIgAAgHgrLUjX/2/vvuPjqO/8j79mu1arajXbsiU3We6FYtwImB4TsFNohmBy5NIhISEhl0fu8fiR3CXEzgWOkONCCKFjQzAmwBEgBoxpprh3ucmWbcnqq9Wuts3vD1kCRbZxWWlWq/fz8RhWmvnOfj+Dv1ppPvMtY0pyAHhn4yFC4ajFEYmIiHSnBIBIP7B5Tz2xuElhThoFWv5PRKRHTC3LI8vnIhSO8d6makxTSwOKiEhyUQJApB/YoOX/RER6nN1uY7XbUnQAACAASURBVNbEgdgMqKxuYdeBZqtDEhER6UIJAJEUZ5omG3a1TwCo7v8iIj1rQKaHSSPzAFi9pYaWYMTiiERERD6hBIBIiquqDdDgb8Pp0PJ/IiK9YdywXPKzPUSicd7ZcEhDAUREJGkoASCS4jq6/5cPzcHl1PJ/IiI9zWYzmDlhIA67waH6VrbsbbA6JBEREUAJAJGUt76iY/x/rsWRiEhfYxgdm9FLm9VXnDiZ6S7OHF0AwMfba2lqCVsckYiICDisDkBEeo6/Ncz2/Y0ATD4yJlVE5ETYbQY2mw1/MAr0Thd2m80g3is19Y5RQ7KorPFzoLaVdzcd4pKzh1gdkoiI9HNKAIiksHUVdZgmDC3wkafl/0TkJNhsBsFwlJ37mghHY71Sp9fjoGRgJgap0RXAMAzOGVfE86t2U9MQZFtlIxOVjBUREQspASCSwtbsOAzAlLJ8iyMRkb4qEo0TjvROAsDlTL2Rib40J2eMzuf9zTV8vP0wwwZlWh2SiIj0Y6n3m1ZEAGiLxNi0u335vymj9MRJRMQqZUOyKcxJIxozeWvdQa0KICIillECQCRFbd5dTzgaJy/Lw5ACn9XhiIj0W4ZhMH18EXabwYHaAO9tOmR1SCIi0k8pASCSoj4+0v1/8qg8jFSaWltEpA/KTHd19sZ69s1dNPhDFkckIiL9kRIAIikoFo+z7sjyf1NHafy/iEgyKC/NIT87jVA4xsMvb9NQABER6XVKAIikoIr9TbQEI6R7HIwakmV1OCIiAtgMg3MnD8RhN1hXUcv7m6utDklERPoZJQBEUtDH22sBmDwyD7tNP+YiIskiJ8PDJdOGAvDEaztoDoQtjkhERPoT3RmIpBjTNLX8n4hIErvozCEMLfTREozw+KvbrQ5HRET6ESUARFLMvpoWaptCuBw2xg3LtTocERH5J3a7ja99fiw2w+CDrTV8tK3G6pBERKSfUAJAJMWs2dHe/X/csFzcTrvF0YiIyNGUFGVw2TntQwEefWU7LcGIxRGJiEh/oASASIpZs/2T5f9ERCR5XTGzlIEDvDQHwiz5xw6rwxERkX5ACQCRFHKovpXKmhZshsHkkUoAiIgkM6fDzk2fH4MBvL3xEOt31lkdkoiIpDglAERSyOojS0qNHZZDhtdlcTQiIvJZRg7O4qKzhgDw8MtbCbZFLY5IRERSmRIAIinCNE3e39KeAJg2ptDiaERE5ETNP3c4+dkeGvxtPP3GTqvDERGRFKYEgEiK2FfTwsG6Vhx2G1O1/J+ISJ/hdtpZeNkYAN5YU8WWvQ0WRyQiIqlKCQCRFNHx9H/SiAGkuR0WRyMiIidjTEkO500eBMBf/m8LbeGYxRGJiEgqUgJAJAWYpsnqze3rSJ89Vt3/RUT6oq+cP5KcDDeHG0M8u3KX1eGIiEgKUgJAJAXsPNBMXXMIt8vOpBEDrA5HREROQZrbwY2XlgPw2of7qNjfZHFEIiKSapQAEEkB7x+Z/X/qqDxcTrvF0YiIyKmaOGIAM8cXYQJ/fmkLkaiGAoiISOIoASDSx8XicT7YeqT7v2b/FxHp866+YBRZ6S4O1beyfNUeq8MREZEUogSASB+3rbKR5kCYdI+DccNyrQ5HREROky/NyVcvGQ3Ay+9Xsvtgs8URiYhIqlACQKSP6+j+f2Z5AQ67fqRFRFLBlLJ8zh5TQNw0+fNLW4jG4laHJCIiKUB3CyJ9WDQW56NthwF1/xcRSTULLiojw+uk6nCAF97ZY3U4IiKSApQAEOnD1u6opbUtSpbPxegh2VaHIyIiCZThdbHgojIAXnx3L5XVfosjEhGRvk4JAJE+7K31BwGYOX4gNpthcTQiIpJoZ5UXcEZZPrG4hgKIiMjpUwJApI+qbw6xcXcdALMnDrQ4GhER6QmGYXD9xWWkexxUVrfw8vuVVockIiJ9mBIAIn3U2xsOYppQNiSbwlyv1eGIiEgPyfK5ue7C9qEAz7+9m6ragMURiYhIX6UEgEgfFDfNzu7/evovIpL6zhlXyMQRA4jGTB56aQvxuGl1SCIi0gcpASDSB23b20BtU4g0t50zywusDkdERHqYYRjceGk5aW47uw4088oH+6wOSURE+qCkTADU1tbys5/9jNmzZzN58mSuueYa3n777RM6t7KykltvvZXp06czZcoUvva1r7Fx48bPPO/rX/86//Iv/3K6oYv0io6n/9PGFOJ22i2ORkREekNOhpur54wCYNlbuzhU32pxRCIi0tckXQIgEAhw00038cILLzB//nxuv/12gsEgN998M6tWrTruudXV1SxYsID333+f66+/nltvvZW9e/dy/fXXs3Xr1mOet2jRIlauXJnoSxHpEYFQhA+3HQZg9qRBFkcjIiK9afbEgYwblkskGufBFzZrKICIiJyUpEsAPPbYY2zfvp27776b2267jQULFvDEE09QXFzML37xC0zz2L/o7rvvPurq6vjLX/7Cd77zHRYuXMiTTz6J0+nkrrvu6la+ubmZH/zgB/zpT3/qyUsSSaj3NlUTjcUpzk+ntCjD6nBERKQXGYbBTZe1DwXYeaCZl1drVQARETlxSZcAWL58OSUlJZx//vmd+9LT07nqqqvYs2cP69atO+p5sViMv/3tb0ybNo3y8vLO/QUFBcydO5d3332X6urqzv1r1qzhoosu4uWXX+Y73/lOz12QSIK9te4AALMnDsIwDIujERGR3pab6eHaC9pXBXjurV3sP9xicUQiItJXJFUCwO/3s2vXLiZOnNjt2IQJEwCOmQDYsWMHra2txzzXNE02bNjQuW/Pnj2MGjWKJUuWcMsttyToCkR61t5DfiprWnDYDaaPL7I6HBERscjMCUVMOrIqwJ9e2Ew0Frc6JBER6QOSKgFQXV2NaZoMHNh9WbOCgvaZzquqqo55LnDC586dO5fHHnvsqAkDkWS14uP9AEwZlY8vzWlxNCIiYhXDMLjxsnLSPQ4qq1t48d29VockIiJ9gMPqAD7N7/cDkJaW1u2Y1+sFIBgMnvS5Hfs+fa7L5Tq9YD+Dw5FUuRVJMLvd1uW1N/hbw7y3uT3RdfHZQ3u8jRkGGDYD+5GtN9gMA8MwsNnBHkvNOk+lPpvN9qnXk3/K1xeusa/VmcrX+El7S91rtKo+ALvNwGY3cDoNTPP06szPSePGy8r5w7KNvPDOHs4oz2fYwMyjlj3OFEqWseJ3qfRfam/Sm5K5vSVVAiAeb//D9mjjmjsm/zvWmOfjnduh44+anmazGeTkpPdKXWKtzMzuCaee8upHVUSicUYUZzGtl8b/h+OtpKW5cDh7p2tpmseBw2EnzePC4UjNOk+nPo/n1Hp99KVr7Ct19odrdLudKX+NVvw7elx2nE4HbQlKOEwdU8SZWw/z4ZZq/mfZJn7+L9OOujys1+PA5+3Zhx+nqjd/l4qovUlvSsb2llQJgPT09pvmUCjU7VjH0/uMjKPPen4i5/p8voTE+VnicZPmZq3Nm8rsdhuZmWk0NweJ9cK4y2gszgurdgFw4dRiGht7vn0ZBgRDEYLBMOFIrMfrAzDMONFojGAoTDicmnWeSn02mw2Px0koFOlMdvZ0nadD/459u86O9tbWFknZa7SqvvY6nbS0htlV1UgkkpjfH2NLstm8q46DdQHue3otsyZ2HQ7pdNgoL80lGo4kVU+A3v5dKv2b2pv0JivaW2Zm2gn1OEiqBEBxcTFAl9n6O9TU1ABHH+N/uuf2hGhUHyz9QSwW75V/6/c2H6LB30ZmuoupZfm9UqdhGJhxk9iRrTfETRPTNInHSNk6T62+9n/veDx+SjH2jWvsW3Wm9jV2tLdUvkZr6vt0nW1tcdoi0YS97/TxRfzjo/1s2l1PUa6Xwfmf9ESMxe2YcZNo1DzucspW6a3fpSKg9ia9KxnbW1INSvD5fJSWlnaZrb9Dx75jTdo3bNgw0tPTj3vupEmTEhitSO957cP2yf/OnzIYl9OOcWTcas9uFl+0iIicsMH56ZSXZAPwzsaDhMKJSy6IiEjqSKoEAMDll19ORUUFK1eu7NwXCARYunQpI0aM6FwO8J+5XC4uvvhi3n77bbZv3965v6amhhdffJHZs2eTm5vb4/GLJNrOqiZ2HWjGYTc4d8pgWkKRXtkCbdFTmG5ORESsMrUsnyyfi2BbjHc3Vifl034REbFWUg0BALjppptYvnw5t956KwsXLiQ/P5+lS5dy4MABHnjggc6Jz9asWUNlZSUzZ84kLy8PgFtuuYXXX3+dG2+8kZtuugm3282jjz5KLBbj9ttvt/KyRE7Zqx/uA+DsMYW4HDY276kn0gtdibweByUDMzFQVwARkb7AYbcxa+JA/u/dveyraaGiqolRxdlWhyUiIkkk6RIAPp+Pxx9/nEWLFvH4448TiUQoLy/nwQcf5Jxzzukst2TJEpYtW8YjjzzSmQAYNGgQTzzxBIsWLeL+++/HbrczceJE/vu//5vRo0dbdUkip6zB38ZH2w4DcNFZQwCIROO9Mimfy5l0HYREROQzDMj0MHlUHh9vr+WDLTUUZHvJz0m+WahFRMQaSZcAACgsLGTx4sXHLfPrX/+aX//61932jxgxgvvvv/+k69y2bdtJnyPS01Z8vJ9Y3KSsOIvSokxaQhGrQxIRkSQ3dlguB2pbOVTfysp1B7hy9jCrQxIRkSShR3wiSao1FGHFx+2T/3U8/RcREfksNsNg1sSBeFx2GvxtrN5SY3VIIiKSJJQAEElSr320n2BbjMF56Uwpy7c6HBER6UO8HgczJxQBsHl3Pet31lockYiIJAMlAESSULAtyqsftE/+N3dGCTatySciIidpcL6PsaU5ADz+9+3UNYcsjkhERKymBIBIEnp9TRWBUJTCXC9nlxdaHY6IiPRRU8ryycvy0NoW5X+XbyQa0wKvIiL9mRIAIkmmLRzj76srAbh8egk2m57+i4jIqbHbDOacUYzHZWfH/iaefXOX1SGJiIiFlAAQSTJvrq3C3xohL8vDtLF6+i8iIqcnM93Fgovbl0N+eXUlH23TpIAiIv2VEgAiSSQSjfF/R57+z51egsOuH1ERETl9k0flcem0oQA8+OIWDtW3WhyRiIhYQXcXIklk5bqDNLWEyc10M3PCQKvDERGRFPLl80ZQNiSbUDjGfcs20BaOWR2SiIj0MiUARJJEOBLjpff2AnDZND39FxGRxLLbbHzzynFkpbuoOhzg4Ze3Ypqm1WGJiEgv0h2GSJJ47aP9NPjbyM10c+4kPf0XEZHEy/a5+da88dgMg/c2V3cuOSsiIv2DEgAiScDfGubFd/cAMH/2cJwOu6XxiIhI6iobks3Vc0YCsOT1CjbsqrM4IhER6S1KAIgkgRfe2UuwLcaQAh/TxxdZHY6IiKS4C88sZvbEgZgm3L98IwfrAlaHJCIivUAJABGL1TQGWfHxfgCuOn8kNsOwOCIREUl1hmFwwyWjGVWcRbAtxn8/s55AKGJ1WCIi0sOUABCx2LNv7iQWNxk3LJdxw3KtDkdERPoJh93Gd+ZPYECmm+qGIP/z3EZi8bjVYYmISA9SAkDEQrsPNrN6Sw0G8JXzRlgdjoiI9DOZ6S6+96WJuJ12Nu9p4LFXtmtlABGRFKYEgIhFTNNk6YoKAKaPL2JoYYbFEYmISH80tDCDf/3CWAzgzbUH+Ns7e6wOSUREeogSACIW+WjbYbbta8RhtzF/9nCrwxERkX5sSlk+Cy4uA+C5t3bz1roDFkckIiI9QQkAEQsE26I8+Y8dAFw6bSgDsjwWRyQiIv3dnKnFzJ1eAsDDL29jXUWtxRGJiEiiKQEgchoMo30m5ZPd/vbOHhr8beRne/jCjNITPM/qqxURkVT3xXOHM2N8EXHT5H+Wb2TngSarQxIRkQRyWB2ASF/V0hqmqTWCGT+5yZIO1AZ4ZXUlAF86byThWJxw7LNnXbbZDDQ3s4iI9CTDMFh4WTnNgTAbd9dz99J13H7tFM1TIyKSIpQAEDkFhgGtoShb99QTCsdO+DzTNHnhnT3ETSgpyiAai59wF0uvx0HJwEwM1BVARER6jsNu49vzx/PbJWvZWdXM4qfW8uPrplCc77M6NBEROU0aAiByGiLROOFI7IS3rXsbqK4P4rAbnDE6/6TOjZ5ALwEREZFE8Lgc/OArkxk2MIOWYITFT67hQG3A6rBEROQ0KQEg0kvawjE+2nYYgIkjBuBLc1ockYiIyLF5PQ5uu3oyQwt9NLdGWPTkGg7Vt1odloiInAYlAER6yYdbawiFY2T5XIwpzbU6HBERkc+U7nHyo2umUJyfTlMgzG+e+Jj9h1usDktERE6REgAivWBfTQs7DzQDMH1cEXabxvGLiEjf4Etz8qNrpzA4P53GljB3Pf4xFVVaHUBEpC9SAkCkh7WFY7y36RAAY0tzKMhJszgiERHpb9qXrT21pWsNwyAr3c0dC85gxOAsAqEoi59aw8Zd9ccsLyIiyUmrAIj0sNVbqgm2xchKdzF5VJ7V4YiISD9jtxvYbDb8wShwckvXdmHAt+aP58EXNrNlTwN3P7OOGy4ZzZnlBd2KetwO7Kdek4iI9BAlAER6UGW1n90H/RjAjAlFOOzqdCMiIr3LbjMIhqPs3NdEOHriS9ceyznjighHYuysaubh/9vKxl11TB6V1/nk3+mwMbY0F5/HiWmeRsJBREQSTgkAkR4SCkd5b1M1AOOG55Kfra7/IiJinY6laxNhxvgiXA47W/Y28NG2w9Q2BpkxYSBOhxLdIiLJTJ/SIj3ANE3e21RNKBwj2+di0sgBVockIiKSMIZhcNaYAqaPK8RmwN7qFl5+vxJ/a9jq0ERE5DiUABDpAdv3NVJZ3YLNgJkTBmK36UdNRERSz6gh2Vx89lA8LjsN/jZeereSfTVaJlBEJFnprkQkwRr8IT7YehiAqaPzGZDlsTgiERGRnlOQk8bc6SUMyHTTFonx9/creeb1ioQNNxARkcRRAkAkgSLROCvXHiQeNxmcn86YkhyrQxIREelx6WlOLpk2lPKh2QC8ufYAd/7lAyqr/RZHJiIin6YEgEgCrd5STVMgTJrbwcwJRVoLWURE+g2H3cbZYwu55OwhZHidVNUG+OUjH/LCO3uIxuJWhyciIigBIJIwuw40s7OqGQOYPWkgHpcW2RARkf5nSGEGP73hDCaPyiMaM3l25S7+/cHVbN5Tb3VoIiL9nhIAIgnQ6G/jvU2HAJgwYgBFuV6LIxIREbFOhtfFLV+ayNcvH0tmuotD9a0sfmot//PcRhr8bVaHJyLSb+kRpchpCkdivL6mimjMpCjXy8QRWvJPRETEMAymjy9i0sgBPPfWbv7x8X4+2FrD2opazp8ymCtmDSMnJ93qMEVE+hUlAEROg2mavLX+IP7WCOkeB+dOHojNpnH/IiIiHbweJ9ddVMasiQN5/NXt7NjfxCsf7OONtVV8YdZw5kwZRJqGzYmI9Ap92oqchg+3HabqcAC7zeC8KYM17l9EROQYhhZmcMeCqWzcXc9zb+1i90E/f329ghdW7WbG+CLmnFHM4Dz1CBAR6Um6WxE5RWu21fDxtsMAnDOukAFZHosjEhERSW6GYTBh+ADGD8tl4+56lq/aw64DTby+porX11QxpiSHC84oZuKIATjsmqpKRCTRlAAQOQX7alr40/MbASgvyWbE4CyLIxIREUkehtG+wdGHxRmGwdTR+Zx/dgnvrN3PK6v3sWbHYbbsbWDL3gZ8aU7OHlPI9HFFjBiceULL6pqmmdiLEBFJQUoAiJykppY2fvvUWkLhGAMHeDlzdIHVIYmIiCQNu93AZrPhD0aBY9+UGzaDcDxIcWEGN80dw5XNw1i1/iDvbTqEvzXCio/3s+Lj/QzI9DB5VB7jh+cybFAW9mPMteNxO7D30DWJiKQKJQBETkJbJMY9z6ynrilEYa6Xi88egh44iIiIfMJuMwiGo+zc10Q4GjtuubQ0F8FgmFi8/ZdpSVEGQwp8HKgNUFHVxN6DfuqaQ/zjo/3846P9uJ12igt8FBekM2hAOulpTgCcDhtjS3PxeZzqCSAichxKAIicoLhp8sDfNrPnkB9fmpNbr57C3gONBNuiVocmIiKSdCLROOHI8RMADmd7mY4EQIeCnDQKctI4e0wB+w8H2F/Twv7DLbRFYuysamJnVRMAGV4nhbleivN9DMpLx+dx9ug1iYj0dUoAiJygZ17fycfbD+OwG3z/qkkU5nrZe6DR6rBERERSlsNuo7Qog9KiDOJxk8ONQfYfDnCorpX65hD+1gj+1iYq9jfxxpoqCnPSGD00h/Kh2YwqztYEvSIi/0QJAJET8NqH+3h5dSUAX5s7htFDswnHLQ5KRESkH7HZDApzvRTmegEIR2LUNAQ5VN9KTUOQuuYQ1Q1BqhuCrFx3AIDcTDejirMZVZzFyMFZFOf7sB1jDgERkf5ACQCRz/DupkM88doOAOafO5xzxhZZHJGIiIi4OucD8OFy2hlVnM2BwwG2VtazrbKRyuoW6pvbeH9zNe9vrgYgzW1nxOAsRg3OYlRxNsMGZeJ2aupAEek/lAAQOY51FbX8+cUtAFx4RjGXTy+xOCIRERE5Gq/HweRReUwaOQCAtnCMXQea2LG/iR1VTVRUNRFsi7FxVz0bd9UD7fMQlBRlMHJwFmVDsikbko0vTfMIiEjqUgJA5Bi272vkD89tJBY3mT6ukGsuHHVC6xCLiIiI9dwuO2NKcxlTmgtALB5nf02AHfsbqahqYvu+Rhpbwuw60MyuA8288sE+DGBoYQblJdmMKclhVHE2aW79uSwiqUOfaCJHUVnt555n1hOJxpk4YgA3fX4MNt38i4iI9Fl2m42SogxKijK48MwhmKZJXVOIHVVN7NjXyLZ9jRysa2VvtZ+91X7+vnofNsNg2MAMyktyKC/JYeTgLA0ZEJE+TQkAkX+yr6aFxU+tJdgWZVRxFt+aNx6H3WZ1WCIiIpJAhmGQl51GXnYa08e1z+/T2NLG1soGtu5tYMveBg43hth5oJmdB5p58d29OOwGwwdlMaakfaWB4YOycDr0N4KI9B1KAIh8yr6aFhY9uYaWYITSogxu/fJEZfpFRET6iWyfm3PGFnVO+FvbFGTr3ka27G1ga2UDDf42tu9rZPu+RpYDLoeNkcVZlA9t7yFQWpShhwYiktSUABA54p9v/n90zWS8Hk0EJCIi0l/lZaUxa2IasyYOxDRNahqCbPlUDwF/a4TNexrYvKcBALfTzqghWYw5khAYWujDbuvbCYHenv/INM1erU+kv1ECQATd/IuIiMjxGYZBYa6Xwlwv500ejGmaHKgNsLWyka1HeggEQtEuqwykue0MH9S+7OCI4iyGD8zsU5MKxoBQKNKrdXrcDtT3UqTn9J1PIJEesvNAE3cvXUcgFNXNv4iIiJwQwzAYnO9jcL6PC84oJm6a7K9p6UwIbNvXSLAtyqbd9WzaXX/kHBiUl05pYQalAzMpKcpgSL4Ptyv5bnkNwyAUirB5Tz2RaLxX6nQ6bIwtzcXncaongEgPUQJA+rWNu+u479mNtEViDB+UyW1XTdLNv4iIiJw0m2EwtDCDoYUZXHzWEOJxk301LVRUNbGzqomKqiZqm0JUHQ5QdTjA2xsPAWAAedkeBuf5GJyfzsABXgqyveTnpJHpdVq+BHEkGicciVkag4gkjhIA0m+t3lLNA3/bTCxuMm5YLt+ZPx6PSz8SIiIifZFhtG/tt9Q9zzTN496c2+0GpQMzKR2YyYVnDgHaVxnYc7CZPYf8na9NgTCHG0McbgyxtqK2y3u4nXbysj3kZnjIznCT43ORneHGl+Yk3ePE63bg9Tjxehx43Q5stsRdu1Y/FklNutuRfmnFx/t5/JXtmMDZYwq4+fKxmrVXRESkj7LbDWw2G/5gFOj5ruOGAS6Xg7aTHB/vcNgYOSSbkUOyO/f5W8McqmvlQF2AQ3WtVNe3UtsUotHfRlsk1tlj4ER4XHbS3A7S3A7cTjsup+3Iq73L95/ss7W/uuy4HO2v7iNlvGlO7PrbSCTlKAEg/Uo8brL09Qpe+WAfAOdPHcyCC8sSmjEXERGR3mW3GQTDUXbuayIc7fnu6l6Pg5KBmQmtL9vnJtvnprwkB4BYLI4/GMHfGqE1FCESjWPYDA4eDhAMRwlH4rRFYoQjMaKx9qRHKBwjFI7R4G9LSEwuh+1IUsCOx+0gzdX11ZfmICPNlZRzGIjI0SkBIP1GsC3K/z6/ifU76wCYN3sYX5hRavnYOhEREUmM3hqv7nLaeqU+r7u9az+k4fM6GVGczdbdDbRFol3KxeImkWiMcKQ9nnA0TjR2ZIuaRGKf+j5mEol+8nXH/vZ9n3xvmhCOxglH4/g5fk8Hl8NGhtdFhtd5ZGv/OjPdhcdl199aIklECQDpF2oag/z3M+s5UBvA5bDxL5eP5azyAqvDEhERETltdpuB3eXA40rM+5mmicdtJy/by6ad9TS3thFqixEMRwmFYwTbogTbYrQEIwTbooSjceqaQ9Q1h7q9l8dlPzJ/gZucjPYt2+fS8AIRiygBIClv0+56/vf5TbQEI2T7XHzvSxMZNjDT6rBEREREkpJhGDgddvKy0yjM9ZKdcezMQjQWx98awd8aPvL6ydeBYIRQOMahulYO1bV+6v0h0+siJ8NNbqab3EwPuZkeXE4NJRDpaUoASMqKxeM899ZuXnp3LyZQUpTBLV+aSE6G2+rQRERERFKCw27rfLL/z6KxOI0tYRr8bTT622jwt1HvDxGOxGkKhGkKhNlzyN9Z3pfmZPWWakYMyqKkMIOSogyy0hPUrUFEACUAJEXVN4f44/Ob2L6/CYDzJg/imgtGKbMsIiIi0kscdht5WR7ysjyd+0zTJNjWPlFhgz9EXXMb9c0h/K0RWoIR1lfUsb6irrN8ts9FaVEmQwt9lBRlUFqUSbbPpXkFRE6REgCSz1ZqGwAAG2JJREFUctZsP8xD/7eVlmAEj8vOwsvKOXtModVhiYiIiPR7hmHg9TjwehwMzk/v3B+OxGhujeB22jlY18reQ80cqmulsSXM2opa1lbUdpbN9DoZWpRBaVFGe0+BwgwGZHmUFBA5AUoASMpoDoR54rXtrN5SA0BJYQbfnDeOwhyvxZGJiIiIyPG4nHYG5bmYNDIPn8eJaZqEwlH21bSw95C/fav2c6C2lebWCBt31bNxV33n+ekeByUdCYGi9i0/Ow2bkgIiXSgBIH2eaZq8v7maJ17bQUswgs0wuHTaUK6cNQynQzPMioiIiPRFHpeDUcXZjCrO7twXjsTYd7iFyiMJgT2H/FQdDhAIRdm8p4HNexo6y6a57QwtyGBoYQbFBemMHpaHz2U7srSiSP+k1i99WlVtgCUrdnRmgIcU+Pja58dQUpRhcWQiIiIicrIMo32Doz+5d7scjByczcjBnyQFItE4VbWf6ilwyE9lTQvBthjb9jWybV9jl/fwpTkZOMDLoLx0BuZ6GZiXTkFOGgMyPTi0PKGkOCUApE9qDoRZvmo3b649QNw0cdgNvjCjlMvOKdEHt4iIiEgfZLcb2Gw2/MEoYJ7UuXnZaeRlp3FGeQEAsVicQ/Wt7Ktp4UBtgOr6VqobgtQ1hWgJRtixv4kdRyaL7mAYMCDTQ352GvnZaRTkHHnNTmNAlod0j0PzDEifpwSA9CnBtigrPt7PS+/tJdgWA2BqWT5fOW8Ehbka6y8iIiLSV9ltBsFwlJ37mghHYwl5zzS3gxGDsygbkk1amotmf4h6f4hGfxh/a5hYzORwY5CaxiCRaJzaphC1TSG27G3o9l4up42cDA+5GW5yM9zkZLo7v8/JcJObqSSBJD8lAKRPaG4N89qH+1nx0X5a26JA+yR/11wwktFDcyyOTkREREQSJRKNE44kJgHQwW4zcDjjmKZJptdFpteFy2nvnHQwHo/TFAhT0xDkcOOntxA1jUGaA2HCkXh7T4L61mPW43LYyDmSEMjJcJPtO7JluMn2uY5878Lp0NLUYg0lACSpHawLsOLjKt5ad4BwNA5AUa6XL8woZdq4Qs3sKiIiIiKnrGPOAZut/el+TobnqA+XwpEYDf42Gvxt1PtD7a/NIeo79jWH8LdGCEfjVDcEqW4IHrfedI/jSFLATU63BEH791nproQMbTXNkxtOIaktKRMAtbW1/O53v2PlypX4/X7Ky8v53ve+x8yZMz/z3MrKSn7729+yevVqQqEQU6ZM4bbbbmP8+PHdyr788sv88Y9/ZNeuXfh8Pj7/+c9z6623kp6efpR3lt4SCkf5YEsNb60/SEXVJ2OzSosymDu9hCll+brxFxEREZHTcrJzDqR7naR7nRQX+o56PBKN09TSRmNLe1KgKRCmqSV85LWN5kCYxpY2ojGTQChKIBSl6nDgmPUZgM/rJCvdRaavPSGQle4iy+ciK9195NVFhteFzXbsv409bgfqbyAdki4BEAgEuOmmm6isrOTGG2+ksLCQpUuXcvPNN/PAAw8wa9asY55bXV3NggULiEQi3HDDDaSnp/Poo49y/fXX89RTT1FeXt5Z9tlnn+WnP/0pZ511Frfffjt79+7l8ccfZ/PmzTzyyCPYbJpIrjcF26Js2FXHmh21rK2opS3c3u3LZhhMHDGAC84sZmxJjsZUiYiIiEhC9MScAx1cTnvnZIKflua2U5CbzqaddTQG2mgNRY9skfbXtvbvA6EIpgn+1gj+1gh8RqIgzePA63bg9Tjwepyke9q/zvC6mDBiAMUDfHg9dv0tLcmXAHjsscfYvn07999/P+effz4A8+bNY968efziF7/g5ZdfPmbDve+++6irq+PZZ5/tvNn//Oc/z9y5c7nrrrt46KGHAGhtbeWuu+5iypQpPPTQQzidTgBKS0v5f//v//HCCy9wxRVX9MLV9l9x02R/TQvb9jWyYVcdW/c2EI19knktyEnj3EmDmDG+iGyf28JIRURERCSV9cScA8ficto6b8xdzmM/cDRNk7ZIjNZQlGBbe2Ig2JEgaIt1fh1qi2JCZyKBpu7v9dK7ewFwOmydww065ynwubvMWZDlc2HXg9CUlnQJgOXLl1NSUtJ58w+Qnp7OVVddxeLFi1m3bh2TJ0/udl4sFuNvf/sb06ZN6/Kkv6CggLlz5/LUU09RXV1NYWEhb7zxBo2NjVx33XWdN/9AZx3Lly9XAiDBmgNhKmv8VFa3ULG/ie37Gjsn8+tQmJPG1LJ8ppTlM2JQpjKUIiIiItIvGYaBx+XA4zr+7VrcNAm1xY6SJGhPHATbooQjcVqCESLRODVHVjw4dr2Qme4it2N+gk8nCzI8nUkDt0uDCvqqpEoA+P1+du3axeWXX97t2IQJEwCOmQDYsWMHra2tTJw48ajnPvnkk2zYsIHCwkLWrVsHwKRJk7qUczgcjB07lvXr1yficvqdtnCMen+Imob2D5aahiDV9a3sO9xCU0u4W3m3087I4izKh2YzZVQ+Awd4ddMvIiIiInKCbIZxpNu/gwFHOd6x0oHbYafhyOSFXbaWNhr8IRr9bTS2hInFzfZ5C1rCgP+Y9aa57WR62+cfyPA6yTwyF0Hmp77uGIaQ7nHicWn4QbJIqgRAdXU1pmkycODAbscKCgoAqKqqOua5wAmde+jQoeOW/eCDD/D7/WRkZJzCVfQ98bhJJBYnGosTicaJRuNEjnwdCseOmk3s6I7UEozQeGSyk2DbsbtOGUBBrpchBT6GDcxg9JAcSop86mIkIiIiItLDnA7bUeck+LS4aeIPhI8kBT7ZGv1t1Pvb/96v97fRFo4RbIsRbPvs1Q46dCYq3B1JAQdpbgdulx23047bZcfjtON2OXA7bZ37nQ4bDpsNh8OGw27gsNvaN5txZN8n++02Q0mGE5BUCQC/vz3LlJbWvWF6vV4AgsGjN7Ljnduxr+PclpYW7HY7LpfrmGVbW1tPOQFgsxnk5ib3SgKBYITgkTFD2MDhsOMAPKf5voYBdlv7D6Ddbhx5bf/BTaWfR8MA04Q5Z5fQWyur2AxwOGwUF2b2Sp29XV9/qfNU6jMMMDAwMU8pxr5wjX2tzlS+xo72hgEOu5GS12hVff2lzhOt73Q/206lzkTRv2Pfq/No7S3VrvFoDKP95v9EV9DKGwDDPqOMabYnC+Jxk7hpYsZN4v+0Lx43O8v1lvinvja6/ocuXxl03/dpRsf+T4760pw4HSf+4LLjf3dWVlrvta3jrATxaUmVAIjH2//Zjpa56Vi/8lhZneOd26FjZv94PH7Mch31nM4qAIbRfvObzDJ9bjI1ud5p8yZgbdaT5XT07pir3q6vv9Spa0yNOnWNqVFnf7hGK+rUNaZGnbrG1KlTel8yriyXVBGlp7c/NQ+FQt2OdTy9P9ZT+RM51+fzdZaNRqNEIpFuZTvO7y/d/0VERERERKR/SKoEQHFxMfDJeP5Pq6mpAY4+bv9kz/2sstnZ2Xg8p9sZXkRERERERCR5JFUCwOfzUVpayoYNG7od69h3tFn+AYYNG0Z6evpxz+2Y9X/8+PFd9neIRqNs2bKl2+oAIiIiIiIiIn1dUiUAAC6//HIqKipYuXJl575AIMDSpUsZMWJE53KA/8zlcnHxxRfz9ttvs3379s79NTU1vPjii8yePZvc3FwAzjvvPNLT03nkkUeIxT6ZuX7p0qW0tLQwb968Hro6EREREREREWsYptmLUzOegI4b8Lq6OhYuXEh+fj5Lly5lx44dPPDAA8yYMQOANWvWUFlZycyZM8nLywPgwIEDzJ8/H5vNxk033YTb7ebRRx+lvr6eJ598ktGjR3fW8/jjj3PnnXdy1llnccUVV7Bz504ee+wxzjrrLB588EHsdk3MISIiIiIiIqkj6RIA0D42f9GiRaxcuZJIJEJ5eTm33nor55xzTmeZO+64g2XLlvHII48wbdq0zv07d+5k0aJFrF69GrvdzsSJE/nhD3/I2LFju9WzbNky/vznP7Nnzx4GDBjApZdeyne/+93OyQJFREREREREUkVSJgBEREREREREJLGSbg4AEREREREREUk8JQBERERERERE+gElAERERERERET6ASUARERERERERPoBJQBERERERERE+gElAERERERERET6ASUARE5SbW0tP/vZz5g9ezaTJ0/mmmuu4e2337Y6LEkha9euZcyYMaxdu7bbsffee48FCxYwdepUzjnnHH76059SV1dnQZTSl23bto3vfe97TJs2jfHjx3PRRRdx9913Ew6Hu5RTe5NEqKys5Pvf/z6zZs1iypQp3HDDDaxatapbObU3SaRQKMRll13GnDlzuh1TW5NEuOOOOxg9evRRt0//DZds7c0wTdO0rHaRPiYQCHDNNddQWVnJjTfeSGFhIUuXLmX79u088MADzJo1y+oQpY+rrKxkwYIF1NTUsGTJEiZPntx57J133uHrX/86I0eOZP78+TQ1NfGXv/yFoqIinnnmGdLT0y2MXPqKyspK5s2bh9Pp5LrrrqOgoID33nuPl19+mZkzZ/Lggw9iGIbamyREVVUVX/rSlwD46le/SkZGBsuWLWPTpk3cc889XHrppYA+3yTx7rzzTh5//HEGDx7MihUrOverrUmizJ8/n2AwyLe+9a1ux2bPnk1ubm5ytjdTRE7Y/fffb5aVlZkrVqzo3NfS0mJeeOGF5sUXX2zG43ELo5O+bsWKFebZZ59tlpWVmWVlZeaaNWs6j8XjcfPSSy8158yZY/r9/s79b7zxhllWVmb+4Q9/sCJk6YO+8Y1vmOPGjTN37tzZZf+vfvUrs6yszHz11VfV3iRhbrvtNnPMmDHm5s2bO/cFAgHz3HPPNefMmWOapj7fJPFWrlxpjh492hw3bpx5/vnnd+5XW5NEiUaj5oQJE8w77rjjmGWStb1pCIDISVi+fDklJSWcf/75nfvS09O56qqr2LNnD+vWrbMwOunLfvjDH/LNb36T3Nxc5s6d2+34hg0b2LVrF1/+8pfx+Xyd+z/3uc8xYsQIli9f3pvhSh8Vi8VYvXo1Z555JsOHD+9y7MorrwTgo48+UnuThDEMgwsuuIAxY8Z07vN6vUyaNIn9+/fT0tKi9iYJ1djYyL/9278xf/58iouLuxxTW5NE2b17N21tbZSVlR2zTLK2NyUARE6Q3+9n165dTJw4sduxCRMmACgBIKesoqKC733vezz33HMMGzas2/GOsWSTJk3qdmzChAns3r0bv9/f43FK32az2Vi+fDl33nlnt2P19fUA2O12tTdJmMWLF3Pvvfd22ReNRtm2bRtZWVmkp6ervUlC/fu//ztOp5Of/exn3Y6prUmibNu2DYCRI0cC0NraSjwe71ImWdubEgAiJ6i6uhrTNBk4cGC3YwUFBUD7WEeRU/H000/z3e9+F7fbfdTjhw4dAqCoqKjbMbU/OVGGYTBkyBCGDh3a7djDDz8MwLRp09TepEc0NTXx0Ucf8e1vf5s9e/Zwyy23YBiG2pskzHPPPccrr7zCr371qy5PXDuorUmidCQAXnvtNT73uc8xZcoUpk6dyu23396ZUE/W9ubo9RpF+qiODF1aWlq3Y16vF4BgMNirMUnqcLlcxz3e0tICfNLWPq2jTba2tiY+MOkXHnroId58803OOOMMZs+ezauvvgqovUliffvb3+bDDz8E4MILL2T+/PmAPt8kMaqqqvjlL3/JjTfeyLRp045aRm1NEqUjAbBp0ya+//3v4/V6effdd1myZAnr16/nmWeeSdr2pgSAyAnq6NZjGEa3Y+aRxTSOdkwkEU6k/dls6tQlJ++RRx7hrrvuIj8/n9/+9reA2pv0jK9+9avcdNNNfPjhhzz22GNcddVVPPHEE2pvctri8Th33HEHBQUF3HbbbcctB2prcvrmzp3LhAkT+Nd//dfOhziXXHIJw4YN4z//8z95+OGHk7a9KQEgcoI6lukIhULdjnU8+c/IyOjVmKT/6Gh/R+tl0tEm1f7kZJimyeLFi/nTn/5Efn4+f/nLXzqHOKm9SU+45JJLgPan/8OHD+fnP/85jz76qNqbnLaHHnqIDz/8kD/+8Y8EAgECgQDQfsMfj8epr6/H6XSqrUnCXHHFFUfdf+211/Kb3/yGt99+u3PesGRrb0pxiZygjplkq6urux2rqakBOOr8ACKJ8FntzzAMCgsLezss6aPC4TA/+tGP+NOf/sTQoUN54oknOicyArU36XmXX345hmGwceNGtTc5bW+88QbxeJybb76Z6dOnd2579+7l4MGDTJ8+nW9/+9tqa9LjXC4XGRkZBAKBpG1v6gEgcoJ8Ph+lpaVs2LCh27GOfUdbIUAkEcaPHw+0t7V/Htu4YcMGRowYcdQJj0T+WSwW4wc/+AGvvfYaEyZM4I9//CO5ubldyqi9SSLU19dz7bXXMmnSJH7zm990Odba2oppmrjdbrU3OW0/+clPaG5u7rb/3/7t34hEIixatIjMzEwikQigtianp7W1lWuuuYZhw4Zxzz33dDlWX19PQ0MDZ555ZtJ+tqkHgMhJuPzyy6moqGDlypWd+wKBAEuXLmXEiBGdywGKJNrkyZMpLi5myZIlnV0bAd5880127tzZuYa7yGe59957ee2115g6dSoPP/xwt5t/UHuTxMjNzcUwDP7+97+zZ8+eLsfuv/9+AC666CK1Nzlt48ePZ8aMGd02j8eD2+1mxowZjB8/Xm1NEsLr9eJ0OvnHP/7B1q1buxz73e9+B8C8efOStr0ZZscMBCLymVpaWpg3bx51dXUsXLiQ/Px8li5dyo4dO3jggQeYMWOG1SFKCrj33nv5/e9/z5IlS5g8eXLn/hUrVvCd73yHsrIyrr76ampra3nooYcoLi7mqaee6hzbKHIshw8fZs6cOUQiEX74wx92LkP0acOGDWPixIlqb5IQ7733HjfffDPZ2dlcd911ZGVl8cYbb7By5UouvfRS7r77bgzDUHuTHnHppZcSDodZsWJF5z61NUmEjRs3cu211+L1elmwYAG5ubm8/vrrrFq1innz5nHXXXcBydnelAAQOUnV1dUsWrSIlStXEolEKC8v59Zbb+Wcc86xOjRJEcdKAED7OMf77ruPbdu2kZmZybnnnsttt91GXl6eRdFKX/LSSy/xgx/84Lhlrr76au68805A7U0SY/369fz+97/nww8/JBwOM3z4cL7yla+wYMGCLjNgq71Joh0tAQBqa5IYHZ9tH330EeFwmNLSUq6++mquu+66pP5sUwJAREREREREpB/QHAAiIiIiIiIi/YASACIiIiIiIiL9gBIAIiIiIiIiIv2AEgAiIiIiIiIi/YASACIiIiIiIiL9gBIAIiIiIiIiIv2AEgAiIiIiIiIi/YASACIiIiIiIiL9gBIAIiIi0iPuu+8+Ro8ezaRJk2hubrY6HBERkX5PCQARERFJONM0WbZsGV6vl1AoxLJly6wOSUREpN9TAkBEREQS7v3332ffvn3ceOONuN1ulixZYnVIIiIi/Z4SACIiIpJwf/3rXwG45JJLOPfcc9m5cyerV6+2OCoREZH+TQkAERERSaiWlhZeffVVCgoKKC8vZ+7cuQA89dRTRy1fUVHBLbfcwowZM5g8eTJf/epXWbduHQsXLmT06NHdyr/55pssXLiQM888k4kTJ3LllVfy6KOPEo/He/S6RERE+jqH1QGIiIhIannhhRcIBoNce+21GIbBnDlzyMzM5JVXXqG+vp7c3NzOshs2bGDhwoW0trZywQUXMHToUFatWsUNN9xAVlZWt/d+4IEHWLx4Mbm5uVxyySVkZmayatUqfvnLX/LBBx9wzz33YBhGb16uiIhIn6EeACIiIpJQHd3/r7zySgDcbjeXXXYZkUiEZ555pkvZn//857S0tHDvvffy+9//nh//+McsW7aMWbNmUVNT06Xs5s2b+a//+i/Kysp46aWX+I//+A9+8pOfsHz5ci6//HL+/ve/8/TTT/fORYqIiPRBSgCIiIhIwlRUVLB+/XrKysooLy/v3D9v3jwAli5dimmaAGzZsoUtW7Ywc+ZMLrzwws6ydrudn/70p9jt9i7v/fTTTxOPx/nRj35ETk5O536bzcaPf/zjzjIiIiJydBoCICIiIgnT8fT/iiuu6LJ/6tSplJaWsmfPHlatWsXs2bNZv349AJMnT+72PkOGDKGoqIiqqqrOfRs2bADgrbfe6jz30zweD1u2bME0TQ0DEBEROQolAERERCQhotEozz//PACLFy9m8eLFRy331FNPMXv2bBoaGgDIz88/armCgoIuCYDm5mYAHn300ePGEQgE8Pl8Jx2/iIhIqlMCQERERBLijTfeoLa2ltLSUqZNm3bUMk8//TSvv/461dXVpKenA+D3+49aNhAIdPm+o/w777zDgAEDEhi5iIhI/6AEgIiIiCRExwR/3/rWtzrH/P+zQ4cO8eabb/L0008za9YsANauXdutXFNTE7t37+6yb8yYMWzevJl169YxZ86cLsdaWlq45557KCkp4frrr0/E5YiIiKQcTQIoIiIip622tpa33noLr9fLJZdccsxyV111FdDeE2DChAmUlZXxxhtvsHLlys4ysViMu+66i0gk0uXcL3/5ywAsWrSIw4cPdzn229/+lkceeYQtW7Yk6pJERERSjmF2TMUrIiIicooeeOABFi9ezBe/+EV+9atfHbNcNBrlvPPO4/Dhw9x3333k5eVx4403Eg6HufDCCxk0aBDvv/8+e/fuJRaLEYlEutzU33PPPfzhD38gKyuLOXPmkJOTwwcffMCGDRsYPnw4jz32mIYHiIiIHIN6AIiIiMhpW7ZsGQDz588/bjmHw8EXv/hFoH0ywMmTJ/PEE08we/Zs3nnnHZYsWUJubi5PPvkkaWlppKWldTn/1ltv5Q9/+ANjx47ltdde44knniAQCPDNb36TJ598Ujf/IiIix6EeACIiImKJcDhMdXU1gwYNwm63dzkWCoWYOnUqw4YN48UXX7QoQhERkdSiHgAiIiJiiWAwyEUXXcRXvvIVotFol2N//vOficViTJ8+3aLoREREUo96AIiIiIhlbr/9dp5//nlGjBjBrFmzsNvtbNy4kdWrV1NcXMxf//pXsrOzrQ5TREQkJSgBICIiIpaJRqM8/fTTPPvss1RWVhIKhSgqKuKCCy7gG9/4BllZWVaHKCIikjKUABARERERERHpBzQHgIiIiIiIiEg/oASAiIiIiIiISD+gBICIiIiIiIhIP6AEgIiIiIiIiEg/oASAiIiIiIiISD+gBICIiIiIiIhIP6AEgIiIiIiIiEg/oASAiIiIiIiISD+gBICIiIiIiIhIP/D/AS1v3OYhBTP1AAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# Distribiution and density by Age\n","plt.figure(figsize=(12,8))\n","sns.distplot(train_df[\"Age\"], bins=24)\n","plt.title(\"Distribuition and density by Age\")\n","plt.xlabel(\"Age\")\n","\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"a8880fbd-1545-48dd-a850-1ccc6214bcdc","_uuid":"9c24e2674ba7fe8cfecc0b911e6773512b7099c5"},"source":["Separate by treatment"]},{"cell_type":"code","execution_count":102,"metadata":{"_cell_guid":"b464a345-00b2-47a2-9d3e-c7074cfaf790","_uuid":"2cc9d4abe3ca092a5bf9b7a9cd9f0b4d443c0471","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stderr","output_type":"stream","text":["y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\seaborn\\axisgrid.py:848: UserWarning: \n","\n","`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n","\n","Please adapt your code to use either `displot` (a figure-level function with\n","similar flexibility) or `histplot` (an axes-level function for histograms).\n","\n","For a guide to updating your code to use the new functions, please see\n","https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n","\n"," func(*plot_args, **plot_kwargs)\n","y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\seaborn\\axisgrid.py:848: UserWarning: \n","\n","`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n","\n","Please adapt your code to use either `displot` (a figure-level function with\n","similar flexibility) or `histplot` (an axes-level function for histograms).\n","\n","For a guide to updating your code to use the new functions, please see\n","https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n","\n"," func(*plot_args, **plot_kwargs)\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAj8AAAETCAYAAADZKmfnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXRU9fn48fedmUz2fSMhIYRAElBWWQQEURQXqIIrCgqoba0b5ytfxNbW32ltKy0u/VZraSlqFRBRUQrVKlpcQHaRNTtkISEJ2dfJbPf3x2RGQhayTDKTzPM6Z47mLnOfueQzee5nVVRVVRFCCCGE8BAaVwcghBBCCNGXJPkRQgghhEeR5EcIIYQQHkWSHyGEEEJ4FEl+hBBCCOFRJPkRQgghhEeR5EcIIYQQHkWSHyGEEEJ4FEl+hBBCCOFRJPkRXVJQUMCHH37o6jAc0tLS2Llzp6vD6DJX3ceMjAweffRRpk+fzvjx47n77rv57LPP+jwO4f6krDuHO9zHr7/+mpSUFL799luXxuFOJPkRnZaens7NN9/Mnj17XB0KAF999RW33XYbJ06ccHUoXeKq+3j8+HEWLlzIt99+y+zZs7nzzjspKiri8ccf5+233+7TWIR7k7LuHO5wH9PT01m5cqXLru+udK4OQPQf1dXVGI1GV4fhUF5ejtVqdXUYXeaq+/irX/0Kk8nE+++/T2pqKgAPP/wwd999N2vWrGHOnDlER0f3eVzC/UhZdw5X38edO3fyi1/8gpqaGpfF4K6k5kcID3D48GHS0tK48cYbHYkPQFhYGI888ghNTU0ur5oXQjhHSUkJP/vZz3jsscfQ6/Vcdtllrg7J7UjyIzrl6aef5v777wdg+/btpKSksHXrVgCuvfZa5s2bxxdffMG1117LmDFjWLx4sePc4uJinn32Wa6++mouv/xyZs6cya9+9StKSkpaXae2tpZXXnmF+fPnM378eC6//HJmzZrFz3/+cwoLCx3H3Xffffz85z8HYO3ataSkpLB//34AUlJSeOSRR0hLS+PBBx9kwoQJTJo0iSeeeILS0lIMBgNr1qxh5syZjB8/njvuuIPdu3e3isVgMPDaa68xd+5cRo8ezeTJk3n44Yc5evRoi+POnj1LSkoKv/vd7zh48CD33Xcf48ePZ8KECfzkJz/h5MmTnbqPbdm6dSspKSmXfL3yyisd/vsdPnwYgKlTp7baZ9+2b9++Dt9DeAYp6/27rIOtiXvXrl3ccsstbN++neTk5Eue42mk2Ut0ynXXXQfAhx9+SHJyMnPmzGHkyJGO/SUlJTz55JNcf/31BAcHExISAkBWVhb3338/lZWVzJo1i6SkJPLz83n//ff573//y4YNG0hMTASgoaGBhQsXkpOTw/Tp05k+fToGg4Fvv/2WrVu3snfvXj755BN8fX1ZsGABgYGBfPHFF0ycOJErr7ySwYMHO+I5ffo099xzD2PHjmXhwoUcOHCATz/9lKKiIvz9/SkoKGDOnDlUV1ezY8cOHn74YT7++GOGDBniiOX+++/n+PHjjB49mkWLFlFbW8unn37Kvffey0svvcQNN9zQ4h4dOnSITZs2MWnSJO655x4yMzP56quvOHjwIF988QVhYWGXvI8XGzlyJI899tgl/30mT57c4f6cnBwAx+e7UHR0NN7e3pw+ffqS1xEDn5T1/l3WAZKTk9mxYwfDhw+/5LEeSxWik/bt26cmJyerK1asaLH9mmuuUZOTk9UXX3yx1Tnz589XU1NT1a+++qrF9i+//FJNTk5W7777bse29evXq8nJyeorr7zS4liLxaLefffdanJysrpr1y7H9g8++EBNTk5WX3rppRbHJycnq8nJyerzzz/v2GY0GtWZM2eqycnJ6pw5c9Ta2lrHvpdeeklNTk5W165d69j2u9/9rs33LiwsVKdOnaqOHz9eraysVFVVVQsKChzXfOutt1oc//TTT6vJycnqunXrLnkfe9PDDz+sJicnqxkZGW3unzp1qjpu3Lg+i0e4Nynr/best2XVqlVqcnKyumfPHpfG4U6k2Us4zU033dTi52PHjnHq1CnmzJnDzJkzW+y7+uqrmT59OkeOHHHUSkybNo3f/OY3LF26tMWxGo3G8bRTUVHR6Xh+/OMfO/7fy8uLsWPHArBo0SICAgIc+yZMmADgqGq3WCx88MEHREZG8sQTT7R4z9jYWO6//37q6+v5+OOPW+wLCgri3nvvbbHt2muvBSA/P7/TcfeGhoYGAPR6fZv79Xo9TU1NfRmS6MekrLtvWRedI81ewmni4+Nb/Hz8+HHANlKjrXZq+x/kkydPkpSURGpqKqmpqTQ1NXHs2DFyc3MpKCggIyPD0R/FYrF0KpbAwEDCw8NbbPPz8wNaN/34+PgAOEZlnDlzhrq6OoKCgnjttddavXdubi4Ap06darE9Pj4erVbbKg4Ak8nUqbgvlpaWxueff37J4yZPnsyUKVPa3e/t7d1hHEaj0XF/hLgUKevuW9ZF50jyI5zG/sViZx9eefDgQQ4ePNjuedXV1YDtC+nVV19l06ZN1NbWArYnrNGjRzNixAgOHTrU6Vg6+kPeXu3HxfEUFRXx6quvXvI4O3uCcSFFUQBQVbXDa7YnLS2twxjsHnvssQ6/EIODgwHaHPKqqip1dXWt/oAI0R4p6+5b1kXnSPIjeo2/vz8A//u//9uiWro9a9as4a233mLatGksW7aMlJQUx7wzL7zwQpe+EHvCHvfMmTNZt25dn1yzPbfddhu33XZbj98nKSkJsM02e8UVV7TYV1JSQlNTk+MYIbpKynrPOausi86R5Ed0mv3JprNGjRoF2PoDtGXjxo1UVlYyf/584uLi+Oijj/D29uavf/1rqyfL7OxsoOVTVVfj6axhw4bh4+NDWloaRqOx1dPjnj172LdvH1dffTUTJ07s8vv3VtwdmTRpEmAbzj5//vwW++xT3l+cFAnPJWXdpj+WddE50uFZdJpOZ8uVzWZzp46fMGECw4YNY+fOna3W5Dl8+DDPP/88b775JqGhoYCtKtlsNlNVVdXi2B07dvDll18CLdvTuxpPZ+n1em655RbOnz/PSy+91GJm2bKyMp599ln+/ve/d/v9eyvujtj/LXbs2NHiD1RFRQV//etf8fb25o477uizeIR7k7Lef8u66Byp+RGdFhMTA9gWyfvDH/7A7NmzO3wa0mg0rFmzhmXLlvHYY49x1VVXkZKSwrlz59i5cyeqqvL88887qp5vv/121q5dyx133MGNN96Il5cXx44d49ChQ0RERFBWVtbiy9Iez7Zt2wC49dZbnTaZ11NPPcX333/PG2+8wb59+5g0aRJNTU189tlnVFZWsmzZsm49CV4Yd2fvozMoisJzzz3HAw88wH333ce8efMICAjg448/prS0lGeffZbIyMhejUH0H1LW+29ZF50jNT+i02JiYlixYgU+Pj5s2LChUysEX3755WzdupU777yT7Oxs3nrrLQ4fPsysWbN45513uP766x3HPv7446xcuZKgoCDee+89/vWvf2GxWPjVr37Fu+++C+B4KgSYOHEiS5YsoampiQ0bNrSajbUnAgMD2bx5M4899hhGo5HNmzfz6aefkpSUxMsvv8zTTz/d7ffuzn10hokTJ7Jx40YmT57Mf/7zH95//30GDx7Mq6++yqJFi/okBtE/SFnv32VdXJqidrdruhBCCCFEPyQ1P0IIIYTwKJL8CCGEEMKjSPIjhBBCCI8iyY8QQgghPIokP0IIIYTwKJL8CCGEEMKjSPIjhBBCCI8iMzz3AovFSkVFvcuur9EohIX5U1FRj9Uq0zj1Nrnffa+r9zwyMrBX4pCy7nnknvet3irrUvMzAGk0CoqioNHIonp9Qe5335N7biP3oe/JPe9bvXW/JfkRQgghhEeR5EcIIYQQHkWSHyGEEEJ4FEl+hBBCCOFRJPkRQgghhEeR5EcIIYQQHkXm+RFCCOFWFKX9Yc2qKnPriJ6T5EcIIYTbsAAGg6nd/T7eOrR9F44YoCT5EUII4RYURcFgMHEqtwKT2dpqv5dOw6ihYQT4eEkNkOgRSX6EEEK4FZPZitFkcXUYYgCTDs9CCCGE8CiS/AghhBDCo0jyI4QQQgiPIsmPEEIIITyKJD9CCCGE8CiS/AghhBDCo0jyI4QQQgiPIvP8CKdpa0p6VVXbnapeJikTQgjhCpL8CKdoa0p6RQG9XkdTO1PVyzT1QgghXEGSH9Fj7U1J7+ejIyEmiJyCaozmlrO1yjT1QgghXEWSH+E0F09Jr/fStLldCCGEcCVJfoQQQnRKe/33QPrwif5Fkh8hhBCX1Fa/vgtJHz7Rn0jyI4QQokPt9euzkz58or+R5EcIIUSnSP89MVDIJIdCCCGE8CiS/AghhBDCo0jyI4QQQgiPIsmPEEIIITyKJD9CCCGE8CiS/AghhBDCo0jyI4QQQgiPIsmPEEIIITyKWyY/ZWVlPPPMM8yYMYNx48axcOFC9uzZ06lz8/PzWb58OVOnTmX8+PE88MADnDhxos1j09PTefjhh5k0aRKTJk3ivvvu4/Dhw878KEIIIYRwM26X/NTX17Ns2TJ27NjBggULWLlyJY2NjTz00EPs3r27w3NLSkpYtGgR+/fvZ/HixSxfvpy8vDwWL15Menp6i2OPHDnCwoULycjI4Kc//Sk/+9nPKCwsZMmSJRw5cqQ3P6IQQgghXMjtlrfYsGEDmZmZrF27lmuuuQaA+fPnM3/+fJ577jn+85//tLuy8F/+8hfKy8vZunUrqampANx8883MnTuXP/zhD7zxxhuAbfXhZ555Bj8/PzZv3kx0dDQAc+fOZc6cObzyyiu8/vrrffBpPZPBaKbRaKHJaCHAx8vV4QghhPAwbpf8bNu2jYSEBEfiA+Dv789dd93FCy+8wNGjRxk3blyr8ywWC9u3b2fKlCmOxAcgKiqKuXPnsnnzZkpKSoiOjubQoUPk5OSwatUqR+IDEB0dzapVqzAYDL37IT2QVVXJOVvNqdxKquuNALz/32yGxQYxa/xgrrwsGq3G7SoihRBCDEBu9demtraW06dPM2bMmFb7Ro8eDcDRo0fbPDcrK4uGhoZ2z1VVlePHjwNw4MABAGbOnAmA1WqloaEBgHvvvZcHHnig5x9GODSZLHxx6Cx7T5Y4Eh+dVkEFcopqWP/vNH79xiEKSutcG6gQQgiP4FY1PyUlJaiqSkxMTKt9UVFRABQWFrZ7LtCpc0+fPg2At7c3K1asYOfOnTQ1NZGQkMCKFSu44YYbev5hBABGk4X/7M+jtLIRnVZh3IgIhg8OJsBPz5DoQI5ll/HJvjzOnq/j928f5qF5o7giJdLVYQshhBjA3Cr5qa2tBcDX17fVPj8/PwAaGxu7fK59m/3cmpoaFEXhoYceIjY2lt///vcYDAbWr1/P8uXLeemll7j55pt79Fl0OtdVqmm1mhb/7W2KAopGQdv8stMoCu/9N5vSykb0XhpunDKE8CAfW2wahbBgH26dkcis8YNZ+9EJTpyp4C8fHuf+G1O4bmJ8n8TuDH19v4V73XNPKOvtlXFHHBoFRaOg0ymoatt9Mt3pOj3hTr97nqC37rdbJT9WqxWgzQ7Nqqq2u+9S59ppmvuUmEwmVFUlKiqK119/3XHO9ddfz5w5c1i9ejU33nij4/iu0mgUQkP9u3WuMwUFtU4Ee4vR2oCvrx6dl9WxLbe4hu8yzqMoMHdaIrGRAY59XjoNfj56QkL8CAnx57c/m84//nWCHbvP8PanGQyKCGTG+MF9Fr8z9OX9FjauvueeVNbbKuN2XjoNvs3lub9cp6dc/bvnaZx9v90q+fH3t32JtNXh2F5rExgY2O1zAwJsf3ztNUH33HNPi2QpODiYG264gXfffZfTp08zfPjwbn0Oq1WlpqahW+c6g1arISjIl5qaRiyW1l8gzqYo0Ggw0dhoxGiyAGAyW/jvoQIAJiRHEuLvRUNDk+McX28dBqOJ/HNVNOe13DA5npq6Jr7+vogXNx1Gi5WRQ8N6Pf6e6uv7Lbp+z3srQfGUst5WGb+Q3ktLo8FIVZXqKM/ufJ2ekPLet3qrrLtV8hMXFwf80H/nQqWlpUDbfXq6eu6gQYMACA8Pb3VsREQEAHV1Pet8aza7vlBYLNY+iUNRFFSriqX5BXA0u5wGg5mIYB/GJkVgtl4UhwKNTWZyCqoxmn/4khseF0zh+TpyCmv460cn+c2Dkwnw7R/D4fvqfosfuMM9d/X1offvQ1tlvMX1rSqqVcVsVh219O58HWdwh989T+Ls++1WjZYBAQEMHTrUMSrrQvZtbY3mAkhMTMTf37/Dc8eOHdviPbKyslodm5eXB8Dgwf2rycWdGIwW0vIqAZh31dAO22pNZitGk8XxMputzBgTS1SoL1V1TWz4LKOvwhZCCOEh3Cr5AZg3bx7Z2dl8/fXXjm319fVs2bKFpKQkx5D3i+n1eubMmcOePXvIzMx0bC8tLeXf//43M2bMICzM1oRy3XXXERAQwJtvvtmihic/P5+dO3cyadIkIiNlxFF3pedVYraohAf7cPmw1rVrl6LTabj/xlQ0isKBtFL2n2pdmyeEEEJ0l1s1ewEsW7aMbdu2sXz5cpYuXUpkZCRbtmyhqKiIdevWOfroHDlyhPz8fKZPn+5oqnriiSfYtWsXS5YsYdmyZXh7e/P2229jsVhYuXKl4xqBgYH8v//3/1i1ahV33HEHCxcuxGAw8NZbb6HVavnlL3/pks8+EFitKllnqwCYkBLZYQf0jiQMCuRH04eybfcZtuzKZvyICPReWmeGKoQQwkO5Xc1PQEAAGzduZPbs2WzcuJE1a9bg6+vL+vXrmTZtmuO4d999l6eeeoqcnBzHttjYWDZt2sTYsWNZu3Ytr776KgkJCWzYsIGUlJQW17nlllt4/fXXiYyM5P/+7/9Yv349Y8eO5d13320xQ7TomoLSOhqbLPjotQyLDerRe82dmkB4kDeVtU3sbO48bacoSpsvIYQQ4lLcruYHbMtMvPDCCx0es3r1alavXt1qe1JSEmvXru3UdaZOncrUqVO7FaNom73WZ/jg4Dbn6egKL52WBTOH8Y8daXy8L4+ZY2MJ9NNjAQwGU5vn+HjrkPohIYQQHXHL5Ef0T7UNRorKbMN+R8QHO+U9r7xsEJ8eKKCgtI6P9+WxcHYyBoOJU7kVmC7q+e+l0zBqaBgBPl4uHwkihOhYRY2B7MJqauqN+Pt4MSI+mEg3mL9HeAZJfoTTZOTban1iwv0I9NM75T01isJtM4fxf+8f46vvi7j1qmHAD6PEhBD9h1VVOZpdxheHz3Iqt7LV/gnJkcyfmeiCyISnkeRHOIWqquQUVgO2uXqcaXRSODHhfpwrb+CbY0VMG932XE9CCPeVWVDFO19kkVdsW4pIAYYMCiQi2IequiZOF9bwXeZ5MguquG5iHEH+znmAEqItkvwIpyg8X09tgwmtRiHugmUsnEGjKFw/MZ63Ps3g80MFXHnZIKe+vxCi9zQYzGz+Iovdx88B4OutZda4wVwzfjARIT8sWVB4vo51O06RX1LHJ/vyuXnqEKfVIAtxMbcb7SX6p++zywAYHOmPVy8s9Dj18kH4++g4X2Xg+Olyp7+/EML5TuVW8Ozr+9l9/BwKMHNsLM//ZCp3XjO8ReIDMDgygKcXXcGQ6ACaTBa+PFLU5izPQjiDJD/CKY5m2ZKfIdFtr73WU95eWmY1L3T6zdGiXrmGEMI5LFYr7/43ixc2f09FTRORIT6sWjSBpTeldtic5eut48e3XIaPXktlbRMn5EFH9JIeJT81NTXOikP0Y0Vl9RRXNKBRIC6y91a4njk2FoDM/CrqG9se6i6EcK26RhN/2nKUTw/Y5ua6ZsJgfv3AZJLjQzp1fkiAN1MvtzVtH88pp7bB2GuxCs/Vo+RnxowZPPnkk+zevVuGFnuwQxm2hWNjIwN6dRbmyBBfUuJDUIHs5s7VQgj3UV3XxPMbDnMytxK9l4ZH5l/OfXNS8NF3rXvpsNggBoX7YVXh++ZaZSGcqUfJT0pKCh9//DE//vGPmTVrFi+//DK5ublOCk30F/Yvp6GDeqfJ60L2kV5ZBdWScAvhRmrqjfxx03ecK28gNNCbXyy+gompUd16L0VRuCLZtr7imXO1VNc1OTNUIXqW/GzZsoVPPvmEhx56CEVR+Nvf/sZNN93EokWL+OCDD6ivr3dWnMJN1TYYyT1na/6Mj3buKK+2TEyJwkuroaquiYoa+UIUwh2YzFb+svU4Rc2Jz6p7x/e4/194sA/xUbbvlJNnWs8JJERP9LjDc2JiIitWrGDXrl384x//4Oabb+bUqVM888wzXHXVVTz99NMcOHDAGbEKN3QytwIViI3wx9/Hq9ev5+ejY/Rw20rxOdL0JYTLqarKnmPnKCqrJ9hfz1P3jicq1DkzNV8+LAyA00XVNDaZnfKeQoATR3spisJVV13Fiy++yL59+3j55ZcJCwtj27ZtLFmyhOuvv57XX3+dhoYGZ11SuIGTpysAGJkQ2mfXnNRclZ5XUitNX0K4WNbZarILq9Eo8LP5lxPtpMQHbP38IoJ9sKqQfVYedoTzOHWou9ls5vPPP2fVqlX88pe/pLCwEG9vb+bMmYNGo+GPf/wj8+bNIysry5mXFS6iqioncm3JT2ofJj8pQ0Lx0mlobLJQVmXos+sKIVqqqTdyIM024GHe9ERShjj/e8A+SizrrPTzE87jlBmejx49ykcffcQnn3xCdbXtF3TMmDHcfvvtzJ07l4AAW7vthx9+yC9+8Qt++ctf8u677zrj0sKFzp6vp7rOiN5LQ9LgYE41J0K9zUunYUh0ADmFNeSV1BIZ6nvpk4QQTqWqKvtPlWC1qsRG+DN7YlyvXGdoTCAH00upazRReL6ecSMie+U6wrP0KPl57bXX2LZtG/n5+aiqSnh4OEuXLuX2229n+PDhrY5fsGABf//738nMzOzJZYWbOHHGNgFZanNNTF8aGhNETmEN+SV1XJESiaIofXp9ITxd4fl6zpU3oNEoTB8Tg6aXyqBOq2FYbBAZ+VWk51Uyd9rQXrmO8Cw9Sn7+/Oc/o9Vqufrqq7njjjuYNWsWOl3HbxkbG8vYsWN7clnhJk6esdX0XJ4Y3ufXjo8MQKdVqGs0UVHbRHiQT5/HIISnsqoq32WeB2z9/YJ7eRHS5PgQMvKryCuppabeSEAfDK4QA1uPkp8VK1Ywf/58IiM7Xw25fv36nlxSuAmzxerogDhqaN/197HT6TTERviTX1JHfnGtJD9C9KH8kjqq6ozodRrHiCxFsb1s67W3rbt9dkIDvYkI9qGs2sCRzPPETu29meSFZ+hRW8Xp06c5duxYh8d89NFHLFu2rCeXEW4o91wtRrOVAF8vYiNc80Vkn0ekoLTOJdcXwhOpqupYcys1IRRvLy1arYJGo6G20UydwdTuy9KD6w6NsZX3wxnnnfAphKfrUc3Phx9+SFxcHLNnz273mIMHD3Lo0KGeXEa4ofR826RjKUNCXNbfZnCEP4oCVXVG6hpNhPXi0hpCCJuSykYqaprQaRVSE2wjsbQahUajmZyCaozmtlMcL52GUUPDCPDx6lYN0NBBQRxKP8+ZczWUVTUSHiy1vaL7upT8vPHGG/zzn/9ste29995r83iz2Ux5eTlDhgzpfoTCLWUUVAGQ0snFCnuDt15LZIgvpZWNnD1fR5g0fQnR6+zN3YkxQa3W7DKZrRhNPanfaZ+fj46YcD/OlTewP62Em69M6JXrCM/QpWavu+66C5PJRHFxMcXFxSiKQl1dnePni19VVVXEx8fz7LPP9lb8wgUu7O/TG/N6dIV9FfnCUllKRYje1mS0kFdcC8CI+OA+v37SYNs1958q6fNri4GlSzU//v7+7Nmzx/Fzamoqjz32GI899pjTAxPuSVEU8kvqaDJZ8PfRERcVgCtHmcdFBvBdZhnnKhowma2uC0QID5BdWI3FqhIa6O2SQQZDY4LYe6KYgtI6CsvqGeyi/oai/+tRh+fnn3+e6667zlmxCDdnAeoMJo41d3ZMGhxMQ5OZ+iYzrko7ggP0+PvosFpVisqk9keI3qKqKhnNff2GxwW7pK+fj17rWEpHan9ET/Qo+VmwYAGpqanOikW4MUVRMDSZOZVbwZHm+T38fHQczS4jI78Ss8WK0sEQ196MK6555WcZ9SVE7zlbWkdFTRMajcKwmKBuvYd9OLyiKO28Lv0eVzSv7XfgVIksdyG6rUvNXrNmzWLZsmUsWbLE8XNnKIrCrl27uhyccD9Gk4WSStvitOFBPhhNFvRefTu788XiIv3JyK+iQBY6FaLXHMkqA2zlzVvf9ZGVFw6Hh7bLqUajXLIWefSwcPQ6DaVVjeQW15LYzURMeLYuJT/FxcXU1ta2+Fl4luo6I0aTFa1GITTQ29XhADAozA+dVqHeYKawrJ7U+N6dbVYIT3Q025b8JDTPr9VVnRkO7+ejIyEmqMNaZG+9lrEjIjiYVsr+UyWS/Ihu6VLyk56e3uHPYuArrWwEIDzYB43GPdbT0mo1DArz4+z5ek6eriA13rUj0IQYaIrK6imtbESjwODInnUy7mg4fGdrkaeMjOZgWikH00u569rhvbaumBi4XNteIfqd0uYmr8gQ91pJPS7S1u/HvtiqEMJ57Ot4xUb4o3eDyUTHJIXjo9dSWdvkmHZDiK5wSvJz9OhRx/9bLBb+9re/8eCDD/LrX/+awsJCZ1xCuImS5pqfyBD3mlBwcJTtaTTvXC01DUYXRyPEwHI4oxSwDTV3B146LROSbWtKHkiTUV+i63qU/NTV1XHvvfeycOFCKittQyBffPFF/vSnP7Fnzx7eeecd7r77bukbNEA0NpmprG0C3K/mx9/Hi7Agb1TgRI7U/gjhLBU1BnKLa1GAIYO619+nN0weGQ3AofRSLFaZ40t0TY+Sn7///e989913TJ06FYCmpiY2b95MaGgoGzZs4Pe//z1VVVW89tprXXrfsrIynnnmGWbMmMG4ceNYuHBhi8kVO5Kfn8/y5cuZOnUq48eP54EHHuDEiROXPO/9998nJSWFrVu3dilWTyEnPiUAACAASURBVJJfYuvsHuDrha93j5aF6xXxUbYv5qM5ZS6ORIiBw97ROTE2CD83Kvejhobi76OjpsFERn6Vq8MR/UyPkp+dO3cybtw4Xn/9dUJDQ9m3bx8NDQ3ceuutTJw4kdtuu43Zs2fzzTffdPo96+vrWbZsGTt27GDBggWsXLmSxsZGHnroIXbv3t3huSUlJSxatIj9+/ezePFili9fTl5eHosXL+6wc3ZBQQG///3vOx2jpzpzrgaACDddUHBItK3fz/HTFZgt8iQohDOcOFMBwKjEMBdH0pJOq+GKlOY5f6TpS3RRj5KfoqIiJk6c6Ph59+7dKIrCzJkzHdsSEhIoL+98M8SGDRvIzMzkT3/6E08++SSLFi1i06ZNxMXF8dxzz3U4j8tf/vIXysvLefPNN3n00UdZunQp77zzDl5eXvzhD39o8xyr1cqqVaswmUydjtFTnTlnq/lxtyYvu8hQXwJ8vWhsMpNTKJ0ghegpi9VKevOszqkuXsevLVNG2pKfwxnn5YFHdEmPkh9/f3+Mxh86l+7ZswcvLy8mTJjg2Hb+/HlCQztfaLZt20ZCQgLXXHNNi+vcdddd5ObmtuhcfSGLxcL27duZMmVKi1mno6KimDt3Lnv37qWkpPXTwbp16zh58iQ//elPOx2jJ1JVldzmmp/IUPes+dEoimPq+6PS70eIHjtzrpbGJts6fvHNM6m7k5QhoQT566k3mDnZXEMlRGf0KPlJSkriyy+/pKGhgb1793L69GmmTJmCt7dt8rvc3Fw+/fRTkpOTO/V+tbW1nD59mjFjxrTaN3r0aIB2k5+srCwaGhraPVdVVY4fP95i+6lTp3jllVdYsWIFiYmJnYrRU5VUNNJgMDdPbuieyQ/AZcNsVfPHJPkRosdONScUI4eGuc28XhfSaBQmNy93sfekDKwRndej5Of++++noKCAq666ioceeghFUVi8eDEAb775JrfddhsGg4EHHnigU+9XUmJbqyUmJqbVvqgo2y94e0Pn7bU6nT23qamJlStXMnHiRO67775OxefJspubkSKCfdC64Zeg3ciEMDSKQlFZPeerGl0djhD92slcW/JzuZv197nQ9NG27/zvMsuoN0j3BdE5Peq6f/311/PSSy+xbt06ABYtWsTVV18NQENDA4GBgfz2t791jAa7FPvSGb6+rfuU+Pn5AdDY2PYftI7OtW+78NwXXniBkpIS/vGPf/TK6sQ6nevmj9RqNS3+6wxnim3JT3SYX6vkR9O8KKFGC1qLcsntl9qn1SgoGgWdTkFVW+5TFFA0Ctrm18Xn+ft5MSI+mIz8Kk6cqeD6SfE9/uyX0hv3W3TMne75QCvrdo1NZk4X2Zq6xwwPb7fcQcfl2ZnHtPXdMGxwEPFRARSU1nE44zzXXhHX3Y/cKe70u+cJeut+93jc4k033cRNN93Uavv999/Pz372sy4lFtbmuRraOsfe0bm99+voXDuNxnbz9u7dy9tvv83q1avbrCnqKY1GITS0Z1PAO0NQkPM6Juees62YHj8oED+/lmt6+fro0Om0+Pro0emsl9x+qX1eOg2+PnpCQvzajMVobcDXV4/Oq+3zpo2JJSO/ipN5ldw1J7XN9+gNzrzfonNcfc8HYlm3yzpZjMWqEhPhz4ihEZRWtF3uoOPy7Mxj2vtumHNlAuv/dZK9p0q4/bqUbnzarnP1756ncfb97rVJGwICut45zt/f9iViMBha7bPX2gQGtj3JVmfODQgIoKamhqeffpqpU6cyc+ZMKips1br19fWArcaqoqKCwMBAvLy8uvwZAKxWlZqahm6d6wxarYagIF9qahqxOGEEhNFkIa/Y9gQY4q+noaGpxX5FtWI2W2g0GDEaLZfcfql9ei8tjQYjVVUqFw/uUxRoNJhobDS2Wh/Ifl5KnG0W2uNZZRSX1HRrBequcPb9FpfW1XveWwnKQCvrFzp48hwAI4eEUFVV3265g47LszOPae+7YdwwW3N3Rl4lJ7NKiY3ovYRUynvf6q2y3uPkJzs7m3feeYe8vDxMJlObQ9EVReGf//znJd8rLs5WXdnWqKzSUtv06u3V1HT23LS0NIqLiykuLm6zOe65557jueee46233mLKlCmXjLk9ZrPrC4XFYnVKHGfO1WCxqgT6eeGj12K66D2tqoqqqlgtYLGql9x+qX0Wq4pqVTGb1Va/T4qioFpVLM2vts6LCvEjItiHsmoDx3LKGD8issf3oDOcdb9F57nDPXf19aF37kNWgW3iwKTBwbay2E65g47LszOPae+7wd/HizFJ4XyfXcaXRwq565rh3fnIXeIOv3uexNn3u0fJz969e/nxj3+M2Wzu8LjONn0FBAQwdOjQVqOyAMe2tkZzASQmJuLv79/huWPHjkWr1fLGG2+0Omb//v2sXbuWBx98kKuuuqrFcHlPl9s8v098dGCv9I9yNkVRGJMUzn+/K+RYTnmfJT9CDBQms4XcYlu5Hz442MXRdM7MsbF8n13GN0eLmH9VolsswCrcV4+Sn9deew2LxcLjjz/OtddeS2Bgz/84zps3j1dffZWvv/7aMVlifX09W7ZsISkpyTHk/WJ6vZ45c+awfft2MjMzHcPrS0tL+fe//82MGTMIC7ONWJg2bVqr8+1rkw0fPrzN/Z4st7nJa4gbzvPRnrHDI/jvd4V8n13GfaqKph8kbUK4izPnarFYVYL99W47o/vFxiSFEx7kQ3mNgf1pJcwYE+vqkIQb61Hyc+LECW644QYeffRRZ8XDsmXL2LZtG8uXL2fp0qVERkayZcsWioqKWLdunSO5OnLkCPn5+UyfPp2IiAgAnnjiCXbt2sWSJUtYtmwZ3t7evP3221gsFlauXOm0GD2N/QlwSHQg1g5m2HYHimJ7jUwIw9dbS3WdkTNFtQyPC+5wdnAhxA/sM6QPjwvuF7W9YOt8fu2Ewbz3ZQ7/PVzIVaNj+k3sou/1aOyYTqcjNta52XVAQAAbN25k9uzZbNy4kTVr1uDr68v69etb1Mi8++67PPXUU+Tk5Di2xcbGsmnTJsaOHcvatWt59dVXSUhIYMOGDaSk9M0IgIGmyWihqMzWGdy+dpa70moVNBoNtY1mmswWLmuem2TfqWLqDCba7mIphLhY1tnm5KefNHnZXTUmBp1WQ15JrWOYvhBt6VHNzxVXXMHhw4edFYtDdHQ0L7zwQofHrF69mtWrV7fanpSUxNq1a7t8zblz5zJ37twunzfQ5ZfWoqoQEuBNcIA3UOvqkNql1Sg0Gs3kFFRjNFsI9rcNyT+QVsKI+GAuSwwnwMdLaoCE6ICqqo5JTftb8hPop2fKyCj2nChm56ECkvpZ/KLv9Kjm58knnyQrK4s1a9ZQXS0LSQ5E9s7OQ2PanmLAHZnMVowmC1Ghvmg1CrUNJkoqZLZnITqjtLKRukYTOq2GIdH9p9zb2Sc2PZheSkmF66YhEO6tRzU/f/7zn4mNjeX111/n9ddfJyQkxLGu14UURWHXrl09uZRwEXt/n8RBQX16XXvfHWg9w3Nneek0xEb4U1Ba51iUVQjRMXuTV2JMIF4unL26u4ZEBzImKZxjOeV8sj+PpTeNdHVIwg31KPn5/PPPW/xsHzElBg77SK++rPm5sO8OtGyi0mgUujLTw5Bo27T3Z87VSHOXEJ3QX5u8LjRv6lCO5ZSz53gxt0xPJCyof4xYE32nR8lPenq6s+IQbqixyUxxua3aeGgf1vxc3HfnQn4+OhJiglDoXBVQfFQAGo1CVZ2RwrJ6UuP1vRGyEANGzgBIfobHBZMSH0JGQRX/2Z/PvdcntzrmUiPB5GFpYOt/dZqiz+SX1KIC4UHeBPn3fdJg77tz4cvcxenk9V5a4iJt050fTj/fG2EKMWDUG0wUNo/uTIrrv8kPwLzpQwH48vtCyqtbLntkAeoMpg5fMjp0YHPK2l5nzpxh69atnDp1iurqat5//32+/PJLamtrmTdvnsy10E/Z+/v0Za1Pb0iMCSK/pI7DGaXcc92ITtYZCeF5cgptzdzRob4E+fXvWtJRCaGkDgkhPb+KbbvP8MBcW98fRVEwGEycyq1otVSPnZdOw6ihYTI6dADrcc3P22+/zY9+9CPWrVvHnj17OHnyJAAHDhzgqaeeYsWKFY4V10X/Yk9+Egb1vxEfFxoc6Y+XTkNlbZOjSl8I0Vp/6O9jHwyhKEq7L9txCrfPSgJgz4lzjvnK7NqqWba/2kuKxMDRo+Tnm2++4Xe/+x0JCQm88MIL3HPPPY598+bN47LLLuOTTz7hgw8+6HGgou/ZR0gN7efJj06rcXyGfSeL2/2yFMLTZZ+1LWY63E2bvC4cDNGZJquk2GAmJEeiqvDBVzkdvrfwLD1q9lq/fj2RkZFs3ryZwMBAcnNzHftGjRrFW2+9xdy5c9myZQt33nlnT2MVfajBYKak0jY3ztCY/t3sBTA8Ppiss9XsP1XCvOmJrYbw+njrkGUQhSezWK2cbn7gcdean44GQ9hd3GR128xhfJ9VxpGsMtJyKxiVGN7HUQt31KOanxMnTjBnzhwCA9uuGfDz82P27Nnk5eX15DKijymKQn6prckrItiHQD99l+bXcUcJ0YEE+eupN5jZ8W0uR7PLHK9TuRUYmsxSAyQ82tnSeowmK37eOmIi/F0dToe60mQVG+HPNeMHA/DOF1lYpBuGoIfJj9lsRqvt+HlZVVVMJlNPLiP6kH0UREaBrfo7LiqAOoOJ+iZzl+bXcTcajcLkUdEApOVWSPu+EBfJam7yShocjGaAPQjcOiMRfx8dZ8/X8/X3Ra4OR7iBHiU/w4YNY+/eve12aDaZTOzevZvExMSeXEb0EUVRMDSZOZVbwfGccgC8tBqOZpeRkV+J2WLt9Pw67sie/Jwrb6CuURJyIS70Q2fn/t/MfbEAXy/mzxgGwNavT9NgkPLv6XqU/CxYsICsrCyeeeYZ6utb9qSvrq5m1apV5Ofnc+utt/YoSNG3TGYr56ts/X2CA/Tdml/HHYUH+xATbqvOzz4ro76EuNBAmNywI7PGxzI4wp+6RhOf7Mt3dTjCxXrU4XnRokXs2bOHDz/8kO3bt+Pr6wvYRnrl5eVhMpmYOnUqixcvdkqwom80GS3UNtiejMIH2LTwqUNCOFdeT05hNWOGhw+46n0huqOixkB5TRMaRSExtv/X/LS1NqBOq+We60bwwubv+fpoERHBPvj5OGWqO9EP9ajmR6PR8Nprr/Hzn/+chIQEamtrUVWV7OxsBg0axP/8z/+wbt26S/YLEu6lrNpW6xPg64W3fmD92w2NCUKv01Bv+GHpDiE8nb3JKz4qAB99/04IOhoOnxATxOhh4VitKvtOlbg6VOFCPf4t12g0LFmyhCVLltDY2EhNTQ3+/v4EBAQ4Iz7hAmXNU8GHBw+sWh+wzfmTGBtERn4VWWeriXXzUS1C9AV7M/BAaPK61HD48ckRnMqt4GxpHWfP1xEXKX+rPFG3k59jx47xr3/9i4MHD1JSUkJdXR3+/v4MGTKEiRMncuutt5KamurMWEUfKatqTn6CvF0cSe8YERdMRn4V+SW1NBjM6L0GVu2WEF1lr/kZER/c5pQP/bF12D4c/mIBfl7MGBfLl98Vcij9PLHh/mg0/fADih7pcvLT1NTEqlWr+PTTT1uteVJdXc3x48c5fvw4b775Jrfccgu//vWv8fEZeDUIA5m92Wsg1vwAhAX5EBniy/mqRjILqhyjwITwRE1GC/kldQDERPhT18ZIKI1G6ddTXVzsuknx7DtRTE29kcyCKlITQl0dkuhjXUp+rFYrDz30EAcPHmTo0KEsXbqUyZMnExsbi5eXF/X19Zw9e5b9+/fzzjvvsG3bNkpLS3n99ddlArl+ot5gcnR2DhtgnZ0vNDIhxJH8XJES6epwhHCZ3OJarKqKv4+O/JJaCkrrWh3j56MjISaoX091cSFfbx1XpESx5/g5jmaXMyw2SGqAPUyXOjy/9957HDx4kBtuuIGPPvqIhQsXMmzYMHx8fNBqtQQFBTFq1CiWLVvGjh07mDt3Lvv27WP79u29Fb9wsoLmJ8BAPy+8B/CXwZDoQPy8dRiMFseU/kJ4InuTV1SoX7szJw+EqS4uljoklOAAPU0mC8ea5zUTnqNLyc+OHTuIjo5m9erVl2zK0uv1PP/884SFhbFjx44eBSn6Tn6JbVmLgTbE/WIajULKkBAATp6uaNWEK4SnsC9mGh3m6+JI+pZGozhqfdPzqqhtMLo4ItGXupT8ZGdnM23aNMd8Ppei1+uZNm0a6enp3QpO9D17zU/YAO3vc6ER8cFoNApl1QZyi2tdHY4Qfc6qqo6an+gwPxdH0/cGR/gTE+6HVVX5LrPM1eGIPtSl5Keuro7w8K6tiDto0CAqKyu7dI5wHceCpgO85gfAR68jMca2KO9XRwqbJ0ZTWr2EGKiKyxuoN5jx0mkGfG1vWxTlh9qfvOJazlc2ujgi0Ve6lPyYTKYuj9zy9vbGbDZ36RzhGnUNJipqmgAIG6DD3C9mH+VxJKuMvJK6VpOi1RlMtB4sK8TAYK/1SRgU6LHDvcOCfBzzGx1ML5UmcA/Rv6fyFE6VW2zr+Bvkr/eYkQ/hQT4MjvSn8Hw9H3yZ3WrYu5dOw6ihYQT4eMmXohhw7JMbJsb0/yUtemLciAhyi2soqzaQV1JHcnyIq0MSvaxHy1uIgcXe7yXCA/r7XGh8cgQAp3Irqa03thjlYjIPvFEuQtjZa36GDYD1vHrCz0fHqKFhABzJPI/FKg86A12Xa36++OILCgsLO318WlpaVy8hXMRe8xMR4lmjPuKjAoiN8KeorJ6M/ErGDI9wdUhC9LraBiPFFbb17RJjghyJkKe6LDGMzIIqahtMpOdVMiFZ5v8ayLqc/KSlpXU5oZFOo/3Dmeb5bjyt5kdRFK65Io6Nn2aQllfFqMQwdFqpFBUDW06hrbzHhPvh7+vl4mhcz0unYezwCPafKuFI5nkWzBxGgI/cl4GqS8nP888/31txCBerrG2ioqYJRYGIEB/wsFrfsSMi+Nc3p6ltMJFdWE3qEJnuXgxs9pqegbCYqbOMiAsmLa+Smnojnx8q4J7Zya4OSfSSLiU/CxYs6K04WigrK+Pll1/m66+/pra2ltTUVB5//HGmT59+yXPz8/N58cUXOXDgAAaDgfHjx/Pkk09y+eWXtzjOYrHw5ptvsnXrVvLz89Hr9YwbN47HH3+ccePG9dZHc1uni+xPgf7oddo2FwQcyLQahdHDwvn2RDGnzlSSHBfisaNfhGewT244PE4699ppNAoTkiP48kgRuw4XcsOkIYQGesbIV0/jdnX79fX1juUxFixYwMqVK2lsbOShhx5i9+7dHZ5bUlLCokWL2L9/P4sXL2b58uXk5eWxePHiVhMt/uY3v+GPf/wjcXFxPP300zz44INkZGSwePFi9u3b15sf0S2dLrKP+gh0cSSukxIfio9eS12jiRwP7/8gBjaT2crpc7YBDiPipObnQvFRAUSH+WKyWPnom9OuDkf0ErdLfjZs2EBmZiZ/+tOfePLJJ1m0aBGbNm0iLi6O5557rsPhxn/5y18oLy/nzTff5NFHH2Xp0qW88847eHl58Yc//MFx3MmTJ9m8eTMLFizgb3/7G4sWLeKRRx7h/fffx8fHxyOb9+x/7Id68JBXnU7D5cNsIz6O5ZRjscpILzEw5RbXYLZYCfLzYpAHzuzcEUVRmNI85cXu4+c428ZCr6L/c7vkZ9u2bSQkJHDNNdc4tvn7+3PXXXeRm5vL0aNH2zzPYrGwfft2pkyZQmpqqmN7VFQUc+fOZe/evZSUlADw7bffAnDHHXe0eI9BgwYxefJk0tPTqa+vd/ZHc1tmi9UxzN2Tkx+AlPgQfL111BvMZJ2V2h8xMGUW2Jq8RsSFyICUNkSF+jFuRASqCu9/lePqcEQvcKvkp7a2ltOnTzNmzJhW+0aPHg3QbvKTlZVFQ0NDu+eqqsrx48cBuOeee9i2bZvjPS9UUVGBoihotZ4xyR9A4fl6jGYrfj46okI9a5j7xbRaDaOTbLU/x3PKB+Rq1kJkFtgS+xEymV+7fjQ9Ea1G4VhOOWm5Fa4ORziZWyU/JSUlqKpKTExMq31RUVEA7c4xZK/V6cy5AQEBpKam4u3dsiPbsWPH+P777xk7dmyXl/Hoz3Ka+/sMiwlCI0+BjIgLxt9HR2OThbRcWZdODCxWq0p2oa3mJzle+vu0JyrUl1njBwOw5cscrDLD+4DiVstb1Nbaml7aWjXez8/WLt3Y2PbCcx2da9/W3rkA5eXlrFixAoAnnniiC1G3TadzXV6pbZ6jRtvJuWrsI71GxIegaBS0za8LaZoX+dRoQWvp3L7unOMO+7QaLeNGRLDneDFHs8u449rhhAToUdW2E8Ou3m/Rc+50z/tTWQfbAp6NTRZ89FoSY4PQaZV2y71dR+WnM/uddUxfvYdWY7snt109jD3Hz5FXXMvhjPNMvXyQW/3ueYLeut9ulfxYmzuYttUGbe/o3F77dEfn2mk0bd+80tJSHnjgAfLz83n44Yc7NaS+IxqNQmiof4/ewxmCgjrXhHWmedTHuJRofH30+Prq0Xm1bO7x9dGh02nx9dGj03VuX3fOcZd9o0dEcTK3kqraJr44dJZH77z09Aedvd/CeVx9z/tbWQfYfcJWSz4qMZyIcNvoTqO1oc1yb9dR+enMfmcd01fv4aXT4OujJyrMjztnJ/P2J2l88PVprp86FC+drUuEq3/3PI2z77dbJT/+/rYvEYPB0GqfvdYmMLDtodidOTcgIKDVvuzsbH7yk59QWFjI/fffz//8z/90L/gLWK0qNTUNPX6f7tJqNQQF+VJT04jlEn1WKmubOFdej6JAdIieRoORxkZjq3l+FNWK2Wyh0WDEaOzcvu6c4077JqVEsvPQWXYeyGf2hMFEtzMqpiv3WzhHV+95byUo/ams232fYUt+hsUEUllpK/uNBlOb5d6uo/LTmf3OOqav3kPvpaXRYKSqSmXmmEHs2H2a0ooG3tuZwbzpiVLe+1BvlXW3Sn7i4uKAH/rvXKi0tBRou09Pd889dOgQjzzyCNXV1Tz++OM89thj3Q/+ImY3WBDTYrFeMo6TZ8oBGBIViLdOh8lgwmJVWy3sZ1VVVFXFaqHT+7pzjjvti4nwJz4qgILSOjZ8lsnyO1p3pr9QZ+63cC53uOeuvj50/j6oqkpGvq2/T1JsEGazFUVRUJvLfHsLenZUfjqz31nH9NV7WKwqqlXFbFbRKgrzr0rkjU/S+dfuM8wcG0tQkK9b/O55Emffb7dqtAwICGDo0KGOUVkXsm9razQXQGJiIv7+/h2eO3bsWMe2Q4cO8eCDD1JXV8dvf/tbpyY+/Ulm8xdhyhAZ9dGWKZdFo9EoHM0u41B6qavDEaJHisrqqa43otdpGBYrnZ07a/roGAZH+FNvMLP921xXhyOcwK2SH4B58+aRnZ3N119/7dhWX1/Pli1bSEpKanN4OoBer2fOnDns2bOHzMxMx/bS0lL+/e9/M2PGDMLCbEOYy8rKePzxxzEajbz88svceeedvfuh3Fi6JD8dCgnw5vpJ8QBs2JlJvcHk4oiE6L5TebbRiyPigvFyYUft/kajUbjzmiQAdh4ooLTCdU2dwjncqtkLYNmyZWzbto3ly5ezdOlSIiMj2bJlC0VFRaxbt87RofnIkSPk5+czffp0IiIiANsorV27drFkyRKWLVuGt7c3b7/9NhaLhZUrVzqusXbtWioqKhg/fjwGg4Ft27a1iuPGG29sNRR+oKmua6K4ogEFSJb5Ptp1w+QhHMsu41x5A5u/yOLBuaNcHZIQ3WKfumHU0DAXR9L/jB4WTuqQENLzq9jwnzSW3ZR66ZOE23K75CcgIICNGzeyZs0aNm7ciMlkIjU1lfXr13PllVc6jnv33Xf58MMPeeuttxzJT2xsLJs2bWLNmjWsXbsWrVbLmDFj+POf/0xKSorjXPsMz0eOHOHIkSNtxjFt2jQiIyN78ZO6XkbzLK/xUQH4+3i5OBr35aXTsOzmkTz/9mH2HC9m/IhIJiQP7N8NMfBYrFYyCmzJz8ihoS6Oxv0piu0FSvPPCndfO4Jfv3mQL787yzXjY4mLaD2IRvQPbpf8AERHR/PCCy90eMzq1atZvXp1q+1JSUmsXbu2w3M//vjjHsU3UNg7PiZLk9cljYgL4YbJQ/jPgXze+DiNoYMCCQvynIkwRf+Xe842v4+/j44hUZ67gHFnaLUKGo2G2kYz8EOn6IhQXyamRnEovZRNn2Wy8p7xsjxIPyWNvh7MXvOTEi9PgZ1x29XDSBgUSL3BzD92nMJqtc89heO/SvMEavKFKNzNqeYlGlITQtG0M5mhsNFqFBqNZtJyKziaXdbilRwfjE6rkJ5fxaGM864OVXSTJD8eqqLGQFGZbY4P6ezcOTqthp/echneXlrS86v4ZH8eFqC6wURpRQPVDSbqDD+82p5BRAjXSGvu7DwqQR52OstktmI0WVq8vL20TBxpW/V98xdZGIxmF0cpusMtm71E7zuWY5vfJyk2mABf6e/TWYPC/Lj3+hG88XE6H31zhqExQTSZLOi8dDQ2Gh3zhnjpNIwaGkaAj5djdnIhXMVgNJNdaFvDb6R0du6xianRZBVUUV5t4N9787j96iRXhyS6SGp+PJQ9+RmdFO7iSPqfq0bHMHlkFBarypsfp1PXaGr1hGiSyc+EGzl5phKzRSUqxJfoUFmWoad0Og23z7IlPP/Zn0+JDH3vdyT58UAms4VTebb2/7GS/HSZoijcf0MKEcE+lNcY2H3snNTuCLf2fbatb8rY4RHSH81JRieFM3pYOBaryqbPs+Q7oJ+R5McDZRRUYTRZCQnQEx8lQzW7w8/Hi5/ecjkaBbLPVpORX+nqkIRok9WqOmp6xw2Xhx1nTXQ9RgAAIABJREFUURSFe69LRqtROH66nKPZ5a4OSXSBJD8e6FhzIR2TFC5PgT0wPC6Ym6cOBeCr7wqprje6NiAh2nD6XA21DSZ8vXWMkMlMnWpQuB83TB4CwKbPM2lqZ2FY4X4k+fEwqvrDU+DoYREujqZ/sE92duEwdtsLrp8UT2yEH2aLla+OFLW7UKIQrnI0uwyA0cPC8NJp2/w9Ft03b1oCYUHelFUb+NeeM64OR3SSJD8eJr+kjtKqxubRSDLk9VIunOzswmHsdQYT9U1m0ChcOyEOb72W8hoDJ05L1bdwL983Jz+pCaGtfoftv8fSPb/7fPQ6Fl9vW0HgswMFnC2tc3FEojNkqLuH2XeqGIBxwyPw9ZZ//kuxT3aWU1CN0dyyStvPR0dCTBD+fl7MHDeYnQfyOZ5TzpDoQKLD/FwUsRA/KKlooPB8PRrFlsjba4EuZP89VpAqoO4aNyKCCcmRfJd5nn9+ms7PF1+BRqrU3JrU/HgQq1Vl/6kSAK4cFe3iaPqXtiY7M1t+eF4eER/CkOgArCp8e/ycY/ZnIVxp70nbw05KQihajabV7/DFv8ei++69bgTeei05hTV8/X2Rq8MRlyDJjwfJKKiiqs6In7eOy4fJqA9nUhSFqZcNQu+lobymydGvSghXUVWVfc0PO5NSo1wczcAXFuTDbTOHAfDelzlU1zW5OCLREUl+PMj+5iaviamReOnkn97Z/Hx0jj8y32We51x5vYsjEp7szLlaSisb0XtpGJMkgxv6wuwJcSQMCqSxycw7X2S5OhzRAfkL6CGaTBYOpdsmOpsyalAbIz5k1IczDIsNYnCkP1arysbPMrFYpUlBuIa9yWvCiEi89VoXR+MZNBqFpTemoihwIK2UI5my8Km7kuTHQ+w7WUxDk5mIYB+Gx4fIqI9eoigKV14WjZdOQ15xLZ8dKHB1SMIDWaxWDqY19++7bJCLo/EsCYMCuXGKbe6ftz7NoK7R5OKIRFsk+fEAqqry+eGzAFw3MR6jycKp3AqOZpe1eGXkV2K2WGXURw/5+3hx5WW2DuVbvz4tzV+iz32fVUZNg4lAPy8uS5SFTHtD+/N/KSyYMYyYcD+q642883mmq0MVbZDkxwOk51dReL4eby8tM8bEAJcevSR6Jjk+hJEJoZgtVt74OF1Gf4k+9fkh28POzLGx6LTyNe9sWo0tyWlr/q86g4kms5V7r09GUWDvyRKOZEnzl7uRUuEBPj9ka3qZNnoQfj5eLo7GMyiKwsLrRuCj15JdWO2oeROit+WX1JJRUIVGsU3AKZxPo1EwGC2ktVGDbn81NJmZfYXt/r/1nwxqG2T5G3ciyc8AV3i+ju+zbBObXXeFfBH2pbAgH+66djgAW7/KoahMmr9E77PX+kxMjSQ00NvF0QxsbdWg218ms5W504Y6mr/e+CQdaN1MJlxDkp8BTFHgw2/OoAITU6OIjQiQEV19bNa4wYwaGorRbOUvHx7HYDT36P3aHqUn/6jCpqbe6Jjb57qJ8S6OxrNptQreeh333zgSnVbh+6wyPjmQ36qJTJZCdQ1JfgaougYjx06X813meRQFbpg8REZ0uYCiKPz4R5cREqDnXHkDb36Sjqp2r/+PBdrsXyBfoMLu33vzMFusJMYEkRQb5OpwPJp9aZzaBiMTm+f/2vplDl8cLnA0jZ3KrcDQZJYHGBeQ5GcAUhSobzSxeadtkq3hccGUVDbIiC4XCfbX87P5l6PVKBxIK+X9r3K6nAApioKhydzmKD35AhUAZdWN7Dpia/JaMDNRfh/chMlsZURcMIMj/bFYVXYeKKCmvsnRNCZcQ5KfAepIxnkKSuvQKDA6MVxGdLnYiLgQFs9JBuCTffls/za3W+/TVh8D+QIVAB99cwazRWVkQiiXDZXh7e5EURRmjIkh0M+LeoOZr44UyQhQF5PkZwBqbDKz6TNb57rLEsMI8JMRXq5w8Twgs8bHsXD2CMD2h2rTzkxJRoVT5JfUsveEbUbnO2YNR6PRyMztbkbvpeWaCYPRaRVKKhvZffwc1m42gbelvf6AUgPYNp2rAxDO98GXOVTWNhHkr2d0kixg6gparYJGo6G20Qz88AU3fUwMjUYz2745w+eHz5JZUMU9140gOT5EvqREt1TVGvjbv06iAv+/vTsPjqpKGz/+7SWdpLuzkJVAgIRgE5FAQHhh2EEEXmEgWAgF6gD1ugzjwqg4pVXv1K9GZ8ZKgeVrKYwzKMgikKAgig6vIEJExCCvJAFCIAESiWZf6O6s3X1/fzTdEpNAWJJOup/PP5B7zr19brjP5elzzzl3xF0RRIUFYmn4ZVVhtVol4/y6iVCjP5OT+3Dw/4q59LOZb7J/JnnQ7b93zQ40NLS/knSAvxZ5wUlLkvx4mbOF1Xxx3Lmuz4RhMbLAmYe4BjsW/FhLk63lcOQ+EQYe++0Qtu8/R1GZhdRtP9A3wsCYIdFX3w1mJFjvJ8mQuCGVCnYfKuDHUgv+fmrujutFVn5Fizr6AC0DYoJlnF830TfSyMRhMXyd9TN5RTVs/d88Hv/tPWjUt/bvo1KpaGho5sylqjYfgftp1QyJC8MY4HfLky28kSQ/XsRc18S/Pj2NosD4YX3oF2WkvvH2plaL2+Mao/NrwwdFMDQ+jI8zLnAkp4TiCiu7Mi64y7UaFaFGf0KD/Oll9KdXkD9BBh2KomAI0EpiJADn4649GQUAjL47Cq1G3ep60/nJF6DuJi4mGLtD4eipEjJzy7hibWJFylCC9LpbPmZ79xrRNkl+vIRDUdjwWS41liZiwvU8PDORrHOlnm6WuI4Qgz+/m5XIgikJHD9bxqmLVfxYZqGsuh6bXaGitoGK2oZW++kDtNwVG4KpXyiB/hLCvspc18T/pGdjdygM6B1EfIxMbe9JEvqGEKTXceiHYs4W1fDf737HIzMGM2pwpHy56QJy5/QSuw5fIKugEq1GxVMPJuGvkye8PYU+wI/JyX2ZnNwXgEa7g7KqOmosjdRampx/Wpv4qcLKuaIa6hpsZOVXklNQReKAUPcaIsJ32OwO1u0+RXlNPZGhgUwZ0Qd5otHzxEYZeW5RMpv/fZbiCiv/+PgUg2JD+M8x/RmeEIG6A4/C6httXPr5CueKaqi2NNLYZKPZ5kCtUqHVqgkxOHuT7okLc/9dSPLjFQ6fLObzY4UALJ2VyIDeQTTJCMceSaVSYbM5KKmqc97A1CrCggOIjTLywLg4TuVXkl9cQ+6laipqGzhzqZoLP12hqdnB/aP6ycweH2CzO1j/6RnyfqwhQKfhmYXJFJdekUfcPVSfCAP/b/l/sPfoRT4/Vkj+5VreupyDIUDLkLgw+kcbCQsKwE+rxmZ3UGNporymnrLqOkqq6qi80njDz8jMLQMgqlcgwxLCGZ0YRULfENQ+fMPolslPRUUFb7zxBhkZGZjNZhITE3nmmWcYP378DfctKiri9ddfJzMzk4aGBkaMGMHzzz/P0KFDW9Xdt28f//rXv7hw4QJGo5EHHniAlStXYjAYOuO0OsW3p0rY8r/nAJg7Po7xSTEebpG4E379/N41bkOrURMfE0x8TDCXyy18f7acK9Ymdnx5nm9Pl/DI/SYS+oZ4qtmikzXbHLyz5xQ/nK9Ao3b28vaNNFJcesXTTRO3SKVyxvf8SQlMGRHLge9/5PDJYqwNNo6fLeP42bIbHiNYr8Oo98MY6EeAToNOq8ahKDTbHNQ12mhosvNTuZWy6noOfH+ZA99fJsSoY/TgKMbe05v4mCCfe9TW7ZIfq9XK8uXLKSoqYunSpURHR5Oens5jjz3G+vXrmTBhQrv7lpaW8vDDD9Pc3Myjjz6KwWBgy5YtPPLII+zYsYPExER33V27dvHyyy8zevRoXnzxRQoLC/nggw84c+YMmzdvRq3u/oMED50sZsu+PBRg4rAY5k2I93STRBeKjTTSJ9xAfnEtWfkVFJaY+duWE0xIimH+pIHyUksvU2Np5J2PT3Huci1ajZqn5g8l+a4I6eXtwX69JIafn5r//M0AZozpT2GJ81FWlbmRGnMjdrsDjUZNkN6PqF6BRIYGEt1LT99II6ggK7+izQHPOj8NwwdFoAZyC6s5kVfOyfxyai1NHDhxmQMnLhPVK5CxQ6IZMySamPCe8+X/dnS75Gfr1q2cO3eOd955h6lTpwKQkpJCSkoKr776Kvv27Ws3Q127di2VlZXs2rXLneg88MADzJ49m9TUVDZu3AhAXV0dqampjBgxgo0bN+Ln51wEMC4ujr/85S/s3buXuXPndsHZ3ppmm4O0g+c5+H/FAEwb2Zcl95t8LnMXzjVchg4MZ+6EeD7/tpAj2T9zJOdnjp0pZXJyH6bfG0t0mL5TPru9602m0955py5U8u5nuVyxNhGg0/DU/CTuiZdVnHu66y2JAdC/dxCzxg647jR1lUrVYl2ntuuAIcCPewdHce/gKJptDk5frOLYmRJ+OF9OWXU9n3xziU++ucSA3kGMHRLN6MQowoID7sh5dkfdLvnZs2cPAwYMcCc+AAaDgYULF7JmzRqysrJITk5utZ/dbufTTz9lzJgxLXp4oqKimD17Njt27KC0tJTo6GgOHTpETU0NS5YscSc+gPsz9uzZ022Tn/ziWrZ+kUdRqQWA346LI2WivMfH1wXpdfzX7CFMGt6H9K/yyb9cy5cnLvPlicsk9A1maHw4g/qG0DtMT2iQDs1t9mxeb1E1WVDtzimrrmPnVwWcOFcOQGykgT/MT6J3JyW0wjOuN03dtVI87azTdKNbf3sLrg7qF8KgfiE8NHUQOVdfgn36QhWFJWYKS8ykHcynT7iee+LDuTuuF/G9gwgxek9vcrdKfsxmMxcuXGDOnDmtypKSkgDaTX7Onz9PXV0dw4YNa3Pf7du3k5OTQ3R0NFlZWQAMHz68RT2tVsuQIUPIzs6+E6dzxzgUhbyiGg6euOy+CRoCtDz+23sYJis490jt3dBuN4cd1DeElx8eSW5hNfsyizh9sYqC4isUFP8yJkSlAn8/DX5aNTqtGrXauQS++uqrEFr/nVY/O4C6BucAWxXOMQuB/loMgX4k9HEmWWHB/oQHB8h0/JvUbHNwtqiaQz8Uc/J8BQrO3/9998by4OSB+PtJaukr2ktcrnWjFbxv1LsEEKT3Y8X8JGrMjZw8X873Z8u4+PMVfqqs46fKOvZ/71w4N9SoY0B0ENFheiJDA4nqFUhUaCAhRh0Bup4V592qtaWlpSiKQkxM60G7UVHO6bzFxcXt7gt0aN+SkpLr1j1+/Dhms5mgoKBbOIvb43AoVJsbnaP5a+rJL64l91KVe0S/CufKzfMnDSTUi7JwX3K9G9qdeBWBSqViSFwYQ+LCqLE0cuJcOXlF1RSWmKm60ojdodDQZKehqXMWRDue23KApt5fS1hwAOHB/oSHBBAeHOD8+erfg/R+PrkSuUNRMNc1U21uoOpKI5fLLVz62czZouoW/zZJA8N5aGoCsZFGD7ZWeEJHEpeOruB9vd4lnZ+a+iYbl8ssBBt0TLs3loYmOz9XWCkut1BaXU+NuZEaSxM1lkooqGx1DH8/DcEGP4INOoL1OkIMOoINOoyBfhgC/AgM0GII0KL316IP8MMQoMVPq/bYU4tulfyYzWYAAgMDW5Xp9c5u3vr6+pve17XNta/FYkGj0aDTtV7zwFW3rq7ulpMftVpFWNiNB40pikKttQm7QwHF+bOihtBeekJ76bkLGD8iFnB9W9cS6K+54X8UKhUoCkz7jwGt1v5Qq0CrVRMbHdzpZV35WZ4uU6FCQXHX6ch+Npuj1Xc5lUqFVqOid4Sxw79LlQp3D86vy8LDDcT169XisxTF2U7V1R4d29Xrr+VBnWUOx6/aqFwtU6uw25Wrx3MWOJRfxvsoCtgdSofH/9ivnoeKa17EefVncK54fe3qt646ISGBHl3fpiOxbncomOuacDgUFJy/G9fvxRikwRgUQL8+MDwx+pfjqlT46zQE6jRorhPv14v1X47V/rXTkfKuOkZPaasrbjQaFX2jgrz+fF3n7Hf1nmVzKDgcCna7gt3hcF/Xt8LB1b5v1dVIV/3SF+7qGbcDlbX1GAz++N3BL0ndKvlxOJzfedvKBF03i/ayxOvt6+KaweVwOG44WPN2ZnuprgZGR4SHtE7W7hT9dS4UP237Xed3uqwrP8vby663T3vU6lvbryfw9KzMjsS6RtO5cQ7Xj3WXG10DHblGuuIYXfU53eUYXfU5XXWMnqJb9TW71tdpaGi9pL+r16a93piO7Gs0Gt11bTYbzc2tB2y69vfEIy8hhBBCdL5ulfzExjof8bjG71yrrMw5jqCtcTo3u++N6oaGhhIQ4L1T/IQQQghf1q2SH6PRSFxcHDk5Oa3KXNvams0FEB8fj8FguO6+rtldrtWef13XZrORm5vbahaYEEIIIbxHt0p+AObMmUN+fj4ZGRnubVarlfT0dBISEtxT3n9Np9MxY8YMvvnmG86dO+feXlZWxmeffcbEiRMJC3MuCjZlyhQMBgObN2/Gbv9l9Ht6ejoWi4WUlJROOjshhBBCeJpK6WbLsbqSj8rKSpYtW0ZkZCTp6emcP3+e9evXM27cOAB++OEHioqKGD9+PBEREQD89NNPzJ8/H7VazfLly/H392fLli1UVVWxfft2Bg8e7P6cDz74gFdeeYXRo0czd+5cCgoK2Lp1K6NHj+a9995Do/GegV1CCCGE+EW3S37AORZn9erVZGRk0NzcTGJiIitXrmTs2LHuOi+99BK7d+9m8+bNjBkzxr29oKCA1atXk5mZiUajYdiwYbzwwgsMGTKk1efs3r2bDRs2cOnSJcLDw5k1axZPP/20e2C0EEIIIbxPt0x+hBBCCCE6S7cb8yOEEEII0Zkk+RFCCCGET5HkRwghhBA+RZIfIYQQQvgUSX6EEEII4VO61YtNxe2pqKjgjTfeICMjA7PZTGJiIs888wzjx4/3dNN6vLy8PN5++20yMzOxWq3ExMQwe/Zs/vCHP6DTOd823tzczIgRI9p8Z1x8fDz79u3r6mb3aK7lLNqSlpZGcnIyAMeOHeOtt94iNzcXnU7H1KlTWbVqFeHh4V3Z3C4n8d55JN67lidiXZIfL2G1Wlm+fDlFRUUsXbqU6Oho0tPTeeyxx1i/fj0TJkzwdBN7rKKiIhYvXoyfnx9LliwhKiqKY8eO8Y9//IPs7Gzee+89VCoVBQUFNDc3s3DhQkaNGtXiGPKi3JuXl5dHfHw8K1asaFXWv39/AI4ePcrjjz/OoEGDePbZZ6mtreX999/n5MmTfPjhh+4XHnsbiffOI/He9TwS64rwCu+8845iMpmUgwcPurdZLBZl+vTpyowZMxSHw+HB1vVsTz75pHLPPfcoBQUFLba/9tprislkUvbv368oiqJ8/PHHislkUjIzMz3RTK9is9mUpKQk5aWXXmq3jsPhUGbNmqVMmzZNMZvN7u2HDh1STCaTsm7duq5oqkdIvHceifeu5alYlzE/XmLPnj0MGDCAqVOnurcZDAYWLlzIpUuXyMrK8mDrei673U5mZiajRo1i4MCBLcrmzZsHwIkTJwDntxeAu+66q2sb6YUuXrxIY2MjJpOp3To5OTlcuHCBBQsWtFiVffLkySQkJLBnz56uaKpHSLx3Don3ruepWJfkxwuYzWYuXLjQ5hvvXS+ClZvhrVGr1ezZs4dXXnmlVVlVVRWA+z1weXl5REZGEhoaiqIoWK3WLm2rN3H9xzJo0CAA6urqcDgcLeqcPHkSgOHDh7faPykpiYsXL2I2mzu5pV1P4r3zSLx3PU/FuiQ/XqC0tBRFUYiJiWlVFhUVBUBxcXFXN8srqFQq+vXr537ufK1NmzYBuN8tl5eXh8Fg4Nlnn2XEiBGMHDmSqVOnsnXr1i5tszdw3RAPHDjA5MmT3b/PF1980f2fUElJCQC9e/dutb83X/cS751H4r3reSrWZcCzF3BlvIGBga3K9Ho9APX19V3aJm+3ceNGDh8+zL333svEiROprq6mvLycyspKxo4dy5o1a6ipqSEtLY1XX32VkpISVq1a5elm9xiuG+Lp06f54x//iF6v59tvvyUtLY3s7Gw+/PBDLBYL8Ms1fi1XLNTV1XVdo7uIxHvXk3jvPJ6KdUl+vICri1ClUrUqU66+t7atMnFrNm/eTGpqKpGRkbz++uuA8/f8wgsv0L9/f2bNmuWum5KSwqJFi3jvvfdYtGgR/fr181Sze5TZs2eTlJTEE0884Z5aPHPmTOLj4/n73//Opk2bOnTdq9Xe17kt8d61JN47l6di3fvuDD7INcWvoaGhVZnrG6BMvbx9iqKwevVq/va3vxEREcH777/vfvQQFhbGE0880eJGCKDValm8eDEOh4Njx455otk90ty5c3n66afdN0OXxYsXo9Vq+eabb9zXfVu9HK5Y8MbrXuK9a0i8dw1PxbokP14gNjYWcI4F+LWysjKANscHiI5rampi1apVvPvuu/Tv359t27a5B+jdSEREBIAMiLwDdDodQUFBWK3WG173KpWK6Ojorm5ip5N473wS757X2bEuyY8XMBqNxMXFkZOT06rMta2tmSGiY+x2O8899xx79+4lKSmJtLS0VgMiP//8c2bMmMG///3vVvsXFBQASBd4B9XV1TF37lxWrlzZqqyqqorq6mr69+/P0KFDAdq97hMSElpMi/UWEu+dS+K963gy1iX58RJz5swhPz+fjIwM9zar1Up6ejoJCQnuKbDi5r311lscOHCAkSNHsmnTJsLCwlrVGTRoEIWFhWzatAm73e7eXlVVxcaNG4mIiJBVdztIr9fj5+fHl19+ydmzZ1uUvfHGG4BzbEVycjKxsbGkpaW1+JZ9+PBhCgoK3OuyeCOJ984j8d51PBnrKsU1Wkj0aBaLhZSUFCorK1m2bBmRkZGkp6dz/vx51q9fz7hx4zzdxB6pvLycadOm0dzczAsvvOCeVnmt+Ph4hg0bRmpqKhs2bGDEiBHMmTOH2tpa0tLSqKqqYt26dUyaNMkDZ9AznTp1isWLF6PX63n44YcJCwvjq6++4siRI6SkpJCamgrAwYMHeeqppzCZTCxatIiKigo2btxIbGwsO3bs8NrXW0i8dw6J967nqViX5MeLlJaWsnr1ajIyMmhubiYxMZGVK1cyduxYTzetx/r888957rnnrltn0aJFvPLKKyiKwgcffEBaWhoXL14kICCAkSNH8vTTT8tjiFuQnZ3N22+/zYkTJ2hqaiIuLo5FixaxZMmSFjM7Dh06xNq1a8nLyyM4OJhJkybx/PPPu8deeCuJ9ztP4t0zPBHrkvwIIYQQwqfImB8hhBBC+BRJfoQQQgjhUyT5EUIIIYRPkeRHCCGEED5Fkh8hhBBC+BRJfoQQQgjhUyT5EUIIIYRPkeRHCCGEED5Fkh8hhBBC+BRJfoTPWLt2LYMHD2b48OFcuXLF080RQnQSiXVxI5L8CJ+gKAq7d+9Gr9fT0NDA7t27Pd0kIUQnkFgXHSHJj/AJ3333HT/++CNLly7F39+ftLQ0TzdJCNEJJNZFR0jyI3zCRx99BMDMmTOZNGkSBQUFZGZmerhVQog7TWJddIQkP8LrWSwW9u/fT1RUFImJicyePRuAHTt2tFk/Pz+fZ599lnHjxpGcnMzvfvc7srKyWLZsGYMHD25V//DhwyxbtoxRo0YxbNgw5s2bx5YtW3A4HJ16XkKIliTWRUdpPd0AITrb3r17qa+vZ/HixahUKqZNm0ZwcDBffPEFVVVVhIWFuevm5OSwbNky6urquO++++jfvz9Hjhzh0UcfJSQkpNWx169fz5o1awgLC2PmzJkEBwdz5MgR/vrXv3L8+HHefPNNVCpVV56uED5LYl10mCKEl1uwYIFiMpmU3Nxc97Y///nPislkUv75z3+2qDtv3jzFZDIp+/fvd2+z2WzKihUrFJPJpJhMJvf206dPK4mJicqcOXOUqqoq93a73a48//zzislkUtLS0jrxzIQQ15JYFx0lj72EV8vPzyc7OxuTyURiYqJ7e0pKCgDp6ekoigJAbm4uubm5jB8/nunTp7vrajQaXn75ZTQaTYtj79y5E4fDwapVq+jVq5d7u1qt5k9/+pO7jhCi80msi5shj72EV3MNfpw7d26L7SNHjiQuLo5Lly5x5MgRJk6cSHZ2NgDJycmtjtOvXz969+5NcXGxe1tOTg4AX3/9tXvfawUEBJCbm4uiKNIdLkQnk1gXN0OSH+G1bDYbn3zyCQBr1qxhzZo1bdbbsWMHEydOpLq6GoDIyMg260VFRbW4IboWT9uyZct122G1WjEajTfdfiFEx0isi5slyY/wWocOHaKiooK4uDjGjBnTZp2dO3fy1VdfUVpaisFgAMBsNrdZ12q1tvjZVf/o0aOEh4ffwZYLIW6GxLq4WZL8CK/14YcfArBixQr3c/9fKykp4fDhw+zcuZMJEyYAcPLkyVb1amtruXjxYottd999N2fOnCErK4tp06a1KLNYLLz55psMGDCARx555E6cjhCiHRLr4mbJgGfhlSoqKvj666/R6/XMnDmz3XoLFy4EnN8Kk5KSMJlMHDp0iIyMDHcdu91Oamoqzc3NLfZdsGABAKtXr6a8vLxF2euvv87mzZvJzc29U6ckhGiDxLq4FSrFNfxdCC/iWpPjwQcf5LXXXmu3ns1mY8qUKZSXl7N27VoiIiJYunQpTU1NTJ8+nT59+vDdd99RWFiI3W6nubm5xU3uzTffZN26dYSEhDBt2jR69erF8ePHycnJYeDAgWzdulW6yYXoRBLr4lZIz4/wSq6XGc6fP/+69bRaLQ8++CDgHAyZnJzMtm3bmDhxIkePHiUtLY2wsDC2b99OYGAggYGBLfZfuXIl69atY8iQIRw4cIBt27ZhtVr5/e9/z/bt2+VmKEQnk1gXt0J6foS4qqm9vWCkAAABAklEQVSpidLSUvr06dNqnY+GhgZGjhxJfHw8n332mYdaKIS4EyTWhfT8CHFVfX09999/Pw899BA2m61F2YYNG7Db7fzmN7/xUOuEEHeKxLqQnh8hrvHiiy/yySefkJCQwIQJE9BoNJw6dYrMzExiY2P56KOPCA0N9XQzhRC3SWLdt0nyI8Q1bDYbO3fuZNeuXRQVFdHQ0EDv3r257777ePLJJ9t84aEQoueRWPdtkvwIIYQQwqfImB8hhBBC+BRJfoQQQgjhUyT5EUIIIYRPkeRHCCGEED5Fkh8hhBBC+BRJfoQQQgjhUyT5EUIIIYRPkeRHCCGEED5Fkh8hhBBC+JT/D8PFkYtYXf/fAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# Separate by treatment or not\n","\n","g = sns.FacetGrid(train_df, col='treatment')\n","g = g.map(sns.distplot, \"Age\")"]},{"cell_type":"markdown","metadata":{"_cell_guid":"20b446a7-fe87-478d-9328-de7ea7afea5b","_uuid":"1bfd6affb0501138a98d4dbc9c70ad491b35962c"},"source":["How many people has been treated?"]},{"cell_type":"code","execution_count":103,"metadata":{"_cell_guid":"81f1eb2a-c3ac-433d-a674-24aa6a33d287","_uuid":"ac35d322a601a3ff9fdde64fa5e33b28dbdd10e5","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/plain":["Text(0.5, 1.0, 'Total Distribuition by treated or not')"]},"execution_count":103,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA/sAAALLCAYAAACmdZIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdeL/8fdlS0RJqREdsVz6XlIRAUvcfrlkorlPGgqahqONW2rpqPlVK5pJZ1omTWtyFNfSRgX7pi0uRbmWM+KQW+WaTGKisggocM/vDx/cvHJFuIDg8fV8PHw84nM+93M+Z4Hb+5zP5xyLYRiGAAAAAACAabhVdgcAAAAAAED5IuwDAAAAAGAyhH0AAAAAAEyGsA8AAAAAgMkQ9gEAAAAAMBnCPgAAAAAAJkPYBwAAAADAZAj7AAAAAACYDGEfAAAAAACTIewDwB1u/vz5CgwMLPG/9evXl6r9tLQ0rVq1yuX+nT59WoGBgRo8ePBN665fv95pn4OCgtSmTRsNGTJEq1evVkFBQZHPFu6Hf/7zny71MysrS0uWLClx/WnTpikwMFA7d+60lwUGBuqRRx5xaf03M3ToUAUGBurkyZP2MpvNpg8//FCpqan2ssJ9+Oabb1ZIP0qqS5cuCgwMVH5+/i1Zn7N9UZmuXLmi9957z+m5Wlal+Z263VW14woAt5JHZXcAAFC5WrdurXHjxjmUbdmyRYcPH9ajjz6qpk2bOiy7/ufipKWlqVu3brJarYqOji6X/pbEgw8+qK5du9p/zsnJUVpamnbu3KnZs2fr448/1qJFi+Tt7W2vU7gfmjVr5tI6IyIi5O7urpiYmBLV79q1q+rXr68GDRq4tL7S6t+/v1q3bq27777bXvb8889r06ZN+vzzz+1lTZs21bhx4/TQQw/dkn5VFc72RWUaMmSI9u/fX+LzCc5VteMKALcSYR8A7nDh4eEKDw93KEtJSdHhw4fVtWtX/e53v3O57ZycHGVlZZW1i6XWtGlTjR8/vkj5pUuXNH36dH322WeaOnWq5s2bZ1/mbD+Uxrlz5+Tv71/i+l27dnW4IFHRnB3Hc+fOFSlr2rRpqS7omIWzfVGZqlp/blfsRwB3MobxAwDuGD4+Ppo7d64aNmyozz77TElJSZXdJQAAgApB2AcAlNq///1vjR49WuHh4QoKCtJjjz2muXPn6uLFi/Y68+fP16OPPmqvHxgYqPnz59uXHzhwQJMnT1anTp0UFBSk0NBQ9evXT0uWLKmQecqFvL29NXz4cEnS//3f/zn09/o5+7m5uXr99dfVu3dvhYSE6KGHHtLQoUO1adMme53COe6SlJqaqsDAQE2bNk3Sr/Py//Wvf2nAgAEKCgpSly5d9N///tfpnP1Chw4d0vDhwxUSEqLw8HBNnDhRx44dc6hT3Nx6Z9ty7Zz9wjnb33zzjSSpW7du6tKlS7HtXrx4UXPnzlXXrl0VFBSk8PBwjR49usgFk8K2//SnP+nbb7/V0KFDFRoaqrCwMI0aNUoHDhy4wZFx7vTp0xo3bpxCQ0PVqlUrjRo1Sv/5z3/sy1NTU9WsWbMbjpL44IMPFBgYeMPnRpRkX6xfv14TJ05UcHCw2rZtq82bN9s//9FHH2nQoEEKDQ1VaGioIiMj9dFHHzld1+7duzVu3Dh16NBBQUFBatWqlSIjI7Vu3Tp7nT179igwMFApKSmSpObNm2vo0KH25QUFBVqxYoX69++vli1bqlWrVho2bJi++uorp+vctWuXhg0bplatWql169aaNm2azp8/77TujeTm5urtt9/W448/rhYtWuihhx7S8OHDlZiYWKRuYGCgnnnmGa1Zs0bt2rVTSEiIJk+efMO2C7d36dKl2rx5swYOHKiWLVuqdevWmjhxok6dOlXkMyU5F4s7rgBwpyDsAwBKZd26dYqOjtb27dvVtm1bRUdHq1atWlqyZImeeOIJ+4OwWrduraeeekqSVK9ePY0bN06tW7eWJG3fvl2RkZFKTExU27Zt9fTTT6tr1646efKk5s6dq9dee61Ct6GwH4VB4EYmTpyo9957T3Xq1FF0dLR69uypH374QZMmTdKaNWsk/TrHXbo6cmDcuHFFguezzz4rb29vDR06VC1atNBvf/vbG64zMzNTQ4YMUXp6uqKiotSyZUt98sknevLJJ/X999+XZbPtfH19NW7cONWvX1/S1QsBhcfKmZ9//ln9+/fXkiVL5Ofnp+joaLVp00Zff/21oqKilJCQUOQze/fu1fDhw+Xu7q7BgwcrLCxMiYmJGjJkSKnC5pAhQ/TDDz9o0KBB6tChg7Zv366oqCjt2rVLkuTv768OHTrop59+0t69e4t8PiEhQV5eXurZs6fL++L111/XwYMHNWTIEDVv3lwhISGSpBdffFFTpkzR2bNn1adPHw0cOFBpaWmaMmWKXn31VYc21q5dq+HDhyspKUldunTR8OHD1b59ex04cEAvvPCCVq5cKUmqX7++xo0bp5o1a0qSxowZo/79+0u6GvTHjh2rV155RVeuXNHAgQPVp08fHT16VCNHjtSyZcsc1rlx40aNGDFC//nPf/Too4+qR48e2rFjh8aMGVPi/Z+ZmalBgwZp/vz5cnd3V2RkpDp37qzk5GSNGjVK7777bpHPJCcn609/+pO6du2q3r17q1WrVjddz8cff6zx48fr3nvv1ZAhQ9S4cWN98skneuqpp5SXl2evV9JzsbTnOACYkgEAwHWmTp1qWK1WY926dQ7lKSkpRlBQkNG6dWvj0KFD9nKbzWa88cYbhtVqNX7/+9/by3/66SfDarUagwYNcminV69eRlBQkHHs2DGH8h9//NEIDAw0wsPDb9qGM+vWrTOsVqsxderUYutlZ2cbVqvVaN26tb1s3rx5htVqNT788EPDMAzjyJEjhtVqNSZPnuzw2VOnThnNmzc3unXr5lButVqN//f//p9DWeF+HDRokFFQUOB02Y4dOxzasFqtxoQJExzqf/jhh4bVajWGDBlSZFvfeOONItt3/bYYhmEMGTLEsFqtxokTJ4otc9buiBEjDKvVaixYsMBhPd99950REhJiBAUFGf/9738Nw/j1eFmtVmP58uUO9adNm2ZYrVZj0aJFRfp8vc6dOxtWq9UYPHiwkZubay//+uuvjaZNmxqPPvqofR99+umnhtVqNWbOnOnQxtGjR+3782aK2xehoaFGWlqaQ/3NmzcbVqvVGD58uJGdnW0vz83Ntbe1fft2wzAM48qVK0br1q2Ndu3aFWknMTHRsFqtxu9+9zun25+Xl2cvW7p0qWG1Wo0//vGPDuUXL140evToYTRt2tT48ccfDcMwjMzMTKN169ZGWFiYcfjwYXvdtLQ0o1evXiX+nZo1a5Z93167zlOnThmPPPKIERgYaCQlJdnLC4/96tWrb9q2YRjG7t277Z/ZunWrvdxmsxnDhg0zrFarsWnTJnt5ac5Fw3B+XAHgTsGdfQBAiX300Ue6cuWKRowYoQcffNBebrFYNH78eN1///366quv9PPPP9+wDcMwNGHCBL3++utq1KiRw7ImTZro3nvv1YULFypsGyTJ09NTkop9eKBhGJKkY8eOOdyJbtCggT755BNt2LChxOuLiIiQm1vJvnI9PT01ffp0h/oDBw5U8+bN9c033xS7bytCamqqvv76azVu3LjIHeHmzZtrxIgRunLlSpFXMvr6+ioqKsqhrHAYtbOh2Tcybdo03XXXXfafO3TooK5du+qnn37Sv//9b3u7tWvX1ieffKIrV67Y6xbe5S3LQyYlqU2bNvLz83Mo+/DDDyVJM2bMcHirw1133aVJkyZJkn0aRUFBgV566SXNnTu3SDtt2rSRpBKd8x9++KHc3d01c+ZMeXj8+ozlu+++W6NHj1ZBQYH9OCQmJurixYsaOHCgfZqJJPn5+em5554r0XZfuXJFH330kXx9fTVjxgyHdTZo0EATJ06UYRj2US7X6t69e4nWUchqtToMs7dYLOrUqZOkX88XV89FALhT8TR+AECJHTx4UNKvw+Cv5eHhodDQUJ08eVIHDx5UvXr1nLZhsVjsw9x/+eUXff/99/rpp5904sQJJScnKy0tTdLVgOTu7l4h23Hp0iVJV4fd30hgYKAefvhhffvtt+rYsaNatWqldu3a6ZFHHnG40FESpXm9Xv369Z0+1T80NFQHDhwodt9WhMJj/vDDDztdXviKvkOHDjmUN2jQoMjxKxyafu2w7OJ4eXmpRYsWRcpDQkL02Wef6eDBg3rooYfk6empPn36aNmyZdq2bZu6d+8um82mDRs2yN/fX+3bty/R+m7E2fFLTk6WdHWo/PUXcgq3r3DfVatWzR5+U1JS9OOPP+r06dM6fvy4fZ75zZ5TkZ2drR9//FE1atRQXFxckeWFvzeF6yx8NkJwcHCRuiV9reKJEyeUnZ2tDh06OFxwub6d64/93Xff7fCKx5K4/sKfVPR8cfVcBIA7FWEfAFBimZmZkn79n/DrFYbUnJycYts5evSo5s6dq6+++sp+B71BgwZq1aqVfvjhB6Wnp9vLK8Lp06ft6yzOokWLFBcXp48//li7du3Srl279Prrr6thw4Z64YUX1LFjxxKt79o7vzfzm9/8xml54YWJ7OzsErdVHlw95s7CocVikaQSH9t7773X/plrOdsXAwYM0LJly5SQkKDu3btr165dOnPmjJ555pkyXzSqVq1akbKMjAxJ0sKFC2/4ufT0dPt/79u3T3/5y1/soxHc3NzUsGFDPfzww0pOTr7pPik8DllZWXr77bdvus7ijlvNmjUd7tLfbJ03O/bXn5PO9tfNeHl5FSm7/nwpr78/AHCnIOwDAEqsRo0akq4Op23SpEmR5YVBo1atWjdsIzs7W8OHD1daWppGjx6tzp07q0mTJvYAV9a7sCVR+GC+m93h9Pb21pgxYzRmzBidOXNGu3fv1pYtW7R582aNHTtWn376qQICAsq1b4Uh8nqFDz4svGNaXHAuzwsC1x5zZwr7W9wxd1VJ94V0dRh4UFCQtm/froyMDH388ceSZH+4XXnz8fHRlStXtG/fPqcXJK71888/KyYmRoZhaNq0aWrbtq0aNmyoatWq6fLly06HwTtbn3R1qsu1b4O4kcLjURiQr3X58mXl5+fftI2SHvvatWvftK3yUJnnIgDcjpizDwAosWbNmkmSvv32W6fLv/nmG1ksFv3P//yPJDkNQTt37tTZs2fVu3dvTZgwQcHBwfYgc/78efv8+Iq6s3/lyhV98MEHkqS+ffvesF5SUpLmzJljH2Zdt25d9evXT2+//bZ+97vfKS8vT/v27Sv3/p04caLIswQKCgqUlJQkNzc3BQUFSfr1uQOFUxKudfLkyXLrT+ExT0pKchoQ9+zZI+lq2C5vWVlZOn78eJHywqfuXz/E/4knnlBeXp62bdumL774QmFhYU6Hh5eHpk2bKicnx+kbEv773//qz3/+s/25Dp9//rmys7MVExOjp59+Wg8++KD97vcPP/wg6ebne40aNdSgQQOdOnXK6fz+AwcOaO7cufriiy8k/bpvnL2h4PrXJd5I48aN5e3tre+//97phZeKPPbOVOa5CAC3I8I+AKDE+vTpI09PTy1btkyHDx92WLZw4UIdO3ZM7du3tw+nLRwqfO3/mBeGnHPnzjl8/vLly5o5c6ZsNluRz5SXy5cva/r06Tp58qR69+5tDw/OZGVlKS4uTvPnz7f3SboaygrfgX7tNABPT89y6fPly5e1YMECh7LFixfrxIkT6tq1q/0Bb4UjK3bs2OHwULr9+/ff8J3r1yu8YFBcv+vWrWt/td31Q9YPHz6sxYsXy8vLS48//niJ1llab731lsN89k2bNmnPnj1q3ry5/cJHod69e6tatWqaN2+eLly4UKoH85VkX1xrwIABkqTY2FiHizMFBQV6+eWXtWzZMvt5cqNzPj09Xa+88orT9Trrz4ABA5SXl6eXXnrJ4ZhnZ2dr9uzZWrJkiT2UP/LII/L399e6descwn1WVpbefPPNEm1j4bMQsrKy9Oqrrzr05fTp03rzzTdlsVjUr1+/ErVXVq6ci6U9rgBgJgzjBwCUWP369TV79mzNmjVLAwcO1KOPPip/f3/t27dP+/fvV0BAgD28SFef/H3XXXfp4MGDeuWVV9S2bVu1a9dODRs21Pbt2xUdHa3Q0FBlZGQoMTFRv/zyi2rXrq0LFy7o4sWLpZrrfq1Dhw5p/vz59p8vX76sM2fOaOfOnUpLS1N4eLhefvnlYtto166dOnXqpC+//FK9e/dWu3bt5O7urt27d+vQoUOKiIiwv29dkurVq6dTp07phRdeUOvWrV0OQHXr1tX777+v7777TsHBwTpw4IB27dql+vXra+bMmfZ6TZs2VWhoqPbt26cnnnhCjzzyiM6cOaPPP/9coaGh9qkKxSl80F9sbKweeughjRs3zmm9l19+WdHR0VqwYIF27NihkJAQpaamauvWrbLZbIqNjS3VQwhLytfXV3v27NGAAQPUrl07HT9+XNu2bVOtWrU0d+7cIvVr1qyprl276uOPP5a3t7d69OhR4nWVdF8U6t27t7Zv366EhAQ9/vjj6tixo3x8fPTVV1/p6NGjeuihh/T0009Lkjp37qxatWppzZo1OnPmjAIDA3Xu3Dlt27ZNOTk5qlGjhjIzM5Wfn2+/QFavXj2dOHFCf/zjH9WqVSsNGzZMI0aM0O7du/XJJ5/o0KFDat++vdzc3LRlyxb9/PPP6t69u3r16iXp6gWGV199VaNHj9aQIUMUERGhWrVq6YsvvijRfP1CU6ZM0b59+7R+/Xp99913Cg8PV0ZGhrZt26bMzExNmDBBYWFhJW6vrEp7Lpb2uAKAmXBnHwBQKgMHDtSKFSvUrl077dy5U++//74yMjL0hz/8QQkJCQ5Pivf09NTLL7+s3/zmN1q9erW2bNkib29vLVmyRL169dJPP/2k5cuXa+fOnWrRooXef/99PfXUU5JkH47sisOHD+vtt9+2/1u6dKl2796tZs2aae7cuYqLi1P16tWLbcPNzU1/+9vfNHnyZLm7uys+Pl6rV6+WxWLR9OnT9frrrzvUnzVrlu6//3599NFHio+Pd7nv9913n+Li4pSXl6cVK1bo+++/V2RkpP75z3+qTp06DnUXLlyoyMhInT9/XsuXL9fRo0cVGxurmJiYEq3rD3/4g0JDQ/Wvf/1LK1asuOGrCOvXr6/169dr2LBhOnfunFatWqVvv/1WXbp00QcffFDmV9vdSM2aNbVy5Ur5+flp1apV2rt3rx5//HGtXbvWPlXker1795YkdevWzT7HuyRKui+uNWfOHL366qv67W9/q48//lhr1qyRh4eHJk+erH/84x/2i1V16tTR8uXL1blzZ3333XdasWKF/v3vf+uRRx7R+vXr1b17d+Xl5WnHjh32tidPnqzAwEBt27ZNK1eulHT192nRokWaPn26qlevrnXr1ikhIUH33HOPXn75Zb3++usODyNs3769Vq1apQ4dOujrr79WfHy8mjdvrmXLlpV4v9SsWVOrV6/W2LFjlZ+fr9WrVysxMVGhoaFasmRJkVfgVbTSnouuHFcAMAuLUZGPOwYAALiFFi5cqLfeekvLly9XeHh4ZXcHAIBKQ9gHAACmkJqaqgEDBsjX11cbN26s7O4AAFCpmLMPAABua6tWrdLatWt1/Phx5eTkaPbs2ZXdJQAAKh1hHwAA3Nbq1aunlJQU1ahRQ88//7y6du1a2V0CAKDSMYwfAAAAAACT4Wn8AAAAAACYDGEfAAAAAACTIewDAAAAAGAyPKCvjAzDkM3GYw8AAAAAABXPzc0ii8Vy03qE/TKy2QydP3+psrsBAAAAALgD+Pn5yN395mGfYfwAAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDKEfQAAAAAATIawDwAAAACAyRD2AQAAAAAwGcI+AAAAAAAmQ9gHAAAAAMBkCPsAAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDKEfQAAAAAATIawDwAAAACAyRD2AQAAAAAwGcI+AAAAAAAmQ9gHAAAAAMBkCPsAAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDKEfQAAAAAATIawDwAAAACAyRD2AQAAAAAwGcI+AAAAAAAmQ9gHAAAAAMBkCPsAAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDIeld0BAACA24mbm0VubpbK7gYAoIxsNkM2m1HZ3agwhH0AAIAScnOzqHZtb7m5uVd2VwAAZWSzFejChRzTBn7CPgAAQAldvavvruMfL1JO2s+V3R0AgIu876mnRr1Gys3NQtgHAADAVTlpPysn9VRldwMAgBviAX0AAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDKEfQAAAAAATIawDwAAAACAyRD2AQAAAAAwGcI+AAAAAAAmQ9gHAAAAAMBkPCq7A6gcbm4WublZKrsbAIAystkM2WxGZXcDAABUMYT9O5Cbm0W1alWXuzsDOwDgdldQYNPFi9kEfgAA4ICwfwdyc7PI3d1NCz7YoZSz6ZXdHQCAi+rXuVtjB7eXm5uFsA8AABwQ9u9gKWfTdSLlQmV3AwAAAABQzhjHDQAAAACAyRD2AQAAAAAwGcI+AAAAAAAmQ9gHAAAAAMBkCPsAAAAAAJgMYR8AAAAAAJMh7AMAAAAAYDKEfQAAAAAATIawDwAAAACAyRD2AQAAAAAwmSoZ9vPy8vTee++pe/fuatGihR577DG98cYbys7Odqi3e/duRUdHKywsTG3atNH06dOVlpbmtL13331X3bp1U3BwsHr06KGVK1fKMIxbtUkAAAAAANwyHpXdAWcmTZqkzZs3q0+fPho+fLj27dunv//97/r+++/1zjvvyGKxaOfOnRo5cqQeeOABPfvss0pPT9fSpUuVlJSktWvXysfHx97ezJkzFR8fr379+iksLEyJiYmKjY3VL7/8okmTJlXilgIAAAAAUP6qXNjfuHGjNm/erD/84Q/2ID5o0CDVrFlTK1as0L59+xQaGqrY2FjVrVtXq1atUo0aNSRJISEhGjVqlJYvX67Ro0dLkpKSkhQfH6+YmBhNnTpVkhQZGamJEydq8eLFGjhwoAICAipnYwEAAAAAqABVbhj/mjVrVLt2bY0ZM8ahfOjQoRo9erS8vLyUnJysY8eOacCAAfagL0kdO3ZUkyZNtGHDBntZQkKCJGnYsGEO7cXExCgvL0+bNm2qwK0BAAAAAODWq1JhPz8/X/v27VN4eLjuuusuSVJOTo4KCgp0//33a+LEiQoKClJSUpIkqWXLlkXaaNGihY4fP67MzExJ0v79++Xv76+6des61GvWrJnc3d21f//+Ct4qAAAAAABurSoV9k+fPq0rV64oICBACQkJioiIUEhIiEJCQjRlyhSlp6dLks6cOSNJRQK8JNWpU0eSlJKSYq9br169IvU8PDzk5+dnrwcAAAAAgFlUqTn7GRkZkqRt27bp/fff16hRo/TAAw9oz549WrVqlY4eParVq1crKytLklS9evUibXh7e0uS/cn9mZmZ9jJndXNycsrcbw+PKnXN5Kbc3W+v/gIAisff9VuHfQ0A5mLmv+tVKuxfuXJFknTs2DEtXbpUbdu2lSQ99thjql27tubNm6f4+HjZbDZJksViKdJG4ev03Nx+PWjO6hXWvdGyknJzs6h2bZ+bVwQAoIL4+jq/qA0AAIpn5u/QKhX2C+/UN27c2B70Cz355JOaN2+edu7caR++7+yufG5uriSpZs2a9jZvdPc+NzfX6RD/0rDZDGVkZJepjVvN3d3N1Cc1ANxpMjJyVFBgq+xu3BH4DgUAc7kdv0N9fb1LNCKhSoX9whB/7733Flnm5+cni8WirKws+6vyUlNT1bBhQ4d6Z8+elcVikb+/vyQpICBAZ8+eLdJefn6+zp8/r7CwsDL3Oz//9jo5AADmUlBg47sIAAAXmPk7tEpNUPDz81P9+vV19OhR+1D9Qj/99JMMw1BAQICCgoIkScnJyUXaSE5OVpMmTeyv5AsKClJKSorS0tIc6h08eFAFBQUKDg6uoK0BAAAAAKByVKmwL0n9+vVTWlqaPvjgA4fyf/zjH5KkHj16KCQkRAEBAVqzZo0uXbpkr5OYmKijR4+qb9++9rKePXtKkuLi4hzai4uLk6enp305AAAAAABmUaWG8UvSyJEj9cUXX+iVV17RkSNH1KxZM23fvl2bN29W37591aZNG0nSjBkzNHbsWEVFRSkyMlLnzp1TXFycrFaroqOj7e2Fh4crIiJCixYtUlpamsLCwpSYmKjNmzdr/PjxZZ6zDwAAAABAVVPlwr63t7dWrFihhQsX6pNPPtH69etVv359TZkyRTExMfZ6Xbp00TvvvKMFCxZozpw58vX1VY8ePfTcc8/Jx8fx6fivvfaaGjVqpA0bNmjjxo1q0KCBZs+eraioqFu9eQAAAAAAVDiLUfiuOrikoMCm8+cv3bxiFeLh4abatX30wlubdCLlQmV3BwDgoob1a+vPEx7XhQuXTPtwoaqm8Dv04LKXlZN6qrK7AwBwkbf/fWo2bNZt+R3q5+dToqfxV7k5+wAAAAAAoGwI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAFclgSQAACAASURBVAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMxqOyO+DMtGnTFB8f73TZmjVrFBISIknavXu35s+fr0OHDsnLy0udO3fW5MmTdc899zh8Ji8vT4sXL9b69et15swZ1a9fX9HR0YqOjpbFYqnw7QEAAAAA4FaqkmH/yJEjatSokUaPHl1k2X333SdJ2rlzp0aOHKkHHnhAzz77rNLT07V06VIlJSVp7dq18vHxsX9m5syZio+PV79+/RQWFqbExETFxsbql19+0aRJk27ZdgEAAAAAcCtUubBfUFCgo0ePqmfPnurbt6/TOoZhKDY2VnXr1tWqVatUo0YNSVJISIhGjRql5cuX2y8UJCUlKT4+XjExMZo6daokKTIyUhMnTtTixYs1cOBABQQE3JqNAwAAAADgFqhyc/aPHz+uy5cvy2q13rBOcnKyjh07pgEDBtiDviR17NhRTZo00YYNG+xlCQkJkqRhw4Y5tBETE6O8vDxt2rSpnLcAAAAAAIDKVeXC/pEjRyRJDzzwgCQpOztbNpvNoU5SUpIkqWXLlkU+36JFCx0/flyZmZmSpP3798vf319169Z1qNesWTO5u7tr//795b4NAAAAAABUpiob9rds2aKOHTsqNDRUYWFhmjJlis6fPy9JOnPmjCQVCfCSVKdOHUlSSkqKvW69evWK1PPw8JCfn5+9HgAAAAAAZlHl5uwXhv0DBw5o4sSJql69unbt2qU1a9boP//5j9auXausrCxJUvXq1Yt83tvbW9LVEQGSlJmZaS9zVjcnJ6fMffbwqHLXTIrl7n579RcAUDz+rt867GsAMBcz/12vcmG/Z8+eatGihUaNGiUvLy9JUkREhBo1aqQ///nPWrZsmX1Yv7PX5hmGIUlyc/v1oN3o9XqGYZT51XtubhbVru1z84oAAFQQX1/nF7UBAEDxzPwdWuXCfp8+fZyWDx48WH/5y1+0Y8cOBQcHS5LTu/K5ubmSpJo1a0q6evf/Rnfvc3NznQ7xLw2bzVBGRnaZ2rjV3N3dTH1SA8CdJiMjRwUFtptXRJnxHQoA5nI7fof6+nqXaERClQv7N+Ll5aWaNWvq0qVL9lflpaamqmHDhg71zp49K4vFIn9/f0lSQECAzp49W6S9/Px8nT9/XmFhYWXuW37+7XVyAADMpaDAxncRAAAuMPN3aJWaoJCdna0+ffpowoQJRZadP39eFy5c0H333aegoCBJV1/Bd73k5GQ1adLE/kq+oKAgpaSkKC0tzaHewYMHVVBQYB8lAAAAAACAWVSpsF+9enV5enpq69atOnz4sMOyN998U5LUr18/hYSEKCAgQGvWrNGlS5fsdRITE3X06FH17dvXXtazZ09JUlxcnEN7cXFx8vT0tC8HAAAAAMAsqtww/pdeekmDBw/WsGHDFB0dLT8/P33xxRfavn27+vXrp65du0qSZsyYobFjxyoqKkqRkZE6d+6c4uLiZLVaFR0dbW8vPDxcERERWrRokdLS0hQWFqbExERt3rxZ48ePL/OcfQAAAAAAqpoqF/aDgoK0atUqvf3221q2bJmuXLmihg0baubMmYqKirLX69Kli9555x0tWLBAc+bMka+vr3r06KHnnntOPj6OT8d/7bXX1KhRI23YsEEbN25UgwYNNHv2bIf2AAAAAAAwiyoX9iUpODhY77333k3rderUSZ06dbppPS8vL02aNEmTJk0qh94BAAAAAFC1Vak5+wAAAAAAoOwI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJEPYBAAAAADAZwj4AAAAAACZD2AcAAAAAwGQI+wAAAAAAmAxhHwAAAAAAkyHsAwAAAABgMoR9AAAAAABMhrAPAAAAAIDJVPmwn5ubqx49eqhLly5Flu3evVvR0dEKCwtTmzZtNH36dKWlpRWpl5eXp3fffVfdunVTcHCwevTooZUrV8owjFuxCQAAAAAA3FJVPuz/5S9/0bFjx4qU79y5UyNGjFBWVpaeffZZDR48WJ9++qmGDBmiS5cuOdSdOXOm3nzzTYWGhmrGjBlq1KiRYmNj9be//e1WbQYAAAAAALeMR2V3oDhff/213n//fXl6ejqUG4ah2NhY1a1bV6tWrVKNGjUkSSEhIRo1apSWL1+u0aNHS5KSkpIUHx+vmJgYTZ06VZIUGRmpiRMnavHixRo4cKACAgJu7YYBAAAAAFCBquyd/YsXL+qFF15Q//79i4Tx5ORkHTt2TAMGDLAHfUnq2LGjmjRpog0bNtjLEhISJEnDhg1zaCMmJkZ5eXnatGlTBW4FAAAAAAC3XpUN+7NmzZKnp6dmzJhRZFlSUpIkqWXLlkWWtWjRQsePH1dmZqYkaf/+/fL391fdunUd6jVr1kzu7u7av39/BfQeAAAAAIDKUyXDfkJCgj7//HO9+uqrDnfuC505c0aSigR4SapTp44kKSUlxV63Xr16Rep5eHjIz8/PXg8AAAAAALOocnP2U1JS9Morr2jYsGEKDw93WicrK0uSVL169SLLvL29JUnZ2dmSpMzMTHuZs7o5OTll7rOHR5W8ZnJD7u63V38BAMXj7/qtw74GAHMx89/1KhX2bTabpk2bpjp16ui5554rtp4kWSyWIssKX6fn5vbrQXNWr7DujZaVlJubRbVr+5SpDQAAysLX1/lFbQAAUDwzf4dWqbAfFxenvXv36r333tOlS5fsr9Cz2Wyy2Ww6f/68PD095eNzNVw7uyufm5srSapZs6akq3f/b3T3Pjc31+kQ/9Kw2QxlZGSXqY1bzd3dzdQnNQDcaTIyclRQYKvsbtwR+A4FAHO5Hb9DfX29SzQioUqF/S+//FI2m02///3vnS5v27atWrdurW7dukmSUlNT1bBhQ4c6Z8+elcVikb+/vyQpICBAZ8+eLdJWfn6+zp8/r7CwsDL3Oz//9jo5AADmUlBg47sIAAAXmPk7tEqF/alTpyojI6NI+QsvvKC8vDz99a9/la+vr/Ly8iRdfQXf9fP6k5OT1aRJE/uD/YKCgrRmzRqlpaXpnnvusdc7ePCgCgoKFBwcXIFbBAAAAADArVelwn5QUJDT8mrVqsnNzU3t2rWTdHWufUBAgNasWaPBgwfbh/UnJibq6NGjev755+2f7dmzp9asWaO4uDhNnjzZXh4XFydPT0/17NmzArcIAAAAAIBbr0qF/ZKyWCyaMWOGxo4dq6ioKEVGRurcuXOKi4uT1WpVdHS0vW54eLgiIiK0aNEipaWlKSwsTImJidq8ebPGjx9f5jn7AAAAAABUNbdl2JekLl266J133tGCBQs0Z84c+fr6qkePHnruuefsd/oLvfbaa2rUqJE2bNigjRs3qkGDBpo9e7aioqIqqfcAAAAAAFSc2yLsf/rpp07LO3XqpE6dOt30815eXpo0aZImTZpUzj0DAAAAAKDqufnz+gEAAAAAwG2FsA8AAAAAgMkQ9gEAAAAAMBnCPgAAAAAAJkPYBwAAAADAZAj7AAAAAACYDGEfAAAAAACTIewDAAAAAGAyhH0AAAAAAEyGsA8AAAAAgMkQ9gEAAAAAMBnCPgAAAAAAJkPYBwAAAADAZAj7AAAAAACYDGEfAAAAAACTIewDAAAAAGAyhH0AAAAAAEyGsA8AAAAAgMkQ9gEAAAAAMBnCPgAAAAAAJkPYBwAAAADAZAj7AAAAAACYDGEfAAAAAACTIewDAAAAAGAyhH0AAAAAAEyGsA8AAAAAgMkQ9gEAAAAAMBnCPgAAAAAAJkPYBwAAAADAZAj7AAAAAACYjMthf/r06dq6dWuxdRISEvT000+7ugoAAAAAAOACl8N+fHy8Dh8+XGydb7/9Vnv37nV1FQAAAAAAwAUeJa0YFxenZcuWFSn75z//6bR+fn6+0tLSdN9995WthwAAAAAAoFRKHPaffPJJ/eMf/1BaWpokyWKxKCsrS1lZWc4b9vBQgwYNNGvWrPLpKQAAAAAAKJESh30fHx/t2LHD/vODDz6ocePGady4cRXSMQAAAAAA4JoSh/3rvfrqq2ratGl59gUAAAAAAJQDl8N+//79y7MfAAAAAACgnLgc9iVp+/btWrlypU6ePKm8vDwZhlGkjsVi0ZYtW8qyGgAAAAAAUAouh/1Nmzbp+eefdxrwAQAAAABA5XE57C9ZskQeHh6KjY1Vly5d5OvrW579AgAAAAAALnI57P/www/q1auX+vXrV579AQAAAAAAZeTm6ge9vb119913l2dfAAAAAABAOXA57Ldv3147duyQzWYrz/4AAAAAAIAycjnsP//887p48aKmTJmiQ4cOKScnRzabzek/AAAAAABw67g8Z3/s2LHy8PDQpk2btGnTphvWs1gsOnjwoKurAQAAAAAApeRy2E9PT5fFYlG9evXKsz8AAAAAAKCMXA7727ZtK89+AAAAAACAcuLynH0AAAAAAFA1uXxnf9euXSWu27ZtW1dXAwAAAAAASsnlsP/000/LYrGUqO6hQ4dcXQ0AAAAAACgll8N+v379nIb97OxsnTx5UocPH1br1q0VERFRpg4CAAAAAIDScTnsz5kzp9jln3/+uZ577jmNHDnS1VUAAAAAAAAXVNgD+rp166aOHTtq4cKFFbUKAAAAAADgRIU+jb9x48Y6fPhwRa4CAAAAAABcp0LD/t69e3XXXXdV5CoAAAAAAMB1XJ6zv3btWqflhmHo0qVL+vLLL5WUlKTHH3/c5c4BAAAAAIDSczns/+///m+xr94zDEO//e1v9fzzz7u6CgAAAAAA4AKXw/7YsWNvGPa9vLzUuHFjderUSR4eLq8CAAAAAAC4wOUkPn78+PLsBwAAAAAAKCflcts9NTVVBw8eVE5OjmrVqqUHHnhAderUKY+mAQAAAABAKZUp7J89e1YzZ87UV1995VBusVjUvn17vfLKK/L39y9TBwEAAAAAQOm4HPbT09MVFRWl06dP6/7771doaKj8/f2Vnp6ub775Rl9//bWGDh2q9evXq0aNGuXZZwAAAAAAUAyXw/7f//53nT59WqNHj9a4cePk7u7usHzhwoWaN2+eFi9erAkTJpS5owAAAAAAoGTcXP3gli1b1LJlS02YMKFI0JekMWPGqGXLlvrss8/K1EEAAAAAAFA6Lof9n3/+WWFhYcXWCQ0NVUpKiqurAAAAAAAALnA57Pv4+Cg1NbXYOqmpqapWrZqrqwAAAAAAAC5wOeyHhoZq69at+v77750uP3z4sLZu3arQ0FCXOwcAAAAAAErP5Qf0jRw5UomJiXrqqac0cuRIPfzww6pRo4ZSU1O1d+9eLVu2TAUFBRo5cmR59hcAAAAAANyEy2E/LCxMsbGxevHFF/Xaa685LDMMQ56ennrxxRfVqlWrMncSAAAAAACUnMthX5KeeOIJtWvXTuvXr9eRI0eUlZWlGjVqqHnz5urTp4/q1atXXv0EAAAAAAAlVKawv3fvXs2ZM0d9+/bVvHnz7OXBwcH67LPPNGfOHFmt1jJ3EgAAAAAAlJzLD+j77rvvFBMTo4MHD6qgoMBenpubqw4dOuiHH37QoEGDbvgAPwAAAAAAUDFcDvsLFiyQu7u7Vq9ereHDh9vLq1WrpoULF2rVqlUqKCjQ/Pnzy6OfAAAAAACghMp0Z79nz54KDg52ujw4OFjdu3fXnj17XO4cAAAAAAAoPZfDflZWlqpVq1ZsnVq1aik3N9fVVQAAAAAAABe4HPbvv/9+7d6922G+/rVsNpv27NmjBg0auNw5AAAAAABQei6H/V69eunHH3/UCy+8oPT0dIdlGRkZmjVrlo4cOaJevXqVuZMAAAAAAKDkXH713vDhw7V161Zt2LBBGzduVMOGDVWjRg1lZWXpxIkTys/PV8uWLTVixIhSt33q1Cm98cYb2rt3ry5duqSgoCA988wz6tChg0O93bt3a/78+Tp06JC8vLzUuXNnTZ48Wffcc49Dvby8PC1evFjr16/XmTNnVL9+fUVHRys6OloWi8XVXQAAAAAAQJXkctj38PDQ8uXLtWTJEiUkJOjHH3+0L6tfv7769++vUaNGycvLq1TtpqSk6Mknn5QkPfXUU6pZs6bi4+M1YsQIvfXWW+revbskaefOnRo5cqQeeOABPfvss0pPT9fSpUuVlJSktWvXysfHx97mzJkzFR8fr379+iksLEyJiYmKjY3VL7/8okmTJrm6CwAAAAAAqJJcDvuS5OnpqWeeeUbPPPOMrly5ogsXLsjHx0c1atRwuc033nhDGRkZWrdunZo2bSpJeuKJJ9SjRw/99a9/Vffu3WUYhmJjY1W3bl2tWrXKvr6QkBCNGjVKy5cv1+jRoyVJSUlJio+PV0xMjKZOnSpJioyM1MSJE7V48WINHDhQAQEBZdkNAAAAAABUKS7P2b+el5eX/P39yxT0JclisejRRx+1B31Jql69ulq2bKnTp08rKytLycnJOnbsmAYMGOCwvo4dO6pJkybasGGDvSwhIUGSNGzYMIf1xMTEKC8vT5s2bSpTfwEAAAAAqGrKdGe/Irz22mtFyvLz83XkyBHdfffd8vHxUVJSkiSpZcuWReq2aNFCCQkJyszMVM2aNbV//375+/urbt26DvWaNWsmd3d37d+/v2I2BAAAAACASlJud/YrQnp6uv71r39pzJgxOnHihJ599llZLBadOXNGkooEeEmqU6eOpKtz/yXpzJkzqlevXpF6Hh4e8vPzs9cDAAAAAMAsqtyd/WuNGTNGe/fulSR17dpV/fv3lyRlZWVJujq8/3re3t6SpOzsbElSZmamvcxZ3ZycnDL308OjSl8zKcLd/fbqLwCgePxdv3XY1wBgLmb+u16lw/5TTz2lp59+Wnv37tXKlSv15JNP6v3335fNZpMkp6/NMwxDkuTm9utBu9Hr9QzDKPOr99zcLKpd2+fmFQEAqCC+vs4vagMAgOKZ+Tu0Sof9iIgISVfv6jdu3FgzZ87UihUr7K/Vc3ZXPjc3V5JUs2ZNSVfv/t/o7n1ubq7TIf6lYbMZysjILlMbt5q7u5upT2oAuNNkZOSooMBW2d24I/AdCgDmcjt+h/r6epdoREKVDvvX6tWrl2bNmqXvvvtO7du3lySlpqaqYcOGDvXOnj0ri8Uif39/SVJAQIDOnj1bpL38/HydP39eYWFhZe5bfv7tdXIAAMyloMDGdxEAAC4w83dolZqgcP78eUVEROiPf/xjkWXZ2dkyDEN33XWXgoKCJEnJyclF6iUnJ6tJkyb2V/IFBQUpJSVFaWlpDvUOHjyogoICBQcHV8CWAAAAAABQeapU2Pfz85PFYtFnn32mEydOOCx79913JUmPPfaYQkJCFBAQoDVr1ujSpUv2OomJiTp69Kj69u1rL+vZs6ckKS4uzqG9uLg4eXp62pcDAAAAAGAWVW4Y/4svvqjf//73GjJkiKKionT33Xfryy+/1FdffaXu3burZ8+eslgsmjFjhsaOHauoqChFRkbq3LlziouLk9VqVXR0tL298PBwRUREaNGiRUpLS1NYWJgSExO1efNmjR8/vsxz9gEAAADg/7d350Fe14f9x1/LAiogMXhhAyhgV1RASrTgCaJiUScSoyGBqtFWG6uoaGy0am3LGHUkphM1Oh5BGTyIEqTFK+CBUUs0jiBGYwTPEBUFjxXE5fj+/uDHNpsFD65d3jweM8wsn8/7+9n397s7+9nnfo4vNDfNLvb79++f22+/Pddcc01uuumm1NXVpVu3brnooosyYsSI+rvnDxo0KNddd12uvfbaXH755Wnfvn2GDBmSc845p/4GfquMGTMmXbt2zeTJk3Pvvfemc+fOueSSSzJ8+PCmeIoAAACwQTW72E+S3r1754YbbvjccQMHDszAgQM/d1zr1q0zatSojBo1aj3MDgAAAJq3ZnXNPgAAALDuxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABSmWcb+Sy+9lJEjR6Zfv37p2bNnDjvssPzXf/1X6urqGoybMWNGRowYkb59+6Z///654IILsmDBgkbbW7p0aa6//voMHjw4vXv3zpAhQzJ+/PhUKpWN9ZQAAABgo2nZ1BP4S2+88Ua++93vplWrVhk+fHh22GGHzJgxI9ddd12ee+653HzzzamqqsqTTz6ZU045JbvuumvOPPPMfPjhh7nlllsyc+bM3H333Wnbtm39Ni+++OJMmjQpQ4cOTd++fTN9+vSMHj067777bkaNGtWEzxYAAADWv2YX+z/60Y9SV1eXu+++O926dUuSfPe7383ll1+esWPH5qGHHsohhxyS0aNHp2PHjrntttvSrl27JEmfPn1y6qmnZty4cTnttNOSJDNnzsykSZNy8skn54c//GGSZNiwYTn77LNz880357jjjkunTp2a5skCAADABtCsTuNfvnx5nnrqqey99971ob/K0UcfnSR55plnMnv27Lzyyis59thj60M/SQYMGJDu3btn8uTJ9cvuueeeJMmJJ57YYHsnn3xyli5dmvvuu29DPR0AAABoEs3qyH6LFi0yefLk1V5Lv3DhwiRJdXV1Zs6cmSTZa6+9Go3r1atX7rnnntTW1mbrrbfOrFmzsuOOO6Zjx44Nxu2xxx6prq7OrFmzNsAzAQAAgKbTrGK/qqoqnTt3Xu26W2+9NUnSr1+//O///m+SNAr4JNlhhx2SJPPmzUuPHj3y9ttvp0uXLo3GtWzZMh06dMi8efPWed4tWzarEyQ+V3X1pjVfAD6bn+sbj9caoCwl/1xvVrG/JmPHjs306dPz9a9/PQceeGCmTp2aJGnTpk2jsVtttVWSZPHixUmS2tra+mWrG/vJJ5+s09xatKjKV7/a9vMHAsAG0r796vdzAMBnK3kf2uxjf9y4cbniiiuy/fbb58c//nGSZMWKFUlWngnwl1ZdAtCixf/9hWZ141aNXdO6L2rFiko++mjxOm1jY6uublH0NzXA5uajjz7J8uUrmnoamwX7UICybIr70Pbtt/pCZyQ029ivVCoZM2ZMbrrppmy//fa55ZZbstNOOyVJ/dvqre6o/JIlS5IkW2+9dZKVR//XdPR+yZIl9dtcF8uWbVrfHACUZfnyFfZFALAWSt6HNssLFOrq6vKDH/wgN910U7p06ZLbb789u+66a/36VW+V98477zR67Pz581NVVZUdd9yxfuz8+fMbjVu2bFkWLly4XmIfAAAAjAMv0gAAGtRJREFUmpNmF/vLly/PqFGjMmXKlPTq1SsTJkxodIO9nj17Jklmz57d6PGzZ89O9+7d69+Sr2fPnpk3b14WLFjQYNwLL7yQ5cuXp3fv3hvomQAAAEDTaHaxf/XVV2fatGnp27dvbr311nTo0KHRmD59+qRTp06ZMGFCFi1aVL98+vTpmTt3bo4++uj6ZUceeWSSlTf5+3Njx45Nq1at6tcDAABAKZrVNfvvvvtubr755lRVVWXQoEGZNm1aozFdu3ZN7969c+GFF+b000/P8OHDM2zYsLz33nsZO3ZsampqMmLEiPrx/fr1y+GHH54bb7wxCxYsSN++fTN9+vRMnTo1I0eOdBo/AAAAxWlWsf/000+nrq4uSTJmzJjVjhk2bFh69+6dQYMG5brrrsu1116byy+/PO3bt8+QIUNyzjnn1N/Ab5UxY8aka9eumTx5cu6999507tw5l1xySYYPH77BnxMAAABsbM0q9o844ogcccQRX3j8wIEDM3DgwM8d17p164waNSqjRo1ah9kBAADApqHZXbMPAAAArBuxDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQGLEPAAAAhRH7AAAAUBixDwAAAIUR+wAAAFAYsQ8AAACFEfsAAABQmGYf+zNnzszuu++emTNnNlo3Y8aMjBgxIn379k3//v1zwQUXZMGCBY3GLV26NNdff30GDx6c3r17Z8iQIRk/fnwqlcrGeAoAAACwUbVs6gl8ljfeeCMjR47MihUrGq178sknc8opp2TXXXfNmWeemQ8//DC33HJLZs6cmbvvvjtt27atH3vxxRdn0qRJGTp0aPr27Zvp06dn9OjReffddzNq1KiN+ZQAAABgg2u2sf/II4/k/PPPzwcffNBoXaVSyejRo9OxY8fcdtttadeuXZKkT58+OfXUUzNu3LicdtppSVaeGTBp0qScfPLJ+eEPf5gkGTZsWM4+++zcfPPNOe6449KpU6eN98QAAABgA2uWp/Gfe+65+f73v58OHTrkyCOPbLR+9uzZeeWVV3LsscfWh36SDBgwIN27d8/kyZPrl91zzz1JkhNPPLHBNk4++eQsXbo099133wZ6FgAAANA0mmXsz5kzJyNHjsw999yTrl27Nlq/6vr9vfbaq9G6Xr165dVXX01tbW2SZNasWdlxxx3TsWPHBuP22GOPVFdXZ9asWRvgGQAAAEDTaZan8d91111p3br1Gte//fbbSdIo4JNkhx12SJLMmzcvPXr0yNtvv50uXbo0GteyZct06NAh8+bNW0+zBgAAgOahWcb+Z4V+knz88cdJkjZt2jRat9VWWyVJFi9enCSpra2tX7a6sZ988sm6TDVJ0rJlszxBYo2qqzet+QLw2fxc33i81gBlKfnnerOM/c+z6u78VVVVjdateju9Fi3+74u2unGrxq5p3RfVokVVvvrVtp8/EAA2kPbtV/9HbQDgs5W8D90kY3/V2+qt7qj8kiVLkiRbb711kpVH/9d09H7JkiXZaaed1mkuK1ZU8tFHi9dpGxtbdXWLor+pATY3H330SZYvb/w2tax/9qEAZdkU96Ht22/1hc5I2CRjf9Vb5b3zzjvZZZddGqybP39+qqqqsuOOO9aPnT9/fqNtLFu2LAsXLkzfvn3XeT7Llm1a3xwAlGX58hX2RQCwFkreh26SFyj07Nkzycq34PtLs2fPTvfu3evfkq9nz56ZN29eFixY0GDcCy+8kOXLl6d3794bfsIAAACwEW2Ssd+nT5906tQpEyZMyKJFi+qXT58+PXPnzs3RRx9dv+zII49MkowdO7bBNsaOHZtWrVrVrwcAAIBSbJKn8VdVVeXCCy/M6aefnuHDh2fYsGF57733Mnbs2NTU1GTEiBH1Y/v165fDDz88N954YxYsWJC+fftm+vTpmTp1akaOHLnO1+wDAABAc7NJxn6SDBo0KNddd12uvfbaXH755Wnfvn2GDBmSc845p/4GfquMGTMmXbt2zeTJk3Pvvfemc+fOueSSSzJ8+PAmmj0AAABsOM0+9keOHJmRI0eudt3AgQMzcODAz91G69atM2rUqIwaNWo9zw4AAACan03ymn0AAABgzcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMAAEBhNqvYf++993LhhRfmwAMPTJ8+ffKd73wnTzzxRFNPCwAAANarzSb2Fy1alJNOOilTpkzJN7/5zZx33nn55JNP8o//+I95/PHHm3p6AAAAsN60bOoJbCzjx4/PH/7wh1x//fU5+OCDkyRDhw7N0KFDM3r06DzwwAOpqqpq4lkCAADAuttsjuxPnjw5O++8c33oJ0nbtm3z7W9/O6+99lpmzZrVhLMDAACA9WeziP3a2tq88sor6d27d6N1vXr1ShKxDwAAQDE2i9h/5513UqlUstNOOzVat8MOOyRJ5s2bt7GnBQAAABvEZnHNfm1tbZJkq622arSuTZs2SZJPPvlkrbbdokVVOnRou/aTawKrbk3ww38YlOXLVzTtZABYa9XVK/9m/5WvbJVKpYkns5lYtQ/962PPTmXF8qadDABrrapFdZJNcx/aosUXu9fcZhH7K1asDNrV3YCv8v+/smt7c76qqqpUV2+aN/b7Srstm3oKAKwHLVpsFifqNSut2rZv6ikAsB6UvA8t95n9mbZtVx55X7JkSaN1q47ob7311ht1TgAAALChbBax36lTpyQrr93/S/Pnz0+S1V7PDwAAAJuizSL227Vrl1122SWzZ89utG7VstXdqR8AAAA2RZtF7CfJUUcdlTlz5uSxxx6rX7Zo0aL84he/SPfu3evfgg8AAAA2dVWVyqZ278G18/HHH2fo0KFZsGBBvve972X77bfPL37xi7z88su58cYbs99++zX1FAEAAGC92GxiP1l5zf6VV16Zxx57LEuXLk2PHj1y1llnpX///k09NQAAAFhvNqvYBwAAgM3BZnPNPgAAAGwuxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7AMb1Z133plBgwalZ8+eOe6445p6Oqu122675R/+4R+aehoA0CzZT8KmoWVTTwDYfMydOzf//u//np133jkXXXRRtttuu6aeEgAAFEnsAxvNiy++mEqlkpNPPjnDhg1r6ukAAECxnMYPbDR1dXVJknbt2jXxTAAAoGxiH9goBg0alAsuuCBJcs4552S33XbLb37zmyxbtiw33XRTjjrqqPTq1Sv9+vXLmWeemblz5zZ4/PHHH59jjjkmM2fOzPHHH58+ffpk3333zaWXXpq6urr8+te/zrHHHpvevXvnkEMOyc9//vNGc3j88cdz6qmnpn///tlzzz3Tr1+/fP/738+LL774ufNfuHBhRo8enYEDB6Znz545+OCD86Mf/SgfffTR+nmBAGAdreu+0n4SylJVqVQqTT0JoHzTpk3LY489lgkTJmTEiBHZa6+9sv/+++fiiy/OI488kqOOOipf//rXM3/+/Nx555359NNPc9ttt2X33XdPsvIXmJdffjl1dXU55phjsuuuu+bee+/NU089lYMOOijPPvtsRowYkY4dO+bOO+/M73//+1xzzTU57LDDkiT33XdfzjnnnPTp0ydHHHFEtthiizz//POZNGlS2rdvn4cffjhbbrllkpU3HjrggANy8803J1n5C8xxxx2XhQsX5jvf+U523nnnvPTSS7nrrruy8847Z8KECc5WAKDJrcu+0n4SClQB2EgmTpxYqampqUyZMqVSqVQqkydPrtTU1FTGjx/fYNzbb79d2WeffSrf/va365f9/d//faWmpqYybty4+mXvv/9+ZY899qjU1NRUHnvssfrlc+bMqdTU1FT+9V//tX7ZN77xjcqgQYMqn376aYPPdcUVV1Rqamoqjz76aP2ympqaysknn1z//wsvvLCy5557Vn73u981eOyjjz5aqampqYwZM2ZtXg4AWK/WZV9pPwnlcRo/0GTuv//+tGjRIoccckgWLlxY/69Vq1bZb7/9MnPmzMyfP7/BY4488sj6j7fZZptsu+22adeuXQ488MD65TvvvHOSNHjsxIkTc/fdd6d169b1yxYvXpxWrVolSRYtWrTaOVYqlTz44IPp0aNHOnbs2GCevXr1yo477phf/epX6/5iAMB6sjb7SvtJKI+78QNN5vXXX8+KFSsyYMCANY7505/+lB122CFJUl1dnQ4dOjRY37Jly0Zv4dey5cofbStWrGiw7PXXX8/VV1+dOXPm5I9//GPeeuutVP7/lUyVNVzRtHDhwnz00UeZPXt29t1339WO+fNfjACgKa3tvtJ+Esoj9oEms2LFimyzzTb5yU9+ssYxXbt2rf+4urp6tWOqqqo+93Nde+21+elPf5pddtklffv2zcCBA7P77rvn1VdfzX/8x3985hyTpH///vmnf/qnz/08ANCU1nZfaT8J5RH7QJP52te+ltdffz29e/dudOOep556KnV1dfU3A1oXb731Vq6++ursv//+ueGGG+qPZiTJrFmzPvOxHTp0SJs2bfLxxx9nv/32a7T+gQceqD/zAAA2RfaTUCbX7ANN5vDDD8+KFStyzTXXNFj+1ltv5Z//+Z9z4YUXrvEIxZfxwQcfpFKppFu3bg1+gfnggw8yceLEJMmyZctW+9jq6uoMGjQozz//fB5++OEG6x5++OGcddZZGT9+/DrPEQCaiv0klMmRfaDJHHPMMZkyZUrGjh2bV199NQcddFBqa2tzxx13ZPHixbn88ssb/NKxtrp3754uXbrkzjvvTKtWrdKtW7fMmzcvEydOzIcffpgk+fjjj9f4+PPOOy+/+c1vMnLkyBx77LHZY4898uqrr+aOO+7Itttum7PPPnud5wgATcV+EsrkyD7QZFq2bJmbbropZ599dt58881cfvnlufXWW7PrrrvmlltuyaGHHrpePk/r1q1z44035qCDDsqkSZNy6aWX5v7778+hhx6aKVOmpFWrVnn88cfX+PiOHTtm4sSJ+da3vpVHH300o0ePzgMPPJAhQ4ZkwoQJ6dKly3qZJwA0BftJKFNVZU231gQAAAA2SY7sAwAAQGHEPgAAABRG7AMAAEBhxD4AAAAURuwDAABAYcQ+AAAAFEbsAwAAQGHEPgAAABRG7ANAYd58881MmjSpqaeRJHnxxRczderUpp7Gl9acXkMAWBtiHwAK8vvf/z5HHHFEnnjiiaaeSqZPn55jjjkmzz//fFNP5UtpTq8hAKwtsQ8ABfnwww9TV1fX1NNIkixYsCArVqxo6ml8ac3pNQSAtSX2AQAAoDBVlUql0tSTAADW3fnnn9/oOvPLLrss11xzTdq0aZNRo0bl0ksvzXvvvZfevXtn/PjxSZK33347P/vZzzJ9+vQsWLAgHTp0yIABA3LGGWdkxx13bLC92tra3HLLLXnooYfy+uuvZ+nSpdluu+2y77775owzzsjXvva1JMnxxx+fp556qsFjx40bl379+mW33XbLIYcckpEjR2bMmDF59tlnU11dnX333TcXXXRR2rdvn6uvvjr/8z//k9ra2nTv3j1nn312DjjggAbbW7JkSX7+85/n3nvvzRtvvJGtttoqffv2zWmnnZa99tqrftwf//jHHHLIITnhhBMyePDg/PSnP83zzz+fqqqq7L333jnrrLOy5557fuZreMwxx6zDVwYANj6xDwCFmDZtWqZNm5ZJkyalpqYmgwcPzqGHHprTTz89tbW1qaury2GHHZavfOUr2WabbTJy5Mi8/PLLOeGEE/L+++9n4MCB6d69e954441MmzYtHTp0yPjx49O1a9ckyeLFi3Pcccdl7ty52X///dOjR48sWbIkTz75ZF555ZXstNNOuf/++7PVVlvll7/8ZaZNm5aHHnooe++9d/r3759vfvOb6dSpU3bbbbd07do1b7/9dvbaa6/sueeeeeqppzJ79uz06tUrbdu2zZtvvplBgwblww8/zJQpU1JdXZ377rsvXbp0qZ/LCSecUP+YvffeO7W1tXnwwQfzySef5Kqrrsrhhx+e5P9if4899sgf/vCH7LPPPvUf//rXv06bNm3y0EMPpUOHDmt8DXffffcm+7oCwFqpAADFmDFjRqWmpqZy7rnn1i87+OCDKzU1NZUf//jHjcYPHTq00qNHj8r06dMbLH/00UcrNTU1lWHDhtUvu/nmmys1NTWVq6++usHY5cuXV4YNG1apqampPPLII/XLJ06cWKmpqalcddVVDcbX1NRUampqKpdddln9srq6uspBBx1UqampqQwePLhSW1tbv+6qq66q1NTUVK6//vr6ZZdeeulqtz1v3rzKvvvuW/mbv/mbyvvvv1+pVCqVN998s/5zjhs3rsH4888/v1JTU1O58cYbP/M1BIBNjWv2AWAzMWTIkAb/f+655/LCCy9k8ODBOeiggxqsGzBgQPbff/88++yzmTt3bpJkv/32y3/+53/me9/7XoOxLVq0yN/+7d8mSRYuXPiF53PKKafUf9yqVav6U+9HjBiRdu3a1a/r27dvkmTevHlJkuXLl2fixInZfvvtc+aZZzbY5l/91V/lhBNOyKJFi3Lfffc1WNe+ffsMHz68wbJBgwYlSd54440vPG8A2BS0bOoJAAAbR+fOnRv8f/bs2UlW3jX/6quvbjR+8eLFSZLf/e536d69e3r06JEePXrk008/zXPPPZfXXnstb775Zl566aXMmDEjycoQ/yK23nrrbLvttg2WtWnTJknqT9VfZcstt0yS+jvkv/rqq/n444/Tvn37/OxnP2u07ddeey1J8sILLzRY3rlz51RXVzeaR5IsXbr0C80bADYVYh8ANhOronmVjz76KEny9NNP5+mnn17j4z788MMkK2P7mmuuye23357a2tokK4+W9+rVK3/913+d3/72t194LqvCfnVat279mY9dNZ8//elPueaaaz533CpbbLFFozFVVVVJkopbGAFQGLEPAJuptm3bJkl+8IMfNDilfk2uvPLKjBs3Lvvtt19OOumk7LbbbvV36x8zZsyXiv11sWreBx10UG688caN8jkBYFMj9gGgIKuOVH8Re+yxR5KV1+6vzm233Zb3338/Q4cOTadOnXLPPfdkiy22yHXXXdfoLIE5c+YkaXiE/MvM5cvo1q1bttxyy7z44oupq6trdCbAE088kRkzZmTAgAHZe++9v/T2N9S8AWBjcoM+AChIy5Yr/46/bNmyzx3bt2/fdOvWLVOnTs3UqVMbrHvmmWdy2WWX5ZZbbslXv/rVJCtPg1+2bFk++OCDBmOnTJmSRx99NEnDa9+/zFy+jNatW+cb3/hG3n333Vx11VVZsWJF/br33nsv//Zv/5Ybbrhhrbe/oeYNABuTI/sAUJCddtopSfLYY4/liiuuyCGHHLLGsS1atMiVV16Zk046KWeccUYOOOCA7LbbbnnrrbcyderUVCqVXHbZZfWnzX/rW9/K9ddfn2OPPTZ/93d/l1atWuW5557Lb3/722y33XZ57733GvwhYNVcJk+enCQ5+uijU1NTs16e57/8y79k5syZGTt2bGbMmJF99tknn376aX71q1/l/fffz0knnbRWR/X/fN5//hqu7bYAoKk4sg8ABdlpp51y7rnnZsstt8z48ePz5JNPfub4nj175pe//GWOO+64zJkzJ+PGjcszzzyTgQMH5o477shhhx1WP3bkyJE577zz0r59+9x111357//+7yxfvjwXX3xxJkyYkCT1R/iTZO+9986JJ56YTz/9NOPHj8+sWbPW2/Pceuutc+edd+aMM85IXV1d7rzzzjz44IPp3r17fvKTn+T8889f621/2dcQAJqjqorbzwIAAEBRHNkHAACAwoh9AAAAKIzYBwAAgMKIfQAAACiM2AcAAIDCiH0AAAAojNgHAACAwoh9AAAAKIzYBwAAgMKIfQAAACiM2AcAAIDCiH0AAAAojNgHAACAwvw/2bjN2LmF/P0AAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# Let see how many people has been treated\n","plt.figure(figsize=(12,8))\n","labels = labelDict['label_Gender']\n","g = sns.countplot(x=\"treatment\", data=train_df)\n","g.set_xticklabels(labels)\n","\n","plt.title('Total Distribuition by treated or not')"]},{"cell_type":"markdown","metadata":{"_cell_guid":"d7a9a45c-0df3-48a4-9ab2-e5aaae9abe7f","_uuid":"a781bf88a14f5bb937ede09d81365f16bdcbbe3f"},"source":["Draw a nested barplot to show probabilities for class and sex"]},{"cell_type":"code","execution_count":104,"metadata":{"_cell_guid":"210c02cf-9296-4373-8725-bd13b819a9e4","_uuid":"2b931335e19a15bf897fa8a6eabcd26cb263503a","collapsed":true,"jupyter":{"outputs_hidden":true},"scrolled":true,"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkQAAAHUCAYAAADbbjeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hT598G8DsDZMlQHIAiag0OwD3RuqhV0ap114XVuqq1dVRbW7Vqrdtai3VUqyBSsdbtr9aFW2ute9aBTFH2FkjO+wdvUmIYIQQS4P5cF9eVnJVvzkng5jnPeY5IEAQBRERERBWY2NAFEBERERkaAxERERFVeAxEREREVOExEBEREVGFx0BEREREFR4DEREREVV4DERERERU4TEQERERUYXHQEREREQVHgMRlbjff/8drq6uGj+NGjVC8+bN0atXLyxduhQxMTEl8vrh4eFwdXXF8OHDS2T73bp1g6urK7Kzswtd9sqVK3B1dcWsWbNU0+bOnQtXV1dcvHixwG1mZmZi8+bNkMvl+n0DRRQcHIy+ffvC3d0dbdu2xYULFwxaT3Hdv38fx48f13l95ed77dq1hS5blM9KScrvO5GSkoJt27apTcvr81kejRo1Cq6urnj+/LlqmqurK95++2215SryPirvpIYugCqOhg0bwsvLS/VcEASkp6fj+vXr2LFjB/7880/s2bMH1apVM2CVJcvJyQlTp06Fq6trgcuNHj0aycnJEIv/+59l5MiRuHnzJj788MOSLjNfCQkJmD59OrKzszFgwABYW1vjrbfeMlg9xXXmzBlMmjQJEyZMwDvvvGPocgzu3XffhUQiMehnzJhMnToVVlZWatPy2kdeXl5wcnJC7dq1S7tE0iMGIio1jRo1wrRp0/Kc9/nnn+PAgQNYv349Fi1aVMqVlZ5atWrluw9y8/Hx0ZhWUi1oRfHs2TNkZGSgS5cuWLJkiaHLKbbY2FgoFApDl2E0YmJiUKNGDUOXYTTy+q7mtY+8vLzU/tmjsomnzMgoTJo0CQBw+vRpA1dCBcnMzAQA2NnZGbgSIiL9YiAio+Do6AgAiI+PV00bNWoUmjdvjuvXr6NXr15wd3eHt7c30tPTAeScvlm+fDm8vLzg5uaGtm3bYvLkybhx40a+r3P58mUMGTIEHh4e6NixI+bNm4fo6GiN5V6+fIlly5ahd+/eaNasGdzd3fHOO+9gyZIlajXmFh4ejqlTp6J58+Zo2bIlJkyYgFu3bqktk1cforzk7muiXCciIgIA0KRJE4waNQpHjx6Fq6srvvjiizy38dlnn8HV1RX//vtvga8FAAcOHMCwYcPQvHlzNG3aFAMGDIC/v79af6Vu3bph9OjRAIB9+/bB1dUVc+fOzXebyn4q3377LS5duoQRI0agWbNmaNeuHebNm4eUlBQkJCRg/vz5aN++PVq2bIlRo0bh9u3bGtt681h36NABM2bMwJMnT9SWU+6r7du34/jx4xg8eDCaNm2KNm3a4NNPP0VoaKhq2VGjRqn23caNG+Hq6oorV66o5v/5558YN24c2rdvjyZNmqB169YYPXo0Tp48Wej+LMyLFy8wd+5ctG/fHh4eHujbty92796d57JnzpyBj48PWrVqBQ8PD/Tr1w/+/v55tmzdvXsXs2bNQpcuXeDm5obmzZujf//+2LZtW4F9z5T9oAAgOjo6z2ObkZGB77//Ht27d4ebmxu6du2KFStWqL6P2rh06RImTpyIdu3aqWoLDAzUqE3b73buz9jVq1dVvzNatGiBCRMm4O7duxo1xMTEYOHChXj77bfh4eGBoUOH4tKlS3nWm7sPUUH7KL8+RP/++y9mzpwJT09PuLm5oUuXLpg/fz6ioqLUllNu+8SJEwgKClL10evQoQO++uoro2gdrgh4yoyMQkhICACgZs2aatOzsrIwadIktGjRAp07d0ZGRgbMzc0RFRWFDz74AJGRkWjatCm6d++OFy9e4OTJkzhz5gyWLl2K/v37q23r6dOnGD9+PJo3b46RI0fi1q1b+O2333D+/Hns2bMH1atXB5Dzy27gwIGIj49H165d0a1bNyQnJyM4OBj+/v74559/8Pvvv2u8h5EjR8LS0hLDhg1DZGQkjh8/josXL2LLli1o3769zvtG2e9ox44dSE5OxpQpU1C7dm14eXnB1tYWx44dw4IFC2BmZqZaJzk5GSdPnoS7uzsaNGiQ77YFQcC8efOwd+9eVKtWDb169YKJiQnOnTuHJUuW4Ny5c9iwYQOkUilGjx6NBw8eYN++far+YI0aNSq0/itXrmDXrl14++23MXz4cAQHB+O3335DbGwsIiIioFAo8N577yE8PBwnTpzARx99hD///BPW1tYAcsLpBx98gLCwMLRt2xY9evTAq1ev8Mcff+D06dP4+eef0bJlS7XXPHz4MO7cuYOuXbuiTZs2uHbtGv73v//hxo0bOH78OExMTDBgwABUrlwZJ0+eRKtWrdCuXTs4OTkBAH744Qf4+vrC2dkZvXv3hpmZGR4/fowzZ87gypUr+Omnn9CtWzddDicAYOjQobCyskK/fv2QnJyMw4cPY/78+cjMzMSoUaNUy23ZsgWrVq1ClSpV8O6778La2hrnz5/HkiVLcPXqVaxbtw4ikQgAcP78eUyaNAnm5ubw8vKCvb09Xrx4gRMnTmD58uV49eoV5syZk2c9jRo1wtSpU/Hjjz/C0tISY8eO1Ti2X3/9NbKzs/Huu+/C1NQUx48fx9atWxEWFob169cX+p537tyJJUuWwNzcHN26dUO1atUQHByMhQsX4sGDB/jmm28AQKfv9t9//41du3ahdevWGD58OB49eoQzZ87g6tWrOHnyJKpUqQIg5xTp0KFDER4ejjZt2qBXr164desWxo8fr/q85UebfZTb+fPnMXnyZGRnZ6Nz585wcXHB/fv3sXv3bvz555/Yvn07GjZsqLbOxo0b8eDBA/To0QNvv/02zp49iz179uDRo0cICgoqdB9TMQlEJWzv3r2CTCYT5syZk+f8rKwsYeLEiYJMJhNWrlypmj5y5EhBJpMJM2bM0Fhn3LhxgkwmE3x9fdWm37lzR2jWrJng5uYmREZGCoIgCGFhYYJMJhNkMpmwbNkyteXXrl0ryGQyYe7cuappixYtEmQymbBv3z61ZdPT04Vu3boJMplMePTokWp6165dBZlMJgwfPlzIyMhQTT937pzQqFEjoXv37oJcLhcEQRAuX74syGQyYebMmarl5syZI8hkMuHChQsa28zKyipwmrLWQ4cOqdUaGBgoyGQyISAgQGPf5XbkyBFBJpMJgwYNEmJjY1XTU1NThQ8//FCQyWTC5s2bVdOV9ed3LHPLvd/9/PxU0+Pi4oSmTZsKMplMGDlypJCZmamaN3PmTI33M2XKFEEmkwm7d+9W2/69e/cEd3d3oWvXrqp9oqxPJpMJJ0+eVC2rUCiEMWPGCDKZTDh69KhquvKzuWbNGtW0V69eCY0bNxa8vb2FtLQ0tdfctWuXIJPJhGnTphW4jfwoj+HkyZPV3vf58+cFmUwm9OnTRzXt7t27QsOGDYU+ffoIcXFxqulyuVyYMWOGxj7p06eP4ObmJjx9+lTtNR8/fiy4uroKbdu2VU1THpthw4apLSuTyYROnTqpTVN+Prt16ya8evVKNT02NlZo2bKl4OrqqvbZyUtYWJjg5uYmdOzYUQgJCVFNz8jIEAYMGCDIZDLh4cOHgiDo/t3O/RkTBEGYO3euIJPJhC1btqimzZs3T5DJZML69evVll29erVqO7nry2t/FLSPlN/hlJQUoV27dkKTJk3UvteCIAi7d+8WZDKZ4O3tLSgUCkEQ/vsMNWnSRLh9+7Zq2devXws9e/YUZDKZcPPmzfx2L+kJT5lRqbl//z7Wr1+v+vnhhx/wzTffwNvbG6dPn0aDBg1UfYly69Wrl9rz6OhonDt3DvXq1cOUKVPU5jVp0gTjxo1DZmamRiuOnZ2dRifJqVOnwt7eHkePHlX1j/H29sY333yD9957T21ZMzMzNGvWDAAQFxenUefcuXNRqVIl1fOOHTvCy8sLYWFh+OeffwrbPToZOHAgAGD//v1q0/fv349KlSqhT58+Ba7/22+/AQC++uor1X/RAGBhYYGFCxdCLBbneypHW5aWlvjggw9Uz+3s7FCvXj0AOZ3HTUxMVPNatGgBAKrTgzExMaqWriFDhqhtt1GjRujXrx8iIiI0Lv2XyWRqLTgikQhdunQBALXTZnmRSqVYsWIFFi9eDHNzc7V57dq1A4B8T5tqa8qUKWrv29PTExYWFmqXfO/ZswcKhQKzZs1S67MlFovx+eefq5YBclr6pk+fjtWrV6Nu3bpqr1W/fn3Y29sXu+YRI0bA3t5e9bxKlSpo0aIFBEFAWFhYgesqv1/jx49HnTp1VNMrVaqEL774AtOmTYNEItH5u21tba32GQOgOv7K452VlYWjR4+iatWqmDx5stqyn3zyidp7K65Tp04hLi4OAwcORIcOHdTmDRkyBG3atMG///6La9euqc3r2LEj3NzcVM9NTU3h6emp9j6o5PCUGZWaBw8e4MGDB6rnYrEYlpaWqFOnDqZNmwYfHx+NS1yBnCuzcrt37x4AoHXr1nm+TqtWrQDkBLDcmjRpAgsLC7VpUqkU7u7uOH36NJ4+fYqGDRuiRYsWaNGiBVJSUvDw4UOEhoYiNDQU9+/fV/UxebP/hqmpKdzd3TVqadasGY4dO4Z79+6p6tKnxo0bo1GjRrh48SJevXqFatWq4dmzZ7h+/Tq8vb0LPQ1w9+5dmJmZ5Vl77dq1UbNmTYSFhSElJSXPY6ON2rVrQyKRqE2ztLQEADg7O6tNV572U4bTu3fvQhAEZGZm5nla5sWLFwByPhOdO3dWTX8zFABA5cqVAeT8YSyIra0tvL29AeScyn3y5AnCw8Px5MkT1R+w4o4F5eLiojHNzs4OERERkMvlkEgkqr5U586d0+iLBuTsq/v370MQBIhEItVVTq9evcKjR48QFhaGkJAQ3L59G7Gxsaq63zwWxalZGaLT0tIKXFf5XWzevLnGvNatW6u+y8qLKor63c7rM/bm8X7+/DlSU1PRsmVLjWWlUimaNWuGEydOFPg+tKX8HdWmTZs857du3Rp//fWXxu+FvD63yu9wYZ9bKj4GIio1AwYMwLJly4q83pv/pScnJwP47xfem5SXxL7Z2TO//wCVf5yVv9RTUlKwcuVK7N+/HxkZGQByfvE3bdoUzs7OePDgAQRB0Ni2si9HQdsuCQMHDsSSJUtw+PBhjB07VtVa9P777xe6bkpKCmxsbNTGO8qtRo0aiIyMRFpams6B6M0QmpupqWmB6yYmJgIAHj58iIcPHxa6XEHbVR6fN49dXoKDg7FmzRrVa0qlUrz11ltwd3fH48ePtdpGQXL393qTcttJSUkAAH9//wK3lZqaCisrKzx58gTLly/H2bNnVduoXbs2WrZsiX///ReJiYnFqlubmvOTkJAAAIV+hnT9budumVV683gr92d+27a1tS2wtqJQvo/83m9+76O4n1sqHgYiKnOUv2TyujoM+O8X35u/4JTT36Tcjo2NDYCcMZFOnjyJ3r17Y+jQoWjQoAGqVq0KIOfKrdytXEXddkno27cvVqxYoQpEhw8fRs2aNTWa6vNiZWWF+Ph4ZGZm5vnLWBk09PnHoiiUgXL48OFYuHBhqbzm7du3MWXKFFhbW2PJkiVo1qwZ6tSpA1NTUzx58gT79u0rlTqU7/3ixYuqz19+0tLS4OPjg9jYWEyePBldu3ZF/fr1VdtQnnYxFGUdKSkpGvOys7OhUChgamqq83dbG8p18vuu6vOfFuX7ePnyZZ7zDf29oryxDxGVOY0bNwYA3LhxI89bIChPa8lkMrXpd+/e1TjVpTwtVrlyZdStWxdJSUk4deoUnJycsHbtWrRr107tj9Hjx48BaP63lpKSgmfPnmnU8vfffwNAnqek9MXW1hbdu3fHnTt3EBwcjPDwcPTv3z/fVp/cGjduDIVCodGXAcj5oxQSEgIXF5dCW3JKivIqnrxOGQHAkSNH8P333+cZUrWRV6veoUOHIJfLMXv2bAwePBgNGjRQvf/8jn9JUL73mzdvasxLSUnBt99+i507dwLICU0vX75E3759MX36dHh4eKhCSFxcnKrPm6FaGZRXU+X1XoKDg+Hh4YFNmzbp/N3WhrOzM2xtbXH79m3VKVklQRDy/YzpQvk+rl69muf84rwPKjkMRFTm1KxZEx07dkRYWBg2bNigNu/BgwfYunUrTE1N0bt3b7V50dHRCAgIUD0XBAGrVq1CUlISBg0aBLFYDFNTU4jFYqSnp2v8N7t582Y8evQIAPL8Zb1u3Tq1viVHjx7FlStX0KRJE7WOkrpSdsLN67WVnauVo3xrc7os93orVqxQ63Sbnp6OBQsWQKFQaL2tkuDo6AhPT0/cvXsXO3bsUJv39OlTfPPNN9i8ebPOp/Ok0pxG8tz7VHlqSNnvRikqKgpr1qzRWL6kDBo0CACwcuVKvHr1Sm3e6tWr4efnp+pLo6z5zfFqXr9+ja+//lr1j0BhdZuYmJTIe+vbty8kEgm2bdum6jAP5PQV27JlCwCgU6dOOn+3tSGVSjFgwAAkJCRg9erVauFw27ZtCA8P12o72uyj7t27w9bWFocPH9bo8L9//36cP38e9erVU12kQcaBp8yoTFq0aBFGjBgBX19fXLhwAc2aNUN0dDROnjwJhUKBxYsXa9xXyNnZGUuXLsWFCxdQt25d/P3337h16xaaNGmCTz75BEDOH5ZevXrh8OHDeP/999G1a1cAUHWAtLe3R0xMjMYVO9bW1rhy5QoGDRqEDh064NmzZzh16hRsbW2xfPlyvbxnBwcHhISE4PPPP0fLli0xZswY1TxPT084ODggIiICLVu2VLuSpyB9+vTBuXPnsH//fvTt2xedO3eGiYkJzp8/j7CwMHTq1Anjxo3TS/26Wrx4MUaMGIGlS5fi2LFjaNq0KRISEvDHH38gLS0N8+bN0+h4ry0HBwcAOQNTAkC/fv3g7e2NX375Bd9//z3u3r0LZ2dnREZG4tSpUzAxMYGJiYmqT0xJatGiBaZMmYINGzbA29sb3bp1g52dHa5evYrbt2+jXr16mDFjBgCgZcuWcHFxwfnz5zFixAg0b94cSUlJOHPmDF69egU7OzvEx8cjISFBo0/em/sjNDQUX375Jdq0aaMx3o+u6tSpg88//xzfffcd+vfvj+7du8Pa2hrBwcF4/vw5Jk2apGpV0eW7ra1p06bh0qVL2L59O65fv44WLVrgwYMHuHz5MpydnbW6kkubfWRpaYkVK1Zg6tSpGD9+PLp06aIah+jSpUuws7PDmjVr8myhJMNhCxGVSU5OTvj9998xZswYxMTEICAgAFevXkW3bt0QGBiYZ6tGy5Yt8eOPPyIqKgr+/v54+fIlxo0bB39/f7WOv4sXL8bEiRMhCAICAwPxv//9D1ZWVli5ciXWrVsHIKeZP7fKlStj586dqFKlCgICAvD333+jd+/e+O233wocGLEoZs2aBVdXV5w6dUp1qkRJLBarhicoaovOsmXLsHTpUjg5OeHIkSM4ePAg7OzssHDhQmzevFnVimIoymPt4+ODly9fwt/fH2fPnkWLFi2wbds21ejZumjVqhXGjBmD169fY+fOnbh58yZcXV3xyy+/oFWrVrh8+TJ27tyJ+/fv47333sPBgwfRqlUrhIWFaYySXRKmT5+ODRs2oHHjxjhx4gR27dqF1NRUTJo0CYGBgarTuebm5ti2bRv69OmDsLAw+Pn54eLFi3B3d8euXbtU+6iwW+PMnz8fderUwcGDB/XeV8rHxwebN29G48aNcfz4cezatQvm5uZYsmQJPvvsM9Vyuny3tWVpaYmAgACMGzdOte24uDisX79eY3DP/Gi7jzp37ow9e/agZ8+euHHjBvz9/REaGopRo0bhwIEDWg1qSqVLJLDrOlG54OPjg5s3b+L8+fOq/iNERKQdthARlQOXL1/G5cuX0a9fP4YhIiIdsIWIqAz74osvcOfOHTx58gRmZmY4cuSIql8MERFpjy1ERGVY9erVERYWhnr16uGnn35iGCIi0hFbiIiIiKjCYwsRERERVXgMRERERFThMRARERFRhceRqrUkCAIUCna3IiIiKivEYpHWI4IzEGlJoRAQF5dq6DKIiIhIS1WqWEIi0S4Q8ZQZERERVXgMRERERFThMRARERFRhcdARERERBUeAxERERFVeAxEREREVOHxsvsSJJdnQ6FQGLqMMkkikUAslhi6DCIiqiAYiEpAenoqUlOTkJ2daehSyjARzM0tYW1dRetBtYiIiHTFQKRn6empSEyMgampOWxtq0EikQDgH/SiEfD6dQZSUhJgYlIJFhZWhi6IiIjKOaMPRDdu3MDw4cMRGBiIZs2aFbp8aGgoVq9ejb/++gsZGRlo3rw5ZsyYATc3t1KoFkhNTYKpqTns7KqxZaMYTEwqITs7CykpCTA3t+S+JCKiEmXUnapDQ0Mxbdo0rfvhREdHY8SIEbhy5QpGjhyJ6dOn4/nz5xg5ciQePHhQwtXm9BnKzs6EhYUV/4DrgZmZBRQKOfthERFRiTPaQHT69GkMHjwYL1++1HodX19fxMbGYvv27fj444/h4+ODwMBAmJiYYPny5SVYbQ7lH+6c02RUXMpO1QqF3MCVEBFReWeUgWjmzJmYNGkSqlSpAm9vb63WkcvlOHToENq2bYuGDRuqplevXh3e3t64dOkSoqOjS6rkN7B1SB/YykZERKXFKAPR48ePMW3aNOzfvx9169bVap1///0XaWlp8PDw0Jjn7u4OQRBw+/ZtfZdaIjIzMxEVFYmoqEhkZlbcK9WysjKRmJiITZt+RGRkhKHLoRIWGRmBpUsXYunShTzeFQCPNxkbo+xUvWfPHpiamhZpHWXrj4ODg8a86tWrAwAiIor3pZNKC86PCoV+WjRiY2OQlpb2/89i4ODgqJftljUJCQnIzMzEw4f34e+/DfPmLTB0SVSC/Py24tatGwDA410BlLXjLRKJIBYbttVaoRAgCIJBayjPjDIQFTUMAUBycjIAwNzcXGOeclp6errONYnFItjZWRa4TEaGBDExYkgkokLDU0GysrLUHhdnW2VZdvZ/+yEyMrzQ/U9lW1TUf/+w8HiXf2XteCsUglEEIkPXUJ4ZZSDShbJDc0H9TsRi3YOFQiEgKSmtwGUyM19DoVBALheQna3dlVFJSYk4fvwYgoNPIiIiHPHxcahUyQwODo5o3rwl3n23l9bbKknffrsQ//vfYaxd64vWrduW+usrFALi41NL/XWp9CgUgtpjHu/yrSwdb4lEDGtrc/gGXkDEy0SD1OBU3QYfD/dEUlI65HLD/00oK6ytzSGRaPe3v9wEIkvLnP8uMjIyNOYpW4asrIo3wF9hwUQuL1pT5tWrl7F48QLExcWidm1ntG3bAba2toiMDMetWzcRFLQLx4//gXXrNqBevbeKU3qZJwjah0wqm3KfCuDxLv/K4vGOeJmIkIh4g9YglyvKxL4qi8pNIKpVqxYA5HklmfLS/bz6FxnK3bt3MGvWdJiZmWHx4mXo2tVLNS80NASvX2fixIk/sGuXP778cjZ27PgVlSpVMmDFRERE5Ve56ZxSt25dWFpa5nklmXJa06ZNS7usPGVnZ2Px4vmQy+VYsmSFWhhSEovF6NGjN7p06Y7w8DCcOHHMAJUSERFVDOWmhcjU1BQ9evTAoUOH8OjRI8hkMgA5rUNHjhxBp06dUKVKFQNXmePq1SsIDw9F27YdCu2P07Nnb5iamsLR0Uk1TS6XY9++PTh69BCePw+BVCpFw4aNMXz4KLRr10Ft/Y4dW6FTp84YP34yNm3yxa1b15GdnY2GDRvDx2c8WrVqo7Z8WloaduzYilOnTiA2Nga1aztj9Oix+db38mU0tm//GZcvX0RcXCzs7KqgXTtPfPjhR6hWrbpquaNHD2Hp0m/w5ZcLcPnyRZw/fxYWFhaYPftLdO7ctSi7j4iISO/KbCC6fv06QkND4enpCXt7ewDAJ598gtOnT2PMmDEYO3YsKlWqBH9/f8jlcsyePdvAFf8nOPgkAGgVBGrXdsbXXy9SPZfL5fjyy1m4cOEcXFzqoW/fAZDL5Th79hRmzfoEn3wyE0OGDFfbRlhYKCZN+hAuLnXRp09/vHgRhTNnTmHmzGn45ZcAVf+k169fY9q0iXj48D5cXRvh7bc749mzZ1iw4EtUrWqvUdvTp0/wySeTkJiYgPbtO8LFpS4iIsJw5MgBXLhwFj/+uBnOznXU1tm48UdYWFhg0KAhePLkCdzc3Iu8/4iIiPStzAai3bt3Y9++ffDz81MFIkdHR+zatQsrV67Exo0bIZFI4OHhgR9++AGurq4Grvg/4eFhAID69RsUed29e4Nw4cI59Ozpjblzv4ZUmnMIP/poMqZMGQdf3+/Rtm171KnjolonJOQZhg0bialTP1VN++WXLdi6dRP27duLmTPnAAB+/XUnHj68jz59+uHzz+eprsrbv38vVq36TqOWJUvmIykpEStXrlNrmbp06QJmz56O7777Bj/9tE1tnYyMDPj57YatrW2R3zsREVFJMfpANG3aNEybNk1j+rJly7Bs2TKN6fXr18fGjRtLozSdxcXFAgCsra015j14cA9Hjx5SDSMgFothY2MLS0tLDBs2EgcP7oNEIsFnn81WhSHltkaPHodFi77CkSMHMWXKJ2rbHTXKR+25p2cnbN26CRERYappx44dhUQiwZQpn6gNUdC//0AcOrQfDx/eV027f/8uHj16iK5dvTRO07Vv74nWrdvi6tUrCAl5BheX/0Ybb9myFcMQEREZHaMPROWRjY0twsJCkZSUpDHvwYN7+P33PRrTq1Wrjn79BiIk5CksLS3x668BGsvEx+dcDvro0YM3Xs8GNjbqIcTKqjKA/waBfP06A6Ghz+HiUhfW1jYa227atNkbgeje/79mHLZu3aSxvHKog0ePHqgFotx9oYiIiIwFA5EBODo64c6dWwgLe44mTdzU5vRMqpoAACAASURBVPXvPwgtWrRCVlY2AMDERIoPPhgEAEhJyRmNOzU1Fb/8siXf7b8ZtExNNS/XVw5gqRwLRDnSt6Vl3mM1vRmSkpNzXuPGjX9w48Y/BdSiPohZpUpm+S5LRERkKAxEBtC5czf8+ef/cPr0CfTs6a31ehYWFgAAF5e62LlTsxWpOJSBRxm63vTmbU8sLHIGwpw8eRpGjBij11qIiIhKW7kZh6gs6dChIxwdnXDx4nlcunShwGWVfYmAnNYbR0cnhIeHITExQWPZhw8fwNd3HS5cOFfkmkxNTVG//lsIDw9T9XHK7e5d9fGdZLKcTur37t3Jc3u//74H27ZtRlRUZJFrISIiKm0MRAZgYmKCRYu+g1Qqxfz5X+Dw4QNqwUfp+fNnWLr0GwD/neLq06cfsrOzsXr1crWbwKanp2PVqqUIDPTPt5WnMH379odcLsf3369S2/apUyc0Tou5uzdFnTouOHs2GGfOnFabd+vWDfzww2oEBe3S6LtERERkjHjKzEAaNmyM9es34ZtvvsayZYvx888b0apVG9jbV8OLF1F49OgBQkOfAwCaNm2OGTNyLo3/4IPRuHbtb5w6dRyPHj1EmzZtIRaLcfZsMF6+jEbXrl7w8npXp5oGDBiMCxfO4dSp43j27Alat26LqKhInD9/FrVqOSM8PFS1rFgsxtdfL8ann07BvHmz0aZNe7z11luIjn6Bs2eDIQgCvvhigeo0HxERkTFjIDIgNzcP+Pn9iuDgkzh58k/cvHkdsbExkEqlqFrVHt2790CnTp3VAo5UKsXq1T9g797dOHbsKI4cOQgTExPUquWMMWPGwdv7PUgkEp3qkUgkWLlyHXbt8sPRo4exf/9eVK9eE7NmfYGYmFcaHbkbNmyEbdt2wt//F1y5cgn//HMVdnZV0L59R4wa5YNGjZoUa/8QERGVFgYiAzM3N0evXn3Qq1cf1bTQ0BC1q8zeJJVKMXToCAwdOqLQ7Z8//3ee0x0cHPOcJ5VKMXr0hxg9+kONeePGTdSY5ujohDlzviq0jt69+6J3776FLkdERGQI7ENEREREFR4DEREREVV4DERERERU4TEQERERUYXHQEREREQVHgMRERERVXgMRERERFThMRARERFRhcdARERERBUeAxERERFVeAxEREREVOHxXmYGIhaLIBaL8pxnbm4GExM5AEAqlUAqLb3cqlAIUCiEUns9IiIiY8BAZABisQi2thaQSPIOOnZ2DUq5ov/I5QokJKQVOxTFxcVi8+YNuHz5IlJSktGggQwffjgBrVu301OlRERE+sNAZABisQgSiRi+gRcQ8TLR0OWoOFW3wcfDPSEWi4oViNLS0vDpp1MQERGOIUM+QLVq1XHw4D7MnPkJVq36AW3aMBQREZFxYSAyoIiXiQiJiDd0GXq3d+9uPH36BMuXr4WnZycAQM+e3hg79gOsWbMCgYF7IRLlfbqQiIjIENipmvTu2LGjqFWrtioMAYCFhQXee28AwsNDcffuHQNWR0REpImBiPQqJSUFz5+HoHFjN415jRo1AQDcu8dARERExoWnzEivXr16CUEQUL16DY159vb2AIAXLyJLuywqRQVdQVmQ3KdRRSJRsa6u5NWSRFRUDESkV6mpKQAAMzMzjXlmZuYAgPT0jFKtiUqPWCyCrZ05JGKJTuvmfmxnZ6lzHXKFHAnx6QxFRKQ1BiLSK4VCAQB5dpoWhJw/Trq0HlDZIBaLIBFLsOmMHyITo4u0bkJaotrjBQdX6lSDo00NTOw8uthXSxJRxcJARHplYZHzX31GhmYr0OvXOdMsLa1KtSYqfZGJ0XgeG16kdbIVcrXHRV2fiKg42Kma9MrBwQEAEBPzSmNeTEwMAKBGDc3+RURERIbEQER6ZWlphdq1nXH//j2Neffv3wWAPK9AIyIiMiQGItI7L693ERLyFJcvX1RNS0tLw8GD++DiUhcNGzY2YHVERESa2IfIgJyq2xi6BDX6qmf48JE4duwovv56DoYOHYGqVe1x8ODvePEiCqtW/cBRqomIyOgwEBmAQiFALlfg4+Gehi5Fg1yuKPaVORYWlvD13YKfflqPvXuDkJ2djbfeaoC1a33RokUrPVVKRESkPwxEBqBQCEhISMv38vOoqEhkZ+dccSOVSuDg4FiqtenjUuVq1apj/vzFeqiIiIio5DEQGUhBwSM9PQNZWdkAABMTKbKzFaVZGhERUYXDTtVERERU4TEQERERUYXHQEREREQVHgMRERERVXgMRERERFThMRARERFRhcdARERERBUeAxERERFVeAxEREREVOExEBEREVGFx0BEREREFR7vZWYgYrEo35u7mpubwcTkv5u7SqWll1v1dXNXIiKisoSByADEYhHs7MwhFkvynG9n16CUK/qPQiFHfHy6XkPRnTu3MWXKOGzYsBVubu562y4REZG+MBAZQE7rkATPDm9BemyUoctRMa/qgLp9PoJYLNJbIIqICMdXX30OhUKhl+0RERGVBAYiA0qPjUJ6dKihyygxFy6cw9KlC5GYmGjoUoiIiArETtVUIhYunIc5cz6Dra0dunfvYehyiIiICsRARCUiJOQZxo2biG3bAuDsXMfQ5RARERWIp8yoRGzevB2mpqaGLoOIiEgrbCGiEsEwREREZYlRBqKYmBjMmzcPnTp1QrNmzTBs2DBcuHBBq3Vv376NcePGoUWLFvDw8MDQoUMRHBxcsgUTERFRmWZ0gSg1NRVjx47F4cOHMWDAAMyePRvp6ekYP348zp8/X+C69+7dw8iRI3Hnzh2MGzcOM2fOREpKCiZNmoSjR4+W0jsgIiKissbo+hDt3LkTjx49wsaNG9G1a1cAQP/+/dG/f38sXrwYf/zxB0SivEd43rhxIzIyMuDv7w8PDw8AwIABA9CzZ0+sWrUKvXv3LrX3QURERGWH0bUQHThwAHXq1FGFIQCwtLTEkCFDEBISgps3b+a7bkhICOzs7FRhCACsra3RsmVLREREICkpqURrJyIiorLJqAJRcnIynj59qhZolNzdc275UFAgqlevHhITExETE6M2PTQ0FBYWFrCystJvwURERFQuGNUps+joaAiCAAcHB4151atXBwBERETku/706dNx7do1TJ8+HXPnzkXlypXh7++PBw8eYMaMGRCLjSr/wbyq5vs0JGOrh4iIqLQYVSBKTk4GAJibm2vMs7CwAACkp6fnu76LiwsmTZqEpUuXYtCgQarpo0aNwsSJE4tdX2F3nVco8u7bpLmcAIVCjrp9Pip2TfqmUMiN8m73IpGo0P1PhieRGM8xMqZaSFPuvqDG/v02ps+SMdVS3hhVIFLeADSvTtOCIOQ7T2nBggXYvXs3mjdvjmHDhsHU1BR//PEH/P398fr1ayxevFjn2nLuUG9Z4DIZGRLExIghkRT+5U5Keg2xOO/3Eh4egezsbACAVCpFrVpOuhWtA4VC+P+bz2oX7rQxceJkTJw4uVjb0Gb/E+Vmba35jxUZj9y/Y/j91h4/1yXHqAKRpWXOFyIjI0NjnrJlqHLlynmu++zZMwQFBcHd3R07d+6EVJrz1nr37o2FCxciMDAQ3bt3R5cuXXSqTaEQkJSUVuAymZmvoVAoIJcLyM7W/e7u6enpyMrKCUQmJlK8fp2t87bKC4VCQHx8qqHLoEJIJGKj+YWdlJQOuVz37yGVrNwt0cb+/ebnuuyytjbXulXNqAJRrVq1AOT0JXrTy5cvASDP/kUA8PDhQwiCgP79+6vCkNKwYcMQGBiIS5cu6RyIABQacuRy4zvVVF4IQvFCJlU8crmCnxkjpmz1Vz7msdIOP9clx6hORlpZWcHFxQW3b9/WmKecltcVaMB/t4qQy+Ua85Sn4vKaR0RERGRUgQgA+vTpg8ePH+Ps2bOqaampqQgKCkL9+vVVl9+/qVWrVrCwsMCePXs0Ol4HBAQAADp27FhyhRMREVGZZVSnzABg7NixOHDgAKZPnw4fHx9Uq1YNQUFBiIyMxJYtW1Sdqq9fv47Q0FB4enrC3t4e1tbW+PLLL/H1119jwIABGDRoEMzMzHD69GmcP38evXr1KtbpMiIiIiq/jC4QWVlZISAgACtXrkRAQACysrLQsGFDbN26Fe3atVMtt3v3buzbtw9+fn6wt7cHAAwePBiOjo7YvHkzfH19kZ2dDRcXF3zxxRcYPXq0od4SEZFKZGQEtm/fAgDw8fkIjo6ldxUpEeXP6AIRANSoUQOrVq0qcJlly5Zh2bJlGtM9PT3h6elZUqURERXLjh1bcevWDQCAn99WzJ0738AVERFghH2IiIjKs4iIMNXj8PCwApYkotLEQEREREQVnlGeMiOqSNinhIjI8NhCRGRgyj4lt27dgJ/fVkOXQ0RUIbGFyEAKul+YubkZTExyBpGUSiWletPDnBvPcsTt0sQ+JUREhsdAZABisQi2duaQiCV5zreza1DKFf1HrpAjIT692KHoyZPH2LZtE27c+AepqamoUaMmvLzexZgx41SjihMRERkLBiIDEItFkIgl2HTGD5GJmvdtMxRHmxqY2Hk0xGJRsQJRREQ4Jk8eB6lUivffHwx7e3tcu/Y3duzYinv37mDNmh9VA2wSEREZAwYiA4pMjMbz2HBDl6F3P/ywGllZmfj55x1wdnYBAPTvPwjr16/F7t0BOHfuDN5+u4tBayQiIsqNnapJr+RyOa5f/wceHs1VYUipZ8/eAKAalI6IiMhYsIWI9EosFmP79l0QBM1TbgkJ8QAAiSTvvlNERESGwkBEeiUSifIdRycoKBAA0KJFq9IsiYiIqFA8ZUal4tdfd+LSpQvw8GiGtm3bG7ocIiIiNQxEVOL27PkVvr7rULWqPRYsWGLocoiIiDTodMpMEASEh4cjKSkJr1+/hoWFBSpXrgxHR0deTk0qgiDgp5/WY9cuP1StWhXff78BNWrUNHRZREREGooUiE6cOIHAwED8/fffyMzM1Jhvbm6O5s2bY8SIEejWrZveiqSyJysrC99+uxAnThyDk1MtrFnzI5ycahm6LCIiojxpFYjkcjlmzJiBP//8E4IgwNnZGbVr14a1tTVMTU2RmZmJpKQkhIWF4cKFC7h48SJ69+6N5cuXQyplv+2KRi6XY/78L3DuXDAaNWqMFSvWwc7OztBlERER5UurtPLLL7/g2LFj6NGjB+bMmQMnp/zvxh0eHo7ly5fj6NGjcHNzw9ixY/VWLJUN27ZtxrlzwXB3b4rVq9fDwsLC0CUREREVSKtAtHfvXjRu3Bjr1q0rtI9QrVq1sG7dOgwaNAh79+5lICqAo00NQ5egRh/1xMbGIDDQHyKRCB07vo1z54I1lqld2xmNG7sV+7WIiIj0RatAFBkZiTFjxmjdYVosFsPT0xP+/v7FKq68UigEyBVyTOw82tClaJAr5MW6j9mNG9dV/ct++ml9nsv06/c+AxERERkVrQKRvb09QkNDi7Thx48fw8rKSqeiyjuFQkBCfDrE4rwDZlRUJLKz5QAAqVQCBwfHUq2tOIGoe/d30L37O3qsiIiIqORpFYi6dOmCwMBA7N69G0OHDi10eT8/PwQHB2PQoEHFLrC8Kih4pKdnICsrGwBgYiJFdraiNEsjIiKqcLQKRB9//DEuXbqEhQsXYtOmTWjbti1q164NGxsbmJqaIisrC8nJyQgNDcVff/2F8PBwODo6Yvr06SVdPxERGZBYLMq3tbsgubtgiEQiSKW6jxNc3JZtIkDLQFSlShX8+uuvWL9+PX777Tfs27cPgPoHWnkzT0tLSwwZMgSffvopL7UmIirHxGIRbO3MIREX/YbNuUOUWCyCnZ2lznXIFXIkxKczFFGxaD1IkLW1NebNm4fPP/8c9+7dw5MnT5CUlIS0tDRUqlQJNjY2qF+/Ppo0aQJTU9OSrJmIiIyAWCyCRCzBpjN+iEyMLtK6CWmJao8XHFypUw2ONjUwsfNoiMUiBiIqliKPmmhiYoKmTZuiadOmJVEPERGVMZGJ0XgeG16kdbIVcrXHRV2fSN+KHIhevnyJK1eu4OnTp0hOTla7l1n9+vXRokUL1KhhXOPrEBERERVE60AUERGBb7/9FsHBwRAEQdVnKDeRSASRSITu3btjzpw5qFWrot67is22+iEAUH7WeNNgIiIqOVoPzDh48GDExcWhTZs2aN++PZydnVG5cmXVvcyUV5ldvHgRx48fx40bNxAYGFihQpFYnHOVhFwuh4mJgYspJ+RyBVJTU2FpyTGtyjsTm0qQp2apHhMRlSatAtHatWuRmJiIH3/8EV5eXgUuO3nyZJw4cQLTp0/H+vXrsXz5cr0UWhZIJFJIpaZIS0tBpUrmWo/sTXkTBAWSkpKQkZHBQFQB2LZ0QIIQpXpMRFSatApEFy5cQM+ePQsNQ0peXl7o2bMnLl++XKziyiJLS2skJsYgPv4VLCwsIZFIUfTTPQL+O+0mICsrU79FGjlBEJCZmYG0tBQEB5/O8/QslT8mNpVQrbuLocvQGsffISpftApE6enpcHQs2u0jatasiYSEBJ2KKsvMzXPG0khNTUJCQoxO20hJiYdcnjM6tUQiRmys7r8wyy4Rrl27hvv37xu6ECINYrEItrYWkEiK/t3U6/g7cgUSEtIYioj0QKtAVLduXQQHB2P69OmQSgtf5fXr1zhx4gTq1KlT7ALLInNzS5ibW0Iuz4ZCUfTbbmzYsAHx8XEAADu7Kvj668X6LtHoSSQSXL58uUy1DrHFoOIQi0WQSMTwDbyAiJeJha+QS3xSutrjL9cd1akGp+o2+Hi4J8ffIdITrQLRiBEjMG/ePIwdOxYff/wxWrVqlWcwksvl+Oeff7BmzRqEhobiq6++0nvBZYlEIoWk6AO4Ii4uDjExrwAAggCYmHCgS2PHFoOKKeJlIkIi4ou0TrZcofa4qOsTUcnQKhANHDgQz549w88//4yxY8dCIpHAwcFB7V5mSUlJiIqKQlZWFgRBwIgRIzBixIiSrp/IKLDFgIiobNN6HKJZs2ahT58+2LlzJ65du4aQkBCEhYWp5ovFYtSuXRtt2rTBwIED0axZsxIpmMiYscWAiKhsKtJI1Q0bNsSSJUsAAAqFAikpKUhLS4OpqSkqV64MEw6+Q0RERGVQkW/doSQWi2FtbQ1ra2t91kNERERU6iri9dxEREREanRuIaLC8TJsIiKiskGrQHTp0iWdX6B9+/Y6r1uW8TJsIiKiskOrQDR27Fid78tVUUca5mXYREREZYdWgWjz5s2YPXs2kpKS0KRJEzRo0KCk6yo3eBk2ERGR8dMqEL399tvYsWMHRo8ejRcvXmDLli2ws7Mr6dqIiIiISoXWHVwaNmyIb7/9FjExMVi+fHlJ1kRERERUqorU4/edd95B165dcfDgQTx58qSkaiIiIiIqVUW+7P6bb77BrVu3YGrKG44SERFR+VDkQFS9enV4eXmVRC1EREREBsGRqomIiKjCYyAiIiKiCo+BiIiIiCo8BiIiIiKq8BiIiIiIqMJjICIiIqIKT6dAlJmZqdVyDx480GXzRERERKVKp0D0/vvv499//813viAI2LhxIwYPHqxzYURERESlRadA9PjxYwwaNAgBAQEa88LCwjB8+HB8//33qFSpUrELJCIiIippOgUiX19fWFhYYMmSJZg8eTLi4+MBAIGBgXjvvfdw48YNdO7cGYcPH9apqJiYGMybNw+dOnVCs2bNMGzYMFy4cEGrdVNTU7Fq1Sp069YNHh4e6NWrF7Zu3Yrs7GydaiEiIqLyr8i37gCA7t27o1mzZvjiiy9w+vRp9OvXD/Xq1cOVK1dga2uLRYsWoW/fvjoVlJqairFjxyI0NBRjxoxBjRo1EBQUhPHjx2PLli3o2LFjvutmZmZi7NixuHPnDoYNG4YGDRrgzJkzWLFiBSIiIjB//nydaiIiIqLyTadABABVq1bF5s2bsWjRIuzatQuvXr2Cra0tfv/9dzg4OOhc0M6dO/Ho0SNs3LgRXbt2BQD0798f/fv3x+LFi/HHH39AJBLlue727dtx8+ZNLFmyRNV/afjw4Zg8eTICAgIwceJE1KhRQ+faiIiIqHzS+bL71NRULF68GLt374ZUKoWLiwvi4+Ph4+ODq1ev6lzQgQMHUKdOHVUYAgBLS0sMGTIEISEhuHnzZr7rBgUFQSaTaXTmnjx5Mj7++GNkZGToXBcRERGVXzoFouDgYHh7eyMgIADOzs7YtWsXDh8+jKlTpyIiIgJjxozBwoULkZqaWqTtJicn4+nTp/Dw8NCY5+7uDgD5BqKoqCiEhYWhU6dOqmmpqalQKBTw8PDAJ598gjp16hSpHqLSIDWzyfXY1oCVEBFVXDqdMps0aRJEIhFGjhyJ2bNnq64mmzp1Kjp37ow5c+bg119/xZkzZ3D69GmttxsdHQ1BEPI85Va9enUAQERERJ7rPn36FADg5OSEX375Bdu3b8eLFy9gaWmJ999/X61OXUml2udHicR4xrw0plqKIvepUZFIVKT9X9qKs48r126H5LDL//+4rUFrKcuv/aaSrKU425aa2SAzM+X/Hxc/APN45zDW461vxlRLeaNTIKpZsya+++47tG/fXmOeu7s79u/fj5UrV2Lnzp1F2m5ycjIAwNzcXGOehYUFACA9PT3PdRMTEwEA/v7+SEpKwoQJE+Dg4IATJ07A398fYWFh2LRpU5HqyU0sFsHOzlLn9Q3J2lpzf5YFYrFI7XFZ3f+FkZrZwK7Bu3rbXlk93vpmrPtB3wHYWN9naaso+6GivE9D0CkQHTp0CJUrV853vqmpKebNmwcvL68ibVehUABAnp2mBUHIdx4AZGVlAQDCw8Nx4MAB1K9fHwDw7rvvwsTEBHv37sX58+cLvEqt4NoEJCWlab28RCI2mg9uUlI65HKFocsoMoVCUHscH1+0U7Clicc7R0XZD8V5n/oOwDzeOYz1eOtbWf19bijW1uZat6rpFIgKCkO5tW1btP9+LC1zWgDy6vysbBnK77WVLUjt2rVThSGlIUOGYO/evbh48aLOgQgAsrPL5odQLlcUufbIyAhs374FAODj8xEcHZ1KorQCKUOw8nFZ3f+lTZfjXR5VlP1QUd5nYSrKfqgo79MQjOpkZK1atQDk9CV608uXLwEg30v6lZfT29vba8yrWrUqACAlJUUvdVYEO3Zsxa1bN3Dr1g34+W01dDlEREQlyqgCkZWVFVxcXHD79m2NecppeV2BBgAymQxmZmZ49OiRxrzQ0FAA/wUuKlxERJjqcXh4WAFLEhERlX1GFYgAoE+fPnj8+DHOnj2rmpaamoqgoCDUr19fdfn9m8zMzNCzZ0/cvXtX7co2hUKBbdu2QSKR4N139XfenoiIiMoPnUeqLiljx47FgQMHMH36dPj4+KBatWoICgpCZGQktmzZoupUff36dYSGhsLT01N1mmzWrFm4evUqpk+fjg8++AC1a9fGsWPHcOXKFUyZMoXjEBEREVGedApET5480ei4rC9WVlYICAjAypUrERAQgKysLDRs2BBbt25Fu3btVMvt3r0b+/btg5+fnyoQKcPTDz/8gMOHDyMpKQkuLi749ttvMWjQoBKpl4iIiMo+nQKRt7c3mjZtivfffx/e3t6wsrLSa1E1atTAqlWrClxm2bJlWLZsmcZ0e3t7LFq0CIsWLdJrTURERFR+6dSHqFevXnjw4AEWLFiAjh07YtasWbh06ZK+ayMiIiIqFTq1EK1duxYpKSk4fPgw9u/fj8OHD+PIkSOoWbMmBgwYgAEDBqB27dr6rpWIiIioROh8lZmVlRWGDRuGX3/9FX/88QcmTJgAsViMDRs2oEePHhg5ciT27duX7602iIiIiIyFXi67d3FxwWeffYaTJ09i06ZNcHR0xLVr1/Dll1+iY8eOWLx4cZ6DLRIREREZA71cdh8bG4tDhw7hyJEjuHPnjuqO9b169cK9e/ewa9cuHDx4ED/99BNatWqlj5ckIiIi0hudA1FmZiZOnDiB/fv34+LFi8jOzoapqSl69uyJgQMHwtPTUzVm0OXLlzFu3DgsWrQIBw8e1FvxRERERPqgUyCaN28ejh07htTUVAiCgEaNGmHgwIHo27cvbGxsNJZv164d6tWrh7Aw3gKCiIiIjI9OgWjv3r2wsbHBiBEjMHDgQDRq1KjQddzc3NCtWzddXo6IiIioROkUiNasWQMvLy+Ymppqvc53332ny0sRERERlTidrjL79ddfcfTo0QKX8fPz481UiYiIqEzQKhAJggCFQgGFQgG5XI6//voL4eHhqmlv/mRmZuLvv/9GVFRUSddPREREVGxanTL7+eefsWbNGrVpvr6+8PX1LXA9V1dX3SsjIiIiKiVaBSIfHx8cP34cMTExAICoqChYWVmhcuXKGsuKRCJIpVI4Ojpi1qxZ+q2WiIiKLTIyAtu3bwEA+Ph8BEdHJwNXRGR4WgUiExMTBAUFqZ43bNgQY8aMwdSpU0usMCIiKhk7dmzFrVs3AAB+flsxd+58A1dEZHg6XWXm5+cHJyf+R0FEVBZFRPw3Jlx4OMeHIwK0DEQKhQJi8X/9r5W331AoFIWum3s9IiIiImOkVSBq0qQJpk6dio8//lj1XBsikQj37t3TvToiIiKiUqBVIHJwcFDrQO3g4FBiBRERERGVNq0C0alTpwp8TkRERFSWsYMPERERVXhatRBdunRJ5xdo3769zusSERERlQatAtHYsWMhEol0eoH79+/rtB4RERFRadEqEPXv31/nQERERERk7LQKRMuWLSvpOoiIiIgMhp2qiYiIqMLTqoXo888/R48ePeDl5aV6rg2RSITly5frXh2VC2KxCGJx0U+55j5Nm3PTYN3zu0IhQKEQdF6fiIjKN60C0cGDB+Hs7KwKRAcPHtRq4wxEJBaLYGtnDolYotO6uR/b2VnqXIdcIUdCfDpDVo5argAAIABJREFUERER5UmrQPTmzVz9/PxKrCAqX8RiESRiCTad8UNkYnSR1k1IS1R7vODgSp1qcLSpgYmdR0MsFjEQUbkjkRS95VRfra+6vDaRsdIqELVp06bA50SFiUyMxvPY8CKtk62Qqz0u6vpE5ZlNZTMICgWsrc2LvK4+W1+JygutAlFB/vnnH9y7dw9paWmwsbGBu7s7GjdurI/aiIgoH5ZmphCJxXh2eAvSY6OKtG5WSoLa43s7FulUg01dNzi9/b5O6xIZG50D0ZUrV/D1118jLCwMACAIgqoZ1s3NDcuWLUP9+vX1UyUREeUpPTYK6dGhRVpHkMvVHhd1fSWzKjV1Wo/IGOkUiG7duoXx48dDoVDgnXfeQfPmzWFpaYno6GhcvXoVf/31F0aNGoWgoCDUqlVL3zUTERER6ZVOgcjX1xeCIGDLli3o0KGDxvyjR49i5syZ+P7777Fq1apiF0lERERUknS6RODatWt455138gxDANC7d2907doV586dK1ZxRERERKVBp0CkUCjg6OhY4DL16tVDZmamTkURERERlSadAlGHDh1w8uTJfAOPQqHAxYsX0bJly2IVR0RERFQatApECoVC7Wf27NlITU3FuHHjcOfOHbVlnz9/jlmzZiE6OhpffvlliRRNREREpE9adapu0qRJntNjYmIwePBgmJqaomrVqkhOTkZKSgoAwNraGhMmTMCJEyf0Vy0RERFRCdAqEDk4OGi1scqVK6Ny5cqq5wqFQreqiIiIiEqRVoHo1KlTJV0HERERkcHwznxERERU4RXrXmZPnjxBXFwc5HI5BOG/u4hnZWUhISEBwcHBWLNmTbGLJKKSFRkZge3btwAAfHw+gqOjk4ErIiIqXToFooSEBIwfPx53794tdFkGIiLjt2PHVty6dQMA4Oe3FXPnzjdwRVSSqluZID4jW/WYiHQ8Zebr64s7d+7AyckJvXv3hpmZGVxdXdGrVy+89dZbEAQBVatWRUBAgL7rJaISEBERpnocHh5WwJJUHvRtWAWyquaQVTVH34ZVDF0OkVHQqYXozJkzcHBwwNGjR2FqaopJkyZBLBarWoM2b96MtWvXIioqSq/FEhFR8VW3NMX4VrxTPVFuOrUQvXjxAl26dIGpqSkAoHHjxrh586Zq/oQJE9CoUSMEBQXpp0oiIiKiEqRTIJJIJGrjDTk7OyMuLg5xcXGqaW3atMHz58+LXyERERFRCdMpEDk6OiIkJET13NnZGQDw+PFjteUSEhJ0r4yIiIiolOgUiDp16oRTp07h4MGDAABXV1dUqlQJu3fvBgCkpqbi9OnTqFGjhv4qJSIiIiohOgWicePGwdbWFnPmzEFQUBAsLS3Rr18/HDlyBN27d0ePHj0QGhqKnj176rteIiIiIr3T6SqzatWqYe/evdiyZQtkMhkAYPbs2Xj16hVOnz4NsVgMb29vTJ48Wa/FEhEREZUEnUeqrlGjBr766ivV8/9r787DoioXP4B/h0GQfUlAExXFEEkQt+uKXcE1ScGFLFfMciml4lp6zbRrBYaZ5ppmLgiyqIhR2bVFEcs1RFQUlRBzAYTSYUsYzu8PfjPXcQacGbaB8/08j88znnPec94z7znMd97znjOWlpbYuHEjZDIZTExMYGpqWicVJCKi5qeFjSnkxeXK10SNrVY/3QEAFRUVyMrKQklJCWxsbNCxY8e6qBcRETVjtr3a4C/hjvI1UWPTOxDdu3cPq1evxnfffYeysjLldCsrK0yYMAELFixAy5Yt66SSRETUvLSwMYWDn0tjV4NISa9AlJeXhxdffBF37txBq1at0LdvX1hYWCAvLw9XrlzBV199hdOnT2PXrl0wMzOr6zoTERER1Sm9AtHnn3+OO3fuYO7cuXjjjTcglUqV84qKirBq1SrExMRg48aNCA0N1Xn99+7dw2effYbk5GTIZDK4u7tj/vz5GDhwoE7rKSgogL+/Pzp37ozIyEid60FERETioNdt90eOHEGfPn0QEhKiEoaAqsHVy5cvh6enJ5KSknRed3FxMYKDg5GUlITAwEAsXLgQpaWlmDVrFlJSUnRa15IlS1Senk1ERESkiV6BSCaToXv37jUu06dPHxQUFOi87t27dyMzMxNr1qzB22+/jcmTJyM6OhrOzs5YsWIFBEHQaj2xsbE4duwYjIz02kUiIiISEb3SQpcuXXD+/Pkal8nKyoKrq6vO605MTESHDh0wZMgQ5TQLCwsEBQUhOztb5Udkq3Pjxg2Eh4dj7ty5MDau9Y10RERE1MzpFYhCQ0Px22+/YdWqVSp3mCns3r0bx44dw4IFC3Rar0wmQ1ZWFry8vNTmeXp6AsATA5FcLsc777wDV1dXzJkzR6ftExERkThp1X0yefJktWmWlpbYtm0b9u/fDw8PDzg4OODBgwe4ePEicnNz0b59exw+fFilp+dJcnNzIQgC2rRRfyaFo6MjAODWrVs1rmPTpk24fPkyEhIS6rx3yNhY+/wolRrOpTp96iKRSFRe67Lvtd12fanPuhjSfrZoIdW5Po+3t6mpfueOkZHkyQs1ELG0N1URS3sbUl2aG63+6p09e7baeYWFhRoHO9+4cQM5OTn4+OOPta6MTCYDAI236pubmwMASktLqy2fnp6OTZs24d1330WnTp203q42jIwksLOzqNN1NhRra90fffDoB1tT3vdH6fM+NCU2Vi0hVFbC0lL353893t7N4b1qDvtA2hNLe4tlPxuDVoHoxx9/rO96AAAqKysBqH5bVVAMptY0DwDKysqwcOFC9OnTB1OnTq2Hugl48KBE6+WlUiODOXAfPCiFXF6pU5nKSkHl9Z9/Fuu17ab+PmjLEPbToqUJJEZG+D1pK0oL7uhUtrzoL5XXl3b+R6862HTshraDx+lVtq419/YmVWJp7/rcz+bI2tpM6141rQJR27Zta1UhbVlYVPVCaBqXpOgZsrKy0lj2k08+wd27d7F69Wr8+eefKvPKy8tRWFgIU1NT5Tb0UVHRNA9CubxS57o/ejefIAhNdt8fpc/70BSVFtxBaW6OTmUEuVzlta7lFVrat9arXH0QS3tTFbG0t1j2szHUapBNbm4u9u/fj4yMDJSUlMDW1hZubm4YPXq0XiHK2dlZud7H5eXlAYDG8UVA1bORSktLERgYqDYvNTUV/fv3R2BgIMLDw3WuFxERETVvegeigwcPYunSpXj48KHas4E2bNiADz74AAEBATqt09LSEi4uLkhPT1ebp5im6Q40AIiIiMDff/+tNv21115Dp06dsGjRIuXAbCIiIqJH6RWI0tLSsHjxYpiamuL1119Hnz594OTkhAcPHuDEiRPYtm0b3nvvPbi6uipvl9eWv78/1q9fj+TkZAwePBhA1dOr4+Lialxfr169NE6XSCSwsbHBgAEDdNtJIiIiEg29AtEXX3wBqVSKqKgodO3aVWWel5cXBg8ejKCgIGzfvh2rV6/Wad3BwcFITExESEgIZsyYAQcHB8TFxeH27dvYunWrclB1amoqcnJyMHDgQLRq1Uqf3SAiIiICoOeDGX/77Tf4+fmphSEFd3d3+Pn54dSpUzqv29LSElFRUfDz80NUVBQiIiJgZmaGbdu2qfTyxMbG4p133sH169f12QUiIiIiJb16iIqKitC6dc13kzg5OeH+/ft6VcrJyQmrVq2qcZnw8HCtBkhrGo9ERERE9Ci9eojatGmD1NTUGpc5d+7cE0MTERERkSHQKxANHToUaWlp+OKLL9TmVVZWYt26dUhLS4Ofn1+tK0hERERU3/S6ZDZnzhwcOnQIa9aswcGDB9GnTx9YWVkhNzcX586dw82bN9GmTRvMnj27rutLREREVOf0CkQ2NjaIjo7G0qVLkZKSojaweeDAgVixYgXs7OzqpJJERERE9UmvQPT333+jTZs2+PLLL5GXl4dLly5BJpPB0tISHh4ecHJyqut6EhEREdUbvQLRhAkT0KdPH7z//vtwdHTkE6CJiIioSdNrUPWNGzdgampa13UhokbiaNlC42siIrHQq4eobdu2yMnR79ewqeFJpbrnXsUTwRWvjY31ys56bZsa3gvu9hAyCpWviYjERq9AFBYWhtmzZ2PhwoUYOXIk2rVrBzMzM43LtmvXrlYVJP3ZWLWEUFkJa2vNbVMTIyOJyms7O4u6rBoZGEcLE8zqzeeGEZF46RWIgoODUVFRgaSkJCQlJVW7nEQiwaVLl/SuHNWORUsTSIyM8HvSVpQW3NGpbHnRXyqvL+38j151sOnYDW0Hj9OrLBERUUPRKxB169atrutB9ai04A5Kc3W7xCnI5SqvdS2v0NKevQ5ERGT49ApEkZGRdV0PIiIiokbDEa9EREQkelr3EBUUFGDdunX4+eef8eeff6J169YYNWoUZs+eDXNz8/qsIxEREVG90ioQFRQUYOLEibhz5w4EQQAA5OTkYMuWLfj555+xZ88eWFjwLiQiIiJqmrS6ZLZlyxbcvn0bY8aMwXfffYe0tDQcOHAAzz33HK5evYpdu3bVdz2JiIiI6o1WgejYsWPo0aMHVq5ciY4dO8LU1BTu7u7YsGED2rdvj59++qm+60lERERUb7QKRHfu3EHPnj3VpkulUgwcOBA3btyo84oRERERNRStAtHff/9d7ZOo7ezsUFxcXKeVIiIiImpIWgWiysrKaudJJJIa5xMREREZOj6HiIiIiESPgYiIiIhET+sHM/7444+4deuW2vTLly8DABYvXqw2TyKR4OOPP65F9YiIiIjqn9aBKCMjAxkZGdXOT0hIUJvGQERERERNgVaBKCwsrL7rQURERNRotApEgYGB9V0PIiIiokbDQdVEREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6DEREREQkegxEREREJHoMRERERCR6BhmI7t27hyVLlsDHxwfe3t6YNGkSjh8/rlXZM2fO4JVXXkHv3r3RrVs3jB49Gjt27EBlZWU915qIiIiaKoMLRMXFxQgODkZSUhICAwOxcOFClJaWYtasWUhJSamx7G+//YZp06YhKysLs2bNwuLFi+Hk5ISwsDAsXbq0gfaAiIiImhrjxq7A43bv3o3MzExs3rwZQ4YMAQAEBAQgICAAK1aswKFDhyCRSDSWXbZsGaysrLBv3z7Y29sDACZPnowFCxZg7969mDJlCrp27dpg+0JERERNg8H1ECUmJqJDhw7KMAQAFhYWCAoKQnZ2NtLS0jSWKygoQGZmJoYOHaoMQwpjxowBAJw9e7b+Kk5ERERNlkH1EMlkMmRlZcHf319tnqenJwAgLS0N3t7eavNtbGzw/fffw9TUVG1eYWEhAEAqldZxjYmIiKg5MKhAlJubC0EQ0KZNG7V5jo6OAIBbt25pLGtsbAwXFxe16XK5HJGRkZBIJPjHP/5Rq/oZG2vfoSaVGlznm+jVZ5uwvQ0P21tcxNLehlSX5sagApFMJgMAmJmZqc0zNzcHAJSWluq0zrCwMGRmZuKFF16Aq6ur3nUzMpLAzs5C7/LU+Kyt1Y8rar7Y3uIilvYWy342BoMKRIpb4zUNmhYEodp51Vm5ciUiIyPRuXNnLF++vJZ1E/DgQYnWy0ulRjxwDcyDB6WQy+vn8Qtsb8PD9hYXsbR3fe5nc2RtbaZ1r5pBBSILi6oemLKyMrV5ip4hKyurJ67n4cOH+Pe//42vv/4anTp1wvbt22FpaVnr+lVU8CBsyuTySrahiLC9xUUs7S2W/WwMBhWInJ2dAVSNJXpcXl4eAGgcX/SooqIizJs3DydPnoSnpye2bNmidtcZERER0aMManSWpaUlXFxckJ6erjZPMc3Ly6va8iUlJXjllVdw8uRJPPfcc9i1axfDEBERET2RQQUiAPD398e1a9eQnJysnFZcXIy4uDi4uroqb7/XZNmyZTh37hxGjBiBjRs3KgdiExEREdXEoC6ZAUBwcDASExMREhKCGTNmwMHBAXFxcbh9+za2bt2qHFSdmpqKnJwcDBw4EK1atcLFixdx8OBBmJiYYMCAAfjmm2/U1u3h4YFnnnmmoXeJiIiIDJzBBSJLS0tERUUhIiICUVFRKC8vh7u7O7Zt24Z+/fopl4uNjUVCQgJ27dqFVq1a4ZdffgFQNaB62bJlGtcdGhrKQERERERqDC4QAYCTkxNWrVpV4zLh4eEIDw9X/v/VV1/Fq6++Wt9VIyIiombI4MYQERERETU0BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYi0sjRsoXG10RERM2RcWNXgAzTC+72EDIKla+JiIiaMwYi0sjRwgSzerdu7GoQERE1CF4yIyIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRYyAiIiIi0WMgIiIiItFjICIiIiLRM8hAdO/ePSxZsgQ+Pj7w9vbGpEmTcPz4ca3K5uTkICQkBP3790ePHj0wc+ZMXLhwoZ5rTERERE2ZwQWi4uJiBAcHIykpCYGBgVi4cCFKS0sxa9YspKSk1Fg2NzcXkydPxsmTJzFlyhSEhITgxo0bmDJlCi5fvtxAe0BERERNjXFjV+Bxu3fvRmZmJjZv3owhQ4YAAAICAhAQEIAVK1bg0KFDkEgkGstu2LABBQUF2L9/P9zd3QEAzz//PEaPHo2VK1di+/btDbYfRERE1HQYXA9RYmIiOnTooAxDAGBhYYGgoCBkZ2cjLS1NYzm5XI6vv/4affv2VYYhAHB0dMTo0aPx66+/Ijc3t97rT0RERE2PQQUimUyGrKwseHl5qc3z9PQEgGoD0dWrV1FSUlJtWUEQkJ6eXrcVJiIiombBoC6Z5ebmQhAEtGnTRm2eo6MjAODWrVvVlgWgV1ltGBlJYG9vofXyiqt6777iC7m8Uqdt/V3qB6GyqozEyAimZtY6lVcwaSEFADwz4U0IlXK91lFbRsYmAIDQYXNQoWMd/h5Vpvo+WLXUqw7GRlXvg42NGQRBr1U8UW3au6409fauK2zvhsP2bjhSaVX/RX3uZ3NkZKR5iI0mBhWIZDIZAMDMzExtnrm5OQCgtLRU57KKadWV1YZEIoFUqv0bq2BjqceHuI257mVq0MJCv0BVl6zNrHQvpH3+1IqRUf13iOrV3nWsybZ3HWN7Nxy2d8NpiP0UK4N6ZysVvQEaBk0L/x+JqxtQXVNZBR5IREREpIlBJQQLi6ougbKyMrV5it4dKyvN30S0KWtpaVkn9SQiIqLmxaACkbOzMwBovBssLy8PgOYxQrUtS0REROJmUIHI0tISLi4uGu8GU0zTdBcZAHTs2BEWFhY1lu3evXsd1paIiIiaC4MKRADg7++Pa9euITk5WTmtuLgYcXFxcHV1Vd5+/zgTExMMHz4cx48fR2ZmpnJ6Xl4evvnmG/j4+MDe3r7e609ERERNj0QQDOsGvqKiIgQEBKCgoAAzZsyAg4MD4uLicPXqVWzduhUDBgwAAKSmpiInJwcDBw5Eq1atAAC3b99GYGAgjIyMEBwcDFNTU0RGRqKwsBB79uxBly5dGnPXiIiIyEAZXCACqsYBRUREIDk5GeXl5XB3d0dISAj69eunXGbRokVISEjArl270LdvX+X069evIyIiAqdOnYJUKoWXlxdCQ0Ph4eHRGLtCRERETYBBBiIiIiKihmRwY4iIiIiIGhoDEREREYkeAxERERGJHgMRERERiR4DEREREYkeA1Ezd+/ePSxZsgQ+Pj7w9vbGpEmTcPz4ca3LX7lyBfPnz0ffvn3RrVs3DBs2DGvWrMHDhw/Vlj1x4gQmT56Mnj17ol+/fli8eDEKCgrqcnfo/+nSLgrLli3DyJEjdd7WoUOHMGHCBPTo0QODBg3CkiVLkJ+fr7ZceXk5Nm/ejOHDh8PLywujRo3C7t27wRtZ60ZOTg7efPNNDBo0CD169MDUqVORkpJSYxl92/zmzZsIDQ1Fv3790KNHDwQFBeHHH39UW27//v3o0qWLxn9btmzRebtiVF5eji1btmDkyJHw9PTEsGHDsHr1apSUlKgsp22baKumY0OXczknJwchISHo378/evTogZkzZ+LChQt616sx8bb7Zqy4uBiTJk1CTk4Opk+fDicnJ8TFxSEzMxNbt27FoEGDaiyfk5ODgIAAtGjRAi+//DIcHR1x4sQJHDp0CAMHDsS2bdsgkUgAAL/88gteffVVdO7cGYGBgbh//z527NiB1q1bY+/evcof36Xa06VdFKKjo/HBBx+gY8eOOHTokNbb2r17N1asWIE+ffpg1KhRyMvLQ2RkJGxsbJCQkABbW1vlsopngwUEBKBnz544evQofvzxR8yZMwdvvfVWne2/GN26dQvjx48HAEybNg1WVlZISEjAxYsXsXbtWo0fbPq2+Y0bNzBp0iRUVlZi6tSpsLa2Rnx8PDIzM9W2FRYWhp07dyI8PFztmPPw8MAzzzyj5x6LxxtvvIHDhw9jzJgx6NWrF1JTU3HgwAEMGTIEmzZtgkQi0alNtPGkY0Pbczk3NxcTJkxAeXk5pk6dCgsLC0RGRqKgoAAxMTFwd3ev9fvToARqtjZv3iy4ubkJP/30k3JaUVGRMHToUGH48OFCZWVljeVnz54tPPvss8L169dVpoeFhQlubm7C4cOHBUEQhMrKSmHkyJGCr6+vIJPJlMsdOXJEcHNzEzZu3FiHe0XatosgCEJZWZnw4YcfCm5uboKbm5swYsQIrbcjk8kET09PYfz48YJcLldO/+GHHwQ3Nzdh3bp1ymmpqamCm5ubEB4errKOkJAQ4dlnnxVu3ryp627SI95++22ha9euwqVLl5TTiouLhcGDBwu+vr4qy9amzQVBEGbOnCl4enoKV65cUdnWoEGDhOHDh6ssO336dLXtk/aSkpIENzc3YfXq1SrTV6xYIbi5uQlnz54VBEG3NqmJNseGLufy0qVLha5duwoZGRnKabm5uULv3r2FGTNmaF0vQ8FLZs1YYmIiOnTogCFDhiinWVhYICgoCNnZ2UhLS6u2rFwux6lTp9C7d2906tRJZd7YsWMBAGfPngVQ9eO5WVlZmDBhAiwtLZXLPffcc3B1dUViYmJd7pao6dIuN27cwIgRI7Br1y4EBQXByclJp2398ccf8PT0xJQpU2Bk9L8/FYonxl++fFk57cCBAwCA6dOnq6xj5syZKC8vx7fffqvTtkmVRCKBn58funbtqpxmbm6O7t27448//kBRURGA2rf5rVu3cPz4cUycOBFubm4q21q0aBHGjh2rclk2MzOTvUC1EBsbCzs7O8ybN09l+tSpUzF37lyYmJjo3CbV0fbY0PZclsvl+Prrr9G3b1+VniBHR0eMHj0av/76K3Jzc7V7IwyEcWNXgOqHTCZDVlYW/P391eYpfiA3LS0N3t7eGssbGRkhMTFR4zXjwsJCAIBUKgUAnDt3DgDQvXt3jds6cOAAZDIZrKys9NsZUtKlXe7evQsbGxusWLECPj4+8PX11Wlb7u7uiIqKUpt+6dIlAECbNm2U09LS0uDk5ITWrVurLOvh4QGpVFpj+KYnW7Vqldq0iooKXLlyBTY2NspL0rVt89OnT0MQBAwePBgAIAgCSkpKYGFhgdGjR6ssm5+fj4KCAmUgUnwom5iY6Lx/YlRRUYHU1FT4+vrC1NQUAFBaWgoTExN06NABb775JoCqgKJtm9RE22ND23P56tWrKCkpgZeXl9o6PD09sWfPHqSnp+scyhsTA1EzlZubC0EQVD60FBwdHQFUfRusjkQiQbt27TTO27lzJwAof0Pu7t27AKB2Aj2+rSZ3PdkA6dIuPXr0qLPeOUEQcPv2bZw9exYRERGws7PDtGnTlPPv3r2L9u3bq5UzNjaGvb19jcca6eb+/fu4du0avvjiC2RnZ2Pp0qXK8Tu1bfPff/8dAGBra4vly5fj4MGDKC4uhqOjI+bNm4eXXnpJueyVK1cAVPU8jBkzBlevXgUA9O7dG4sWLcKzzz6rdz3E4I8//sDDhw/h7OyMAwcOYNOmTcjOzoaJiQlGjhyJ9957DzY2Njq1SU20PTa0PZcVvT/6fsYYIgaiZkomkwEAzMzM1OaZm5sDqPo2oqvt27fj6NGj6NWrF3x8fABA2V2vWO+jFNt//I4Jqlua2qUuv6n/8ccfGDp0KICqHqiPPvpIJZjJZDKNxxpQdQzoc6yRZvPmzcOZM2cAAEOHDkVgYKByXm3b/P79+wCAd999F+bm5li6dCmMjIwQHR2N5cuXo7i4GLNmzQLwv0CUmpqKV155Be3atUNmZia2bduGyZMnIyoqiqGoBg8ePAAA/PTTT4iOjsZrr72Gzp074+TJk4iKisL169cRExOjU5vURNtjQ9tzuabPGMW0pnbeMxAisQwtAAAMpUlEQVQ1U5WVlQCgducHAOXlFk3zarJr1y6sXLkSDg4O+PTTT3Xa1qNjUKhuVdcudally5b47LPPUF5ejr1792LRokX4/fff8fbbbyuXqe54EgRB52ONqjdt2jQEBwfjzJkz2L17N4KCghAdHQ0bG5tar7u8vBxAVZvFxMQoP0Sff/55vPDCC1i/fj2CgoJgbW2N7t27Y86cOQgKCkLbtm0BAH5+fvDx8UFQUBDCw8MRGRlZ6zo1V4pLjFlZWdixYwf69+8PABg2bBjs7Ozw+eefIyEhQac2qSvanMs1/d1XaGp/95tWbUlrijEFZWVlavMUqd3Kygp//fUX8vPzVf49XkYQBEREROCjjz5Cq1atsGPHDpVuUsW2NH0bUKyL44fq3pPaRRtyuVyt/TU9Y8jBwQHPP/88xo4di507d6JXr17YunUrbt68CaCqd7C6b4NlZWVs/zo0YsQIDB06FIsWLcL777+Pa9eu6RQ8ampzxTf78ePHq/QotGjRAuPGjUNpaSlSU1MBVF0ae+utt5RhSKFbt27o0aMHzp49q9VgX7FS9Kh36tRJGYYUgoKCAFQ9zkTbNtH2XNamXtqcy9p8xjx6k01TwB6iZsrZ2RkANI7yz8vLA1B17Xf+/Pk4deqUyvywsDCMGzcOQNW3mMWLFyMpKQnt27fHtm3b1K4vP7otFxcXtW1JJJImNbCuKdCmXbRx584d+Pn5qU1XXA7RxMjICKNHj8bZs2dx6dIltGvXDs7Ozsrj6lEVFRUoLCxEz549da4bPZm/vz/ef/99nR6EV1ObK8YBtmrVSm3+U089BeB/l8hr8tRTT0EulysHCZO6mt5re3t7SCQSFBUVKW+CeVKb6HMua6LtuaztZ0xTwkDUTFlaWsLFxQXp6elq8xTTvLy84O3trbyWrdC5c2cAVd8k33rrLfzwww/w9PTEli1bYG9vr7a+bt26KderGND76LZcXV2b3DcFQ6Ztu2jDwcEB27dv1zgvPj4ea9euRVhYmHJckkJxcTGAqktpQNUxEBsbi4KCAuUfaaDqjjS5XK7xThTSTmFhIV566SV0794dn3zyicq8kpISCIKgvEtJGzW1uaKdFAOkH5WTkwPgfx+EoaGhuHDhAr7++mu10JOVlQVbW9s6vYzT3Njb26Nt27a4fv06KisrVS4v3bx5E4IgwNnZWes2qalddaHtudyxY0dYWFjU+Bmj6c5jQ8ZLZs2Yv78/rl27huTkZOW04uJixMXFwdXVFZ6enujWrRsGDBig8k9xh8C6devwww8/oGfPnti5c2e1H7re3t5wdnZGbGys8oMSAI4ePYrr168rn49DdUPbdtGGqampWvsPGDAAAPDMM88gPz8f27dvV7nN//79+4iJiYGtrS169+4NAMrbfx//g7x9+3a0aNFCp9uDSZWit+D7779Hdna2yrzNmzcDqBp3oq2a2rx3795wdnbGvn37lHePAsBff/2F+Ph4tG3bVtlj4ejoiOzsbOzbt09l/QcPHsTVq1cxZswYjh17goCAABQUFGDPnj0q07/88ksAwKhRo7Ruk5raVRfanssmJiYYPnw4jh8/jszMTOVyeXl5+Oabb+Dj41Orv02NgT/d0YwVFRUpT7gZM2bAwcEBcXFxuHr1KrZu3VrjyZKfnw9fX1+Ul5cjNDRUGZIe1bFjR+W3hZ9++gmvv/463Nzc8OKLL+LevXvYvn07nJ2dERMTw5/uqCO6tsujfH19YWJiotPPOLz33nuIj49Hv379MHz4cDx48ACxsbHIz8/HmjVrVD6IFyxYgO+//x7jxo1TPu7/8OHDmD9/Pt544w39dpgAVP1O4KxZs2Bra4uXX34ZNjY2OHLkCJKTkzFy5EisWbNGY/jQp81PnDiB1157Dba2tpgyZQqMjY2xZ88e3L59G5s3b1b2FspkMowbNw63b9/G+PHj4eHhgYsXL2Lv3r3o3LkzoqOjOXbsCUpLS/Hyyy/j8uXLmDhxIjw8PJCSkoLDhw9j7Nixyh5BbdtEFzUdG9qey7dv30ZgYCCMjIwQHBwMU1NTREZGorCwEHv27EGXLl30f3MaAQNRM5ebm4uIiAgkJyejvLwc7u7uCAkJUT5tuDrffvvtE39/6sUXX8R//vMf5f+PHDmCDRs24MqVK7C2tsbgwYPx9ttva7z2TfrRp10U9PlwFAQBUVFRiImJQXZ2Nlq2bIlevXph3rx5at3hDx8+xIYNG5CYmIjCwkK0a9cOkydPxssvv6z19qh658+fx/r163HmzBk8fPgQnTp1wsSJEzF58uRq7+bRp80B4OLFi1i3bp3yQY2enp6YP3++skdQQRGMjx49ir/++guOjo4YPnw4Xn/9dYYhLRUVFWHjxo347rvvkJ+fj7Zt22LixImYOXOmSrtq2ybaqunY0OVcvn79OiIiInDq1ClIpVJ4eXkhNDQUHh4eetWrMTEQERERkehxDBERERGJHgMRERERiR4DEREREYkeAxERERGJHgMRERERiR4DEREREYkeAxERERGJHgMRERERiR4DEREREYkeAxERNTsbNmxAly5d0L17dzx48KCxq0NETQADERE1K4IgICEhAebm5igrK0NCQkJjV4mImgAGIiJqVk6ePImbN29i+vTpMDU1RWxsbGNXiYiaAAYiImpW9u3bBwAYMWIEBg8ejOvXr+PUqVONXCsiMnQMRETUbBQVFeHw4cNwdHSEu7s7Ro8eDQCIiYnRuPy1a9ewYMECDBgwAN7e3pg2bRrS0tIwY8YMdOnSRW35o0ePYsaMGejduze8vLwwduxYREZGorKysl73i4jqn3FjV4CIqK4kJSWhtLQUL730EiQSCXx9fWFtbY3//ve/KCwshL29vXLZ9PR0zJgxAyUlJfDz80P79u2RkpKCqVOnwsbGRm3dW7duxapVq2Bvb48RI0bA2toaKSkp+PDDD3H69GmsXbsWEomkIXeXiOoQe4iIqNlQXC4bO3YsAMDU1BSjRo1CeXk59u7dq7Ls0qVLUVRUhHXr1mH9+vV45513kJCQgEGDBiEvL09l2UuXLmH16tVwc3PDt99+i48++gjvvvsuEhMT4e/vj++//x7x8fENs5NEVC8YiIioWbh27RrOnz8PNzc3uLu7K6cHBAQAAOLi4iAIAgAgIyMDGRkZGDhwIIYOHapcViqVYvHixZBKpSrrjo+PR2VlJf71r3/Bzs5OOd3IyAjvvPOOchkiarp4yYyImgVF79CYMWNUpvfs2RMuLi7Izs5GSkoKfHx8cP78eQCAt7e32nratWuH1q1b49atW8pp6enpAIBjx44pyz6qZcuWyMjIgCAIvGxG1EQxEBFRk1dRUYGDBw8CAFatWoVVq1ZpXC4mJgY+Pj74888/AQAODg4al3N0dFQJRIqHO0ZGRtZYj+LiYlhaWupcfyJqfAxERNTkHTlyBPfu3YOLiwv69u2rcZn4+Hj8/PPPyM3NhYWFBQBAJpNpXLa4uFjl/4rlf/nlFzz11FN1WHMiMhQMRETU5CkGTM+dO1c5Zuhxd+/exdGjRxEfH49BgwYBAM6dO6e23P379/H777+rTOvatSsuXbqEtLQ0+Pr6qswrKirC2rVr0aFDB0yZMqUudoeIGgEHVRNRk3bv3j0cO3YM5ubmGDFiRLXLBQUFAajqKfL09ISbmxuOHDmC5ORk5TJyuRwrV65EeXm5StkJEyYAACIiIpCfn68y79NPP8WuXbuQkZFRV7tERI1AIihuuyAiaoIUzwcaN24cwsLCql2uoqIC//znP5Gfn48NGzagVatWmD59Oh4+fIihQ4fi6aefxsmTJ3Hjxg3I5XKUl5erhJy1a9di48aNsLGxga+vL+zs7HD69Gmkp6ejU6dO2L17Ny+nETVh7CEioiZN8eOtgYGBNS5nbGyMcePGAagaXO3t7Y3o6Gj4+Pjgl19+QWxsLOzt7bFnzx6YmZnBzMxMpXxISAg2btwIDw8P/PDDD4iOjkZxcTHmzJmDPXv2MAwRNXHsISIi0Xn48CFyc3Px9NNPqz1zqKysDD179kTHjh3xzTffNFINiaihsYeIiESntLQUw4YNw8SJE1FRUaEy76uvvoJcLkf//v0bqXZE1BjYQ0REorRw4UIcPHgQrq6uGDRoEKRSKS5cuIBTp07B2dkZ+/btg62tbWNXk4gaCAMREYlSRUUF4uPjsX//fuTk5KCsrAytW7eGn58fZs+erfEHXomo+WIgIiIiItHjGCIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEr3/A+Rwgs8xmF7JAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["o = labelDict['label_age_range']\n","\n","g = sns.barplot(x=\"age_range\", y=\"treatment\", hue=\"Gender\", data=train_df)\n","g.set_xticklabels(o)\n","\n","plt.title('Probability of mental health condition')\n","plt.ylabel('Probability x 100')\n","plt.xlabel('Age')\n","\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"6517af95-3b02-4b50-b246-ea56f61f6113","_uuid":"4ed2e62093d643cf105829ff2ae9a9917b110996"},"source":["Barplot to show probabilities for family history"]},{"cell_type":"code","execution_count":105,"metadata":{"_cell_guid":"b93d6150-b23a-4b71-8cf8-a10b811152a8","_uuid":"605bf86a497f0b7989b57a3458088131f564e2a8","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkQAAAHUCAYAAADbbjeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hT598G8DsJIHsoLlBErcEBuCdaF7UqWrWOal1Qrasqvzqq1VatWuue1TqqVRBRrHWhrXWh4qq1bkXrQKYDkA0iyXn/4E1KDGAIgQS4P9fFdSVnfnOSk9yc85zniARBEEBERERUjon1XQARERGRvjEQERERUbnHQERERETlHgMRERERlXsMRERERFTuMRARERFRucdAREREROUeAxERERGVewxEREREVO4xEFGx++233+Di4qL216BBAzRt2hQ9evTAokWLEBcXVyzrj4qKgouLC4YMGVIsy+/SpQtcXFyQnZ39zmkvX74MFxcXTJs2TTls5syZcHFxwYULFwpcZlZWFjZv3gyZTKbbF1BIISEh6N27N9zc3NC6dWucP39er/UU1b1793D8+HGt51d8vletWvXOaQvzWSlO+e0Tqamp2LZtm8qwvD6fZdHw4cPh4uKCp0+fKoe5uLjg/fffV5muPG+jss5I3wVQ+VG/fn14enoqnwuCgIyMDFy7dg07duzAn3/+ib1796Jy5cp6rLJ4OTo6YuLEiXBxcSlwuhEjRiAlJQVi8X//swwbNgw3btzAZ599Vtxl5isxMRG+vr7Izs5Gv379YG1tjffee09v9RTVmTNnMG7cOIwZMwYffPCBvsvRuw8//BASiUSvnzFDMnHiRFhaWqoMy2sbeXp6wtHRETVr1izpEkmHGIioxDRo0ACTJk3Kc9xXX32FgwcPYt26dZg/f34JV1ZyatSoke82yM3b21ttWHEdQSuMJ0+eIDMzE506dcLChQv1XU6RxcfHQy6X67sMgxEXF4eqVavquwyDkde+mtc28vT0VPlnj0onnjIjgzBu3DgAwOnTp/VcCRUkKysLAGBnZ6fnSoiIdIuBiAyCg4MDAODVq1fKYcOHD0fTpk1x7do19OjRA25ubvDy8kJGRgaAnNM3S5YsgaenJ1xdXdG6dWuMHz8e169fz3c9ly5dwqBBg+Du7o727dtj9uzZeP78udp0L168wOLFi9GzZ080adIEbm5u+OCDD7Bw4UKVGnOLiorCxIkT0bRpUzRv3hxjxozBzZs3VabJqw1RXnK3NVHMEx0dDQBo1KgRhg8fjqNHj8LFxQVff/11nsv48ssv4eLign///bfAdQHAwYMHMXjwYDRt2hSNGzdGv3794O/vr9JeqUuXLhgxYgQAYP/+/XBxccHMmTPzXaaincr333+PixcvYujQoWjSpAnatGmD2bNnIzU1FYmJiZgzZw7atm2L5s2bY/jw4bh165bast5+r9u1a4cpU6bg0aNHKtMpttX27dtx/PhxDBw4EI0bN0arVq3wv//9DxEREcpphw8frtx2GzduhIuLCy5fvqwc/+eff2LUqFFo27YtGjVqhJYtW2LEiBE4efLkO7fnuzx79gwzZ85E27Zt4e7ujt69e2PPnj15TnvmzBl4e3ujRYsWcHd3R58+feDv75/nka07d+5g2rRp6NSpE1xdXdG0aVP07dsX27ZtK7DtmaIdFAA8f/48z/c2MzMTq1evRteuXeHq6orOnTtj6dKlyv1RExcvXsTYsWPRpk0bZW2BgYFqtWm6b+f+jF25ckX5ndGsWTOMGTMGd+7cUashLi4O8+bNw/vvvw93d3d88sknuHjxYp715m5DVNA2yq8N0b///oupU6fCw8MDrq6u6NSpE+bMmYPY2FiV6RTLPnHiBIKCgpRt9Nq1a4dvvvnGII4Olwc8ZUYGITw8HABQrVo1leFv3rzBuHHj0KxZM3Ts2BGZmZkwMzNDbGwsPv30U8TExKBx48bo2rUrnj17hpMnT+LMmTNYtGgR+vbtq7Ksx48fY/To0WjatCmGDRuGmzdv4tdff0VoaCj27t2LKlWqAMj5suvfvz9evXqFzp07o0uXLkhJSUFISAj8/f3xzz//4LffflN7DcOGDYOFhQUGDx6MmJgYHD9+HBcuXMCWLVvQtm1brbeNot3Rjh07kJKSggkTJqBmzZrw9PSEra0tjh07hrlz58LU1FQ5T0pKCk6ePAk3NzfUq1cv32ULgoDZs2dj3759qFy5Mnr06AFjY2OcO3cOCxcuxLlz57BhwwYYGRlhxIgRCAsLw/79+5XtwRo0aPDO+i9fvoxdu3bh/fffx5AhQxASEoJff/0V8fHxiI6Ohlwux0cffYSoqCicOHECn3/+Of78809YW1sDyAmnn376KSIjI9G6dWt069YNL1++xB9//IHTp0/j559/RvPmzVXWGRwcjNu3b6Nz585o1aoVrl69it9//x3Xr1/H8ePHYWxsjH79+sHKygonT55EixYt0KZNGzg6OgIA1q5di/Xr18PJyQk9e/aEqakpHj58iDNnzuDy5cv46aef0KVLF23eTgDAJ598AktLS/Tp0wcpKSkIDg7GnDlzkJWVheHDhyun27JlC5YvX46KFSviww8/hLW1NUJDQ7Fw4UJcuXIFa9asgUgkAgCEhoZi3LhxMDMzg6enJ+zt7fHs2TOcOHECS5YswcuXLzFjxow862nQoAEmTpyIH3/8ERYWFvDx8VF7b7/99ltkZ2fjww8/hImJCY4fP46tW7ciMjIS69ate+dr3rlzJxYuXAgzMzN06dIFlStXRkhICObNm4ewsDB89913AKDVvv33339j165daNmyJYYMGYIHDx7gzJkzuHLlCk6ePImKFSsCyDlF+sknnyAqKgqtWrVCjx49cPPmTYwePVr5ecuPJtsot9DQUIwfPx7Z2dno2LEjnJ2dce/ePezZswd//vkntm/fjvr166vMs3HjRoSFhaFbt254//33cfbsWezduxcPHjxAUFDQO7cxFZFAVMz27dsnSKVSYcaMGXmOf/PmjTB27FhBKpUKy5YtUw4fNmyYIJVKhSlTpqjNM2rUKEEqlQrr169XGX779m2hSZMmgqurqxATEyMIgiBERkYKUqlUkEqlwuLFi1WmX7VqlSCVSoWZM2cqh82fP1+QSqXC/v37VabNyMgQunTpIkilUuHBgwfK4Z07dxakUqkwZMgQITMzUzn83LlzQoMGDYSuXbsKMplMEARBuHTpkiCVSoWpU6cqp5sxY4YglUqF8+fPqy3zzZs3BQ5T1Hr48GGVWgMDAwWpVCoEBASobbvcjhw5IkilUmHAgAFCfHy8cnhaWprw2WefCVKpVNi8ebNyuKL+/N7L3HJvdz8/P+XwhIQEoXHjxoJUKhWGDRsmZGVlKcdNnTpV7fVMmDBBkEqlwp49e1SWf/fuXcHNzU3o3Lmzcpso6pNKpcLJkyeV08rlcmHkyJGCVCoVjh49qhyu+GyuXLlSOezly5dCw4YNBS8vLyE9PV1lnbt27RKkUqkwadKkApeRH8V7OH78eJXXHRoaKkilUqFXr17KYXfu3BHq168v9OrVS0hISFAOl8lkwpQpU9S2Sa9evQRXV1fh8ePHKut8+PCh4OLiIrRu3Vo5TPHeDB48WGVaqVQqdOjQQWWY4vPZpUsX4eXLl8rh8fHxQvPmzQUXFxeVz05eIiMjBVdXV6F9+/ZCeHi4cnhmZqbQr18/QSqVCvfv3xcEQft9O/dnTBAEYebMmYJUKhW2bNmiHDZ79mxBKpUK69atU5l2xYoVyuXkri+v7VHQNlLsw6mpqUKbNm2ERo0aqezXgiAIe/bsEaRSqeDl5SXI5XJBEP77DDVq1Ei4deuWctrXr18L3bt3F6RSqXDjxo38Ni/pCE+ZUYm5d+8e1q1bp/xbu3YtvvvuO3h5eeH06dOoV6+esi1Rbj169FB5/vz5c5w7dw516tTBhAkTVMY1atQIo0aNQlZWltpRHDs7O7VGkhMnToS9vT2OHj2qbB/j5eWF7777Dh999JHKtKampmjSpAkAICEhQa3OmTNnokKFCsrn7du3h6enJyIjI/HPP/+8a/NopX///gCAAwcOqAw/cOAAKlSogF69ehU4/6+//goA+Oabb5T/RQOAubk55s2bB7FYnO+pHE1ZWFjg008/VT63s7NDnTp1AOQ0Hjc2NlaOa9asGQAoTw/GxcUpj3QNGjRIZbkNGjRAnz59EB0drXbpv1QqVTmCIxKJ0KlTJwBQOW2WFyMjIyxduhQLFiyAmZmZyrg2bdoAQL6nTTU1YcIEldft4eEBc3NzlUu+9+7dC7lcjmnTpqm02RKLxfjqq6+U0wA5R/p8fX2xYsUK1K5dW2VddevWhb29fZFrHjp0KOzt7ZXPK1asiGbNmkEQBERGRhY4r2L/Gj16NGrVqqUcXqFCBXz99deYNGkSJBKJ1vu2tbW1ymcMgPL9V7zfb968wdGjR1GpUiWMHz9eZdrJkyervLaiOnXqFBISEtC/f3+0a9dOZdygQYPQqlUr/Pvvv7h69arKuPbt28PV1VX53MTEBB4eHiqvg4oPT5lRiQkLC0NYWJjyuVgshoWFBWrVqoVJkybB29tb7RJXIOfKrNzu3r0LAGjZsmWe62nRogWAnACWW6NGjWBubq4yzMjICG5ubjh9+jQeP36M+vXro1mzZmjWrBlSU1Nx//59REREICIiAvfu3VO2MXm7/YaJiQnc3NzUamnSpAmOHTuGu3fvKuvSpYYNG6JBgwa4cOECXr58icqVK+PJkye4du0avLy83nka4M6dOzA1Nc2z9po1a6JatWqIjIxEampqnu+NJmrWrAmJRKIyzMLCAgDg5OSkMlxx2k8RTu/cuQNBEJCVlZXnaZlnz54ByPlMdOzYUTn87VAAAFZWVgByfhgLYmtrCy8vLwA5p3IfPXqEqKgoPHr0SPkDVtS+oJydndWG2dnZITo6GjKZDBKJRNmW6ty5c2pt0YCcbXXv3j0IggCRSKS8yunly5d48OABIiMjER4ejlu3biE+Pl5Z99vvRVFqVoTo9PT0AudV7ItNmzZVG9eyZUvlvqy4qKKw+3Zen7G33++nT58iLS0NzZs3V5vWyMgITZo0wYkTJwp8HZpSfEe1atUqz/EtW7bEX3/9pfa9kNfnVrEPv+tzS0XHQEQlpl+/fli8eHGh53v7v/SUlBQA/33hvU1xSezbjT3z+w9Q8eOs+FJPTU3FsmXLcODAAWRmZgLI+eJv3LgxnJycEBYWBkEQ1JataMtR0LKLQ//+/bFw4UIEBwfDx8dHebTo448/fue8qampsLGxUenvKLeqVasiJiYG6enpWgeit0NobiYmJgXOm5SUBAC4f/8+7t+//87pClqu4v15+73LS0hICFauXKlcp5GREd577z24ubnh4cOHGi2jILnbe71Nsezk5GQAgL+/f4HLSktLg6WlJR49eoQlS5bg7NmzymXUrFkTzZs3x7///oukpKQi1a1JzflJTEwEgHd+hrTdt3MfmVV4+/1WbM/8lm1ra1tgbYWheB35vd78XkdRP7dUNAxEVOoovmTyujoM+O+L7+0vOMXwtymWY2NjAyCnT6STJ0+iZ8+e+OSTT1CvXj1UqlQJQM6VW7mPchV22cWhd+/eWLp0qTIQBQcHo1q1amqH6vNiaWmJV69eISsrK88vY0XQ0OWPRWEoAuWQIUMwb968ElnnrVu3MGHCBFhbW2PhwoVo0qQJatWqBRMTEzx69Aj79+8vkToUr/3ChQvKz19+0tPT4e3tjfj4eIwfPx6dO3dG3bp1lctQnHbRF0UdqampauOys7Mhl8thYmKi9b6tCcU8+e2ruvynRfE6Xrx4ked4fe9XlDe2IaJSp2HDhgCA69ev53kLBMVpLalUqjL8zp07aqe6FKfFrKysULt2bSQnJ+PUqVNwdHTEqlWr0KZNG5Ufo4cPHwJQ/28tNTUVT548Uavl77//BoA8T0npiq2tLbp27Yrbt28jJCQEUVFR6Nu3b75HfXJr2LAh5HK5WlsGIOdHKTw8HM7Ozu88klNcFFfx5HXKCACOHDmC1atX5xlSNZHXUb3Dhw9DJpNh+vTpGDhwIOrVq6d8/fm9/8VB8dpv3LihNi41NRXff/89du7cCSAnNL148QK9e/eGr68v3N3dlSEkISFB2eZNX0cZFFdT5fVaQkJC4O7ujk2bNmm9b2vCyckJtra2uHXrlvKUrIIgCPl+xrSheB1XrlzJc3xRXgcVHwYiKnWqVauG9u3bIzIyEhs2bFAZFxYWhq1bt8LExAQ9e/ZUGff8+XMEBAQonwuCgOXLlyM5ORkDBgyAWCyGiYkJxGIxMjIy1P6b3bx5Mx48eAAAeX5Zr1mzRqVtydGjR3H58mU0atRIpaGkthSNcPNat6JxtaKXb01Ol+Web+nSpSqNbjMyMjB37lzI5XKNl1UcHBwc4OHhgTt37mDHjh0q4x4/fozvvvsOmzdv1vp0npFRzkHy3NtUcWpI0e5GITY2FitXrlSbvrgMGDAAALBs2TK8fPlSZdyKFSvg5+enbEujqPnt/mpev36Nb7/9VvmPwLvqNjY2LpbX1rt3b0gkEmzbtk3ZYB7IaSu2ZcsWAECHDh203rc1YWRkhH79+iExMRErVqxQCYfbtm1DVFSURsvRZBt17doVtra2CA4OVmvwf+DAAYSGhqJOnTrKizTIMPCUGZVK8+fPx9ChQ7F+/XqcP38eTZo0wfPnz3Hy5EnI5XIsWLBA7b5CTk5OWLRoEc6fP4/atWvj77//xs2bN9GoUSNMnjwZQM4PS48ePRAcHIyPP/4YnTt3BgBlA0h7e3vExcWpXbFjbW2Ny5cvY8CAAWjXrh2ePHmCU6dOwdbWFkuWLNHJa65evTrCw8Px1VdfoXnz5hg5cqRynIeHB6pXr47o6Gg0b95c5UqegvTq1Qvnzp3DgQMH0Lt3b3Ts2BHGxsYIDQ1FZGQkOnTogFGjRumkfm0tWLAAQ4cOxaJFi3Ds2DE0btwYiYmJ+OOPP5Ceno7Zs2erNbzXVPXq1QHkdEwJAH369IGXlxd++eUXrF69Gnfu3IGTkxNiYmJw6tQpGBsbw9jYWNkmpjg1a9YMEyZMwIYNG+Dl5YUuXbrAzs4OV65cwa1bt1CnTh1MmTIFANC8eXM4OzsjNDQUQ4cORdOmTZGcnIwzZ87g5cuXsLOzw6tXr5CYmKjWJu/t7REREYFZs2ahVatWav39aKtWrVr46quv8MMPP6Bv377o2rUrrK2tERISgqdPn2LcuHHKoyra7NuamjRpEi5evIjt27fj2rVraNasGcLCwnDp0iU4OTlpdCWXJtvIwsICS5cuxcSJEzF69Gh06tRJ2Q/RxYsXYWdnh5UrV+Z5hJL0h0eIqFRydHTEb7/9hpEjRyIuLg4BAQG4cuUKunTpgsDAwDyPajRv3hw//vgjYmNj4e/vjxcvXmDUqFHw9/dXafi7YMECjB07FoIgIDAwEL///jssLS2xbNkyrFmzBkDOYf7crKyssHPnTlSsWBEBAQH4+++/0bNnT/z6668FdoxYGNOmTYOLiwtOnTqlPFWiIBaLld0TFPaIzuLFi7Fo0SI4OjriyJEjOHToEOzs7DBv3jxs3rxZeRRFXxTvtbe3N168eAF/f3+cPXsWzZo1w7Zt25S9Z2ujRYsWGDlyJF6/fo2dO3fixo0bcHFxwS+//IIWLVrg0qVL2LlzJ+7du4ePPvoIhw4dQosWLRAZGanWS3Zx8PX1xYYNG9CwYUOcOHECu3btQlpaGsaNG4fAwEDl6VwzMzNs27YNvXr1QmRkJPz8/HDhwgW4ublh165dym30rlvjzJkzB7Vq1cKhQ4d03lbK29sbmzdvRsOGDXH8+HHs2rULZmZmWLhwIb788kvldNrs25qysLBAQEAARo0apVx2QkIC1q1bp9a5Z3403UYdO3bE3r170b17d1y/fh3+/v6IiIjA8OHDcfDgQY06NaWSJRLYdJ2oTPD29saNGzcQGhqqbD9CRESa4REiojLg0qVLuHTpEvr06cMwRESkBR4hIirFvv76a9y+fRuPHj2Cqakpjhw5omwXQ0REmuMRIqJSrEqVKoiMjESdOnXw008/MQwREWmJR4iIiIio3OMRIiIiIir3GIiIiIio3GMgIiIionKPPVVrSBAEyOVsbkVERFRaiMUijXsEZyDSkFwuICEhTd9lEBERkYYqVrSARKJZIOIpMyIiIir3GIiIiIio3GMgIiIionKPgYiIiIjKPQYiIiIiKvcYiIiIiKjc42X3xUgmy4ZcLtd3GaWSRCKBWCzRdxlERFROMBAVg4yMNKSlJSM7O0vfpZRiIpiZWcDauqLGnWoRERFpi4FIxzIy0pCUFAcTEzPY2laGRCIBwB/0whHw+nUmUlMTYWxcAebmlvouiIiIyjiDD0TXr1/HkCFDEBgYiCZNmrxz+oiICKxYsQJ//fUXMjMz0bRpU0yZMgWurq4lUC2QlpYMExMz2NlV5pGNIjA2roDs7DdITU2EmZkFtyURERUrg25UHRERgUmTJmncDuf58+cYOnQoLl++jGHDhsHX1xdPnz7FsGHDEBYWVszV5rQZys7Ogrm5JX/AdcDU1BxyuYztsIiIqNgZbCA6ffo0Bg4ciBcvXmg8z/r16xEfH4/t27fjiy++gLe3NwIDA2FsbIwlS5YUY7U5FD/cOafJqKgUjarlcpmeKyEiorLOIAPR1KlTMW7cOFSsWBFeXl4azSOTyXD48GG0bt0a9evXVw6vUqUKvLy8cPHiRTx//ry4Sn4Ljw7pAo+yERFRSTHIQPTw4UNMmjQJBw4cQO3atTWa599//0V6ejrc3d3Vxrm5uUEQBNy6dUvXpRKVSTEx0Vi0aB4WLZqHmJhofZdDRDrE/TtvBtmoeu/evTAxMSnUPIqjP9WrV1cbV6VKFQBAdHTR3ngjo4Lzo1zOIxrFQSIRvXPbk275+W3FzZvXAQD+/tswe/ZcPVdERLrC/TtvBhmIChuGACAlJQUAYGZmpjZOMSwjI0PrmsRiEezsLAqcJjNTgrg4MX/AdUQuF0EsFsPGxhympqb6LqdciY3975+HmJiod372iaj04P6dN4MMRNpQNGguqN2JWKx9SJHLBSQnpxc4TVbWa8jlcshkArKzNbsyKjk5CcePH0NIyElER0fh1asEmJubw8nJGe3bv49+/QbA3Fz/H9bvv5+H338PxqpV69GyZesSWadMJkAulyMpKR0ZGWxYXZLkckHl8atXaXqshoh0qTzt39bWZpBINPvtLzOByMIiJzRkZmaqjVMcGbK0LFoHf+8KOTKZUOD4t125cgkLFsxFQkI8atZ0QuvW7WBra4vk5CRcuXIZP/20Dnv37sbKletQp857RSm9VCtMwCTdEARB5TG3P1HZwf07b2UmENWoUQMA8rySTHHpfl7ti/Tlzp3bmDbNF6ampliwYDE6d/ZUGS+Xy/Hrr3uwbt1KzJo1HTt27EaFChX0VC0REVHZVmYautSuXRsWFhZ5XkmmGNa4ceOSLitP2dnZWLBgDmQyGRYuXKoWhoCc03uDBg1Br159ERUViRMnjumhUiIiovKhzBwhMjExQbdu3XD48GE8ePAAUqkUQM7RoSNHjqBDhw6oWLGinqvMceXKZURFRaB163bvbI8zcOAnyMp6DQcHR+UwmUyG/fv34ujRw3j6NBxGRkaoX78hhgwZjjZt2qnM3759C3To0BGjR4/Hpk3rcfPmNWRnZ6N+/Ybw9h6NFi1aqUyfnp6OHTu24tSpE4iPj0PNmk4YMcIn3/pevHiO7dt/xqVLF5CQEA87u4po08YDn332OSpXrqKc7ujRw1i06DvMmjUXly5dQGjoWZibm2P69Fno2LFzYTYfERGRzpXaQHTt2jVERETAw8MD9vb2AIDJkyfj9OnTGDlyJHx8fFChQgX4+/tDJpNh+vTpeq74PyEhJwFAoyBQp857+Pbb+crnMpkMs2ZNw/nz5+DsXAe9e/eDTCbD2bOnMG3aZEyePBWDBg1RWUZkZATGjfsMzs610atXXzx7FoszZ05h6tRJ+OWXAGX7pNevX2PSpLG4f/8eXFwa4P33O+LJkyeYO3cWKlWyV6vt8eNHmDx5HJKSEtG2bXs4O9dGdHQkjhw5iPPnz+LHHzfDyamWyjwbN/4Ic3NzDBgwCI8ePYKrq1uhtx8REZGuldpAtGfPHuzfvx9+fn7KQOTg4IBdu3Zh2bJl2LhxIyQSCdzd3bF27Vq4uLjoueL/REVFAgDq1q1X6Hn37QvC+fPn0L27F2bO/BZGRjlv4eefj8eECaOwfv1qtG7dFrVqOSvnCQ9/gsGDh2HixP8ph/3yyxZs3boJ+/fvw9SpMwAAu3fvxP3799CrVx989dVs5VV5Bw7sw/LlP6jVsnDhHCQnJ2HZsjUqR6YuXjyP6dN98cMP3+Gnn7apzJOZmQk/vz2wtbUt9GsnIiIqLgYfiCZNmoRJkyapDV+8eDEWL16sNrxu3brYuHFjSZSmtYSEeACAtbW12riwsLs4f/6c2nALCwsMHjwMhw7th0QiwZdfTleGIcWyRowYhfnzv8GRI4cwYcJklfmHD/dWee7h0QFbt25CdHSkctixY0chkUgwYcJklS4K+vbtj8OHD+D+/XvKYffu3cGDB/fRubOn2mm6tm090LJla1y5chnh4U/g7Pxfb+PNm7dgGCIiIoNj8IGoLLKxsUVkZASSk5PVxoWF3cUvv2xRG165chX06dMf4eGPYWFhgd27A9SmefXqFQDgwYOwt9ZnAxsb1RBiaWkFAHjz5g0A4PXrTEREPIWzc21YW9uoLbtx4yZvBaK7/7/OBGzdukltekVXBw8ehKkEotxtoYiIiAwFA5EeODg44vbtm4iMfIpGjVxVxvXtOwB9+w5QGda+fQsAQGpqTm/caWlpeYYmhbeDlomJ+uX6ig4sFf1RKHr6trDIu6+mt0NSSkrOOq5f/wfXr/9TQC1JKs8rVGCP00REZHgYiPSgY8cu+PPP33H69Al07+6l8Xzm5uYAAGfn2ti5c69Oa1IEHkXoetvbtz1R9J49fvwkDMBj/WkAACAASURBVB06Uqe1EBERlbQy0w9RadKuXXs4ODjiwoVQXLx4vsBpFbckAXKO3jg4OCIqKhJJSYlq096/H4b169fk2QbpXUxMTFC37nuIiopUtnHK7c4d1f6dpNKcRup3797Oc3m//bYX27ZtRmxsTKFrISIiKmkMRHpgbGyM+fN/gJGREebM+RrBwQdVgo/Cgwdh8PUdD+C/U1y9evVBdnY2VqxYomz/A+QcwVm+fBECA/3zPcrzLr1794VMJsPq1ctVln3q1Am102Jubo1Rq5Yzzp4NwZkzp1XG3bx5HWvXrkBQ0C61tktERESGiKfM9KR+/YZYt24TvvvuWyxevAA//7wRLVq0gr19ZaSmpuL27Zt4+PABAKBx46aYMiXn0vhPPx2Bq1f/xqlTx/HgwX20atUaYrEYZ8+G4MWL5+jc2ROenh9qVVO/fgNx/vw5nDp1HE+ePELLlq0RGxuD0NCzqFHDCVFREcppxWIxvv12Af73vwmYPXs6WrVqi/feew/Pnz/D2bMhEAQBX389V3maj4iIyJAxEOmRq6s7/Px2IyTkJE6e/BM3blxDfHwcTExMULVqdXz88UB069YDrq7uynmMjIywYsVa7Nu3B8eOHcWRI4dgbGyMGjWcMHLkKHh5fQSJRKJVPRKJBMuWrcGuXX44ejQYBw7sQ5Uq1TBt2teIi3up1pC7fv0G2LZtJ/z9f8Hlyxfxzz9XYGdXEW3btsfw4d5o0KBRkbYPERFRSREJuW97S/mSyeRISEgrcJo3b7IQHx+LSpWqw9jYpIQqK7u4PfVn4sTPERf3EgBgb18ZP/6Y/1WNRFS6lKf9u2JFC0gkmrUOYhsiIiIiKvcYiIiIiKjcYyAiIiKico+BiIiIiMo9BiIiIiIq9xiIiIiIqNxjICIiIqJyj4GIiIiIyj0GIiIiIir3GIiIiIio3GMgIiIionKPN3fVE7FYBLFYpO8y1MjlAuRy3t6OiIjKFwYiPRCLRbC1Ndf4hnMlSSaTIzExvcihKCEhHps3b8ClSxeQmpqCevWk+OyzMWjZso2OKiUiItIdBiI9EItFkEjEWB94HtEvkvRdjpJjFRt8McQDYrGoSIEoPT0d//vfBERHR2HQoE9RuXIVHDq0H1OnTsby5WvRqhVDERERGRYGIj2KfpGE8OhX+i5D5/bt24PHjx9hyZJV8PDoAADo3t0LPj6fYuXKpQgM3AeRyPBOFxIRUflleOdsqNQ7duwoatSoqQxDAGBubo6PPuqHqKgI3LlzW4/VERERqWMgIp1KTU3F06fhaNjQVW1cgwaNAAB37zIQERGRYeEpM9Kply9fQBAEVKlSVW2cvb09AODZs5iSLouIyKDo80rj3E0WRCIRjIz0d2zEkK5sZiAinUpLSwUAmJqaqo0zNTUDAGRkZJZoTUREhkQsFsHWzgwSsURv68/92M7OQi91AIBMLkPiqwyDCEUMRKRTcrkcAPJsNC0IOR94Q+x/iYiopIjFIkjEEmw644eYpOclvv7E9CSVx3MPLSvxGgDAwaYqxnYcUeQrm3WFgYh0ytw85z+NzEz1o0CvX+cMs7CwLNGaiIgMUUzSczyNjyrx9WbLZSqP9VGDIWKjatKp6tWrAwDi4l6qjYuLiwMAVK2q3r6IiIhInxiISKcsLCxRs6YT7t27qzbu3r07AJDnFWhERET6xEBEOufp+SHCwx/j0qULymHp6ek4dGg/nJ1ro379hnqsjoiISB3bEOmRYxUbfZegQlf1DBkyDMeOHcW3387AJ58MRaVK9jh06Dc8exaL5cvXspdqIiIyOAxEeiCXC5DJ5PhiiIe+S1Ejk8mL3Nrf3NwC69dvwU8/rcO+fUHIzs7Ge+/Vw6pV69GsWQsdVUpERKQ7DER6IJcLSExMN8jLz3XVSVblylUwZ84CHVRERERU/BiI9MSQeuckorItJiYa27dvAQB4e38OBwdHPVdEZHjYqJqIqIzbsWMrbt68jps3r8PPb6u+yyEySAxERERlXHR0pPJxVFRkAVMSlV8MRERERFTuMRARERFRucdAREREROUeAxERERGVewxEREREVO4xEBEREVG5x0BERERE5R4DEREREZV7DERERERU7vFeZnoiFovK9M1diYiIShMGIj0Qi0WwszODWCzRdylq5HIZXr3K0Gkoun37FiZMGIUNG7bC1dVNZ8slIiLSFQYiPcg5OiTBk+AtyIiP1Xc5SmaVqqN2r88hFot0Foiio6PwzTdfQS6X62R5RERExYGBSI8y4mOR8TxC32UUm/Pnz2HRonlISkrSdylEREQFYqNqKhbz5s3GjBlfwtbWDl27dtN3OURERAViIKJiER7+BKNGjcW2bQFwcqql73KIiIgKxFNmVCw2b94OExMTfZdBRESkER4homLBMERERKWJQQaiuLg4zJ49Gx06dECTJk0wePBgnD9/XqN5b926hVGjRqFZs2Zwd3fHJ598gpCQkOItmIiIiEo1gwtEaWlp8PHxQXBwMPr164fp06cjIyMDo0ePRmhoaIHz3r17F8OGDcPt27cxatQoTJ06FampqRg3bhyOHj1aQq+AiIiIShuDa0O0c+dOPHjwABs3bkTnzp0BAH379kXfvn2xYMEC/PHHHxCJ8u7heePGjcjMzIS/vz/c3d0BAP369UP37t2xfPly9OzZs8ReBxEREZUeBneE6ODBg6hVq5YyDAGAhYUFBg0ahPDwcNy4cSPfecPDw2FnZ6cMQwBgbW2N5s2bIzo6GsnJycVaOxEREZVOBhWIUlJS8PjxY5VAo+DmlnPLh4ICUZ06dZCUlIS4uDiV4RERETA3N4elpaVuCyYiIqIywaBOmT1//hyCIKB69epq46pUqQIAiI6Oznd+X19fXL16Fb6+vpg5cyasrKzg7++PsLAwTJkyBWKxQeU/mFVSf536ZGj1EJUl+ryhc+5mBiKRCEZG+vsu5A2kyVAZVCBKSUkBAJiZmamNMzc3BwBkZGTkO7+zszPGjRuHRYsWYcCAAcrhw4cPx9ixY4tc37u+RORyzb7scr4QZKjd6/Mi16RrcrnM4L6sJBL9foGXR4b0A1oWiEQiWFmZQiLRz3bMHcRybi5toZc6AEAmkyMlJROCYFjfMyVJX58DQ2Uo28OgApHiBqB5NZpW7Dz5NagGgLlz52LPnj1o2rQpBg8eDBMTE/zxxx/w9/fH69evsWDBAq1r0+RLJDNTgrg4sUY/4MnJr/X232JB5HJB5//Jjh07HmPHjteiFhHEYjFsbMxhamqqs3ro3QzpB7QsWR94HtEvSv7efq+SM1Qez1qjn6tuHavY4IshHrC1NdfL+skwWVurHwTRB4MKRBYWOV+6mZmZauMUR4asrKzynPfJkycICgqCm5sbdu7cCSOjnJfWs2dPzJs3D4GBgejatSs6deqkVW1yuYDk5PQCp8nKeg25XA6ZTEB2Nu/uXlQymQC5XI6kpHRkZMj0XU65kvsooVwu4NWrND1WU/pJJGJYW5sh+kUSwqNflfj6s2Vylcf6qCG35OQMyGTl9ztS8XmgHMX5ebC2NtP4CJRBBaIaNWoAyGlL9LYXL14AQJ7tiwDg/v37EAQBffv2VYYhhcGDByMwMBAXL17UOhABeGfIkcnK7yHg4sSAWfJyn84QBG5/0i2ZTM7PFCkZyufBME7c/T9LS0s4Ozvj1q1bauMUw/K6Ag3471YRMpn6kQTFqbi8xhEREREZVCACgF69euHhw4c4e/asclhaWhqCgoJQt25d5eX3b2vRogXMzc2xd+9etYbXAQEBAID27dsXX+FERERUahnUKTMA8PHxwcGDB+Hr6wtvb29UrlwZQUFBiImJwZYtW5SNqq9du4aIiAh4eHjA3t4e1tbWmDVrFr799lv069cPAwYMgKmpKU6fPo3Q0FD06NGjSKfLiIiIqOwyuEBkaWmJgIAALFu2DAEBAXjz5g3q16+PrVu3ok2bNsrp9uzZg/3798PPzw/29vYAgIEDB8LBwQGbN2/G+vXrkZ2dDWdnZ3z99dcYMWKEvl4SERERGTiDC0QAULVqVSxfvrzAaRYvXozFixerDffw8ICHh0dxlUZERERlkMG1ISIiIiIqaQxEREREVO4xEBEREVG5Z5BtiIiIiHQtJiYa27dvAQB4e38OBwdHPVdEhoSBSE/0eefrgvBO1ERUVu3YsRU3b14HAPj5bcXMmXP0XBEZEgYiPRCLRbC1M4NELNF3KWpkchkSX2UUORQ9evQQ27ZtwvXr/yAtLQ1Vq1aDp+eHGDlylLJXcSKikhQdHal8HBUVWcCUVB4xEOmBWCyCRCzBpjN+iElSv2+bvjjYVMXYjiMgFouKFIiio6MwfvwoGBkZ4eOPB8Le3h5Xr/6NHTu24u7d21i58kdlB5tERESGgIFIj2KSnuNpfJS+y9C5tWtX4M2bLPz88w44OTkDAPr2HYB161Zhz54AnDt3Bu+/30mvNRIREeXGq8xIp2QyGa5d+wfu7k2VYUihe/eeAKA8h09ERGQoeISIdEosFmP79l0QBPVTbomJrwAAEonhtZ0iIqLyjYGIdEokEuV7KWtQUCAAoFmzFiVZEhER0TvxlBmViN27d+LixfNwd2+C1q3b6rscIiIiFQxEVOz27t2N9evXoFIle8ydu1Df5RAREanR6pSZIAiIiopCcnIyXr9+DXNzc1hZWcHBwYGXU5OSIAj46ad12LXLD5UqVcLq1RtQtWo1fZdFRESkplCB6MSJEwgMDMTff/+NrKwstfFmZmZo2rQphg4dii5duuisSCp93rx5g++/n4cTJ47B0bEGVq78EY6ONfRdFhERUZ40CkQymQxTpkzBn3/+CUEQ4OTkhJo1a8La2homJibIyspCcnIyIiMjcf78eVy4cAE9e/bEkiVLYGTEdtvljUwmw5w5X+PcuRA0aNAQS5eugZ2dnb7LIiq3jExtkJWV+v+PbfVcDZFh0iit/PLLLzh27Bi6deuGGTNmwNEx/xviRUVFYcmSJTh69ChcXV3h4+Ojs2KpdNi2bTPOnQuBm1tjrFixDubm5vouiahcs6rZBimRl/7/cWs9V0NkmDQKRPv27UPDhg2xZs2ad7YRqlGjBtasWYMBAwZg3759DEQFcLCpqu8SVOiinvj4OAQG+kMkEqF9+/dx7lyI2jQ1azqhYUPXIq+LiDRjZGoDu3of6rsMIoOmUSCKiYnByJEjNW4wLRaL4eHhAX9//yIVV1bJ5QJkchnGdhyh71LUyOSyIt3H7Pr1a8r2ZT/9tC7Pafr0+ZiBiIiIDIpGgcje3h4RERGFWvDDhw9haWmpVVFlnVwuIPFVBsRiw7siTy4XihSIunb9AF27fqDDioiIiIqfRv0QderUCX/++Sf27Nmj0UL9/PwQEhKCzp07F6m4skwuF5CdLTe4v6KEISIiotJKoyNEX3zxBS5evIh58+Zh06ZNaN26NWrWrAkbGxuYmJjgzZs3SElJQUREBP766y9ERUXBwcEBvr6+xV0/ERGVMhKJfvoEzt3sQyQSwchIP3Xo6/VTwTQKRBUrVsTu3buxbt06/Prrr9i/fz8A1Q+X4maeFhYWGDRoEP73v//xUmsiIlKysTKFIJfD2tpML+vP3UxBLBbBzs5CL3WQYdK4kyBra2vMnj0bX331Fe7evYtHjx4hOTkZ6enpqFChAmxsbFC3bl00atQIJiYmxVkzERGVQhamJhCJxXgSvAUZ8bElvv43qYkqj+/umF/iNQCATW1XOL7/sV7WTfkrdK+JxsbGaNy4MRo3blwc9RARURmXER+LjOeFu1BHFwSZTOWxPmoAANOKvIWRISp0IHrx4gUuX76Mx48fIyUlReVeZnXr1kWzZs1Qtaph9a9DREREVBCNA1F0dDS+//57hISEQBAEZZuh3EQiEUQiEbp27YoZM2agRo3yeu8qXqmlC3l9xoiIiIqDxh0zDhw4EAkJCWjVqhXatm0LJycnWFlZKe9lprjK7MKFCzh+/DiuX7+OwMDAchWKxOKcKwdkMhmMjfVcTBkgl+cc3haLJXquhIio7DC2qQBZ2hvlY8qhUSBatWoVkpKS8OOPP8LT07PAacePH48TJ07A19cX69atw5IlS3RSaGkgkRjByMgE6empqFDBTOOevSlvmZnpEIslyqBJRERFZ9u8OhKFWOVjyqFRIDp//jy6d+/+zjCk4Onpie7du+PSpUtFKq40srCwRlJSHF69eglzcwtIJEYAGIwKQxAEZGVlIjMzDdbWlRgsiYh0yNimAip3ddZ3GQZHo0CUkZEBBweHQi24WrVqSExMfPeEZYyZWU6/FmlpyUhMjNNzNaWZCGZmlsrtSUREVJw0CkS1a9dGSEgIfH19YWT07llev36NEydOoFatWkUusDQyM7OAmZkFZLJsyOVyfZdTKkkkErYdIiKiEqNRIBo6dChmz54NHx8ffPHFF2jRokWewUgmk+Gff/7BypUrERERgW+++UbnBZcmEokRJPxNJyIiMngaBaL+/fvjyZMn+Pnnn+Hj4wOJRILq1aur3MssOTkZsbGxePPmDQRBwNChQzF06NDirp+IiIioyDTuh2jatGno1asXdu7ciatXryI8PByRkZHK8WKxGDVr1kSrVq3Qv39/NGnSpFgKJiIiItK1QvVUXb9+fSxcuBAAIJfLkZqaivT0dJiYmMDKygrG7HyHiIiISqFC37pDQSwWw9raGtbW1rqsh4iIiKjEscc7IiIiKve0PkJERMVLLBZBLNZPp5S5O8MUiUQwMtLf/05yuQC5nPe1I6LipVEgunjxotYraNu2rdbzEpVXYrEItnZmkOipL6bcQUwsFsHOTn8dZMrkMiS+ymAoIqJipVEg8vHx0fr2Cffu3dNqPqLyTCwWQSKWYNMZP8QkPS/x9SemJ6k8nntoWYnXAAAONlUxtuMIiMUiBiIqsiqWxniVma18TJSbRoFo8+bNmD59OpKTk9GoUSPUq1evuOsiIgAxSc/xND6qxNebLZepPNZHDUS61rt+RQj3EpSPiXLTKBC9//772LFjB0aMGIFnz55hy5YtsLOzK+7aiIiIdKaKhQlGt6im7zLIQGncUrJ+/fr4/vvvERcXhyVLlhRnTUREREQlqlCXjnzwwQfo3LkzDh06hEePHhVXTUREREQlqtCX3X/33Xe4efMmTExMiqMe0pOYmGhs374FAODt/TkcHBz1XBEREVHJKXTnIlWqVIGnpydq1qxZHPWQnuzYsRU3b17HzZvX4ee3Vd/lEBERlSj2VE0AgOjo/27UGxUVWcCUREREZQ8DEREREZV7DERERERU7jEQERERUbnHQERERETlHgMRERERlXtaBaKsrCyNpgsLC9Nm8UREREQlSqtA9PHHH+Pff//Nd7wgCNi4cSMGDhyodWFEREREJUWrQPTw4UMMGDAAAQEBauMiIyMxZMgQrF69GhUqVChygURERETFTatAtH79epibm2PhwoUYP348Xr16BQAIDAzERx99hOvXr6Njx44IDg7Wqqi4uDjMnj0bHTp0QJMmTTB48GCcP39eo3nT0tKwfPlydOnSBe7u7ujRowe2bt2K7OxsrWohIiKisq/Q9zIDgK5du6JJkyb4+uuvcfr0afTp0wd16tTB5cuXYWtri/nz56N3795aFZSWlgYfHx9ERERg5MiRqFq1KoKCgjB69Ghs2bIF7du3z3ferKws+Pj44Pbt2xg8eDDq1auHM2fOYOnSpYiOjsacOXO0qomIiIjKNq0CEQBUqlQJmzdvxvz587Fr1y68fPkStra2+O2331C9enWtC9q5cycePHiAjRs3onPnzgCAvn37om/fvliwYAH++OMPiESiPOfdvn07bty4gYULFyrbLw0ZMgTjx49HQEAAxo4di6pVq2pdGxEREZVNWl92n5aWhgULFmDPnj0wMjKCs7MzXr16BW9vb1y5ckXrgg4ePIhatWopwxAAWFhYYNCgQQgPD8eNGzfynTcoKAhSqVStMff48ePxxRdfIDMzU+u6iIiIqOzSKhCFhITAy8sLAQEBcHJywq5duxAcHIyJEyciOjoaI0eOxLx585CWllao5aakpODx48dwd3dXG+fm5gYA+Qai2NhYREZGokOHDsphaWlpkMvlcHd3x+TJk1GrVq1C1UNERETlg1anzMaNGweRSIRhw4Zh+vTpyqvJJk6ciI4dO2LGjBnYvXs3zpw5g9OnT2u83OfPn0MQhDxPuVWpUgUAEB0dnee8jx8/BgA4Ojril19+wfbt2/Hs2TNYWFjg448/VqlTW0ZGZbcfy9ynIUUiUZl+raWBRMLtn1tp3x6lvX6i4mQo+4dWgahatWr44Ycf0LZtW7Vxbm5uOHDgAJYtW4adO3cWarkpKSkAADMzM7Vx5ubmAICMjIw8501KSgIA+Pv7Izk5GWPGjEH16tVx4sQJ+Pv7IzIyEps2bSpUPbmJxSLY2VloPb+hE4tFKo/L8mul0sfaWv07gYjKBkPZv7UKRIcPH4aVlVW+401MTDB79mx4enoWarlyuRwA8mw0LQhCvuMA4M2bNwCAqKgoHDx4EHXr1gUAfPjhhzA2Nsa+ffsQGhpa4FVqBdcmIDk5Xat5SwO5XFB5/OpV4U53km5JJGKD+ZIwBMnJGZDJ5PouQ2t8P4nyV5z7t7W1mcZHoLQKRAWFodxat25dqOVaWOQclcir8bPiyFB+61YcQWrTpo0yDCkMGjQI+/btw4ULF7QORACQnV16v5DfRRE4FY/L8mul0kcmk/MzSVRGGcr+bRgn7v5fjRo1AOS0JXrbixcvACDfS/oVl9Pb29urjatUqRIAIDU1VSd1EhERUdliUIHI0tISzs7OuHXrlto4xbC8rkADAKlUClNTUzx48EBtXEREBID/AhcRERFRbgYViACgV69eePjwIc6ePasclpaWhqCgINStW1d5+f3bTE1N0b17d9y5c0flyja5XI5t27ZBIpHgww8/LPb6iYiIqPTRuqfq4uLj44ODBw/C19cX3t7eqFy5MoKCghATE4MtW7YoG1Vfu3YNERER8PDwUJ4mmzZtGq5cuQJfX198+umnqFmzJo4dO4bLly9jwoQJ7IeIiIiI8qRVIHr06JFaw2VdsbS0REBAAJYtW4aAgAC8efMG9evXx9atW9GmTRvldHv27MH+/fvh5+enDESK8LR27VoEBwcjOTkZzs7O+P777zFgwIBiqZeIiIhKP60CkZeXFxo3boyPP/4YXl5esLS01GlRVatWxfLlywucZvHixVi8eLHacHt7e8yfPx/z58/XaU1ERERUdmnVhqhHjx4ICwvD3Llz0b59e0ybNg0XL17UdW1EREREJUKrI0SrVq1CamoqgoODceDAAQQHB+PIkSOoVq0a+vXrh379+qFmzZq6rpWIiIioWGh9lZmlpSUGDx6M3bt3448//sCYMWMgFouxYcMGdOvWDcOGDcP+/fvzvdUGERERkaHQyWX3zs7O+PLLL3Hy5Els2rQJDg4OuHr1KmbNmoX27dtjwYIFeXa2SERERGQIdHLZfXx8PA4fPowjR47g9u3byjvW9+jRA3fv3sWuXbtw6NAh/PTTT2jRooUuVklERESkM1oHoqysLJw4cQIHDhzAhQsXkJ2dDRMTE3Tv3h39+/eHh4eHss+gS5cuYdSoUZg/fz4OHTqks+LLGrFYpHLX+ZKU+6a5IpEIRkb667NTLhdUbjZLRERU3LQKRLNnz8axY8eQlpYGQRDQoEED9O/fH71794aNjY3a9G3atEGdOnUQGRlZ5ILLKrFYBFtbc43vylsc68/92M7OQi91ADk3+ktMTGcoIiKiEqNVINq3bx9sbGwwdOhQ9O/fHw0aNHjnPK6urujSpYs2qysXxGIRJBIx1geeR/SLpBJf/6vkDJXHs9YcLfEaAMCxig2+GOIBsVjEQERERCVGq0C0cuVKeHp6wsTERON5fvjhB21WVe5Ev0hCePSrEl9vtkyu8lgfNRAREemLVudndu/ejaNHCz6C4Ofnx5upEhERUamgUSASBAFyuRxyuRwymQx//fUXoqKilMPe/svKysLff/+N2NjY4q6fiIiIqMg0OmX2888/Y+XKlSrD1q9fj/Xr1xc4n4uLi/aVEREREZUQjQKRt7c3jh8/jri4OABAbGwsLC0tYWVlpTZtziXbRnBwcMC0adN0Wy0RERFRMdAoEBkbGyMoKEj5vH79+hg5ciQmTpxYbIURERERlRStrjLz8/ODo6OjrmshIiIi0guNApFcLodY/F/7a8XtN+RyeX6zKOWej4iIiMgQaRSIGjVqhIkTJ+KLL75QPteESCTC3bt3ta+OiIiIqARoFIiqV6+u0oC6evXqxVYQERERUUnTKBCdOnWqwOdEREREpRkb+BAREVG5p9ERoosXL2q9grZt22o9LxEREVFJ0CgQ+fj4QCQSabWCe/fuaTUfERERUUnRKBD17dtX60BEREREZOg0CkSLFy8u7jqIiIiI9IaNqomIiKjc0+gI0VdffYVu3brB09NT+VwTIpEIS5Ys0b46IiIiohKgUSA6dOgQnJyclIHo0KFDGi2cgYiIiIhKA40C0ds3c/Xz8yu2goiIiIhKmkaBqFWrVgU+JyIiIirNNApEBfnnn39w9+5dpKenw8bGBm5ubmjYsKEuaiMiIiIqEVoHosuXL+Pbb79FZGQkAEAQBGVfRa6urli8eDHq1q2rmyqJiIiIipFWgejmzZsYPXo05HI5PvjgAzRt2hQWFhZ4/vw5rly5gr/++gvDhw9HUFAQatSooeuaiYiIiHRKq0C0fv16CIKALVu2oF27dmrjjx49iqlTp2L16tVYvnx5kYskIiIiKk5adcx49epVfPDBB3mGIQDo2bMnOnfujHPnzhWpOCIiIqKSoFUgksvlcHBwKHCaOnXqICsrS6uiiIiIiEqSVoGoXbt2Xz8yFQAAIABJREFUOHnyZL6BRy6X48KFC2jevHmRiiMiIiIqCRoFIrlcrvI3ffp0pKWlYdSoUbh9+7bKtE+fPsW0adPw/PlzzJo1q1iKJiIiItIljRpVN2rUKM/hcXFxGDhwIExMTFCpUiWkpKQgNTUVAGBtbY0xY8bgxIkTuquWiIiIqBhoFIiqV6+u0cKsrKxgZWWlfC6Xy7WrioiIiKgEaRSITp06Vdx1EBEREemNVo2qqewxMrXJ9dhWj5UQERGVvCLdy+zRo0dISEiATCaDIAjK4W/evEFiYiJCQkKwcuXKIhdJxc+qZhukRF76/8et9VwNERFRydIqECUmJmL06NG4c+fOO6dlICodjExtYFfvQ32XQUREpBdanTJbv349bt++DUdHR/Ts2ROmpqZwcXFBjx498N5770EQBFSqVAkBAQG6rpeIiIhI57Q6QnTmzBlUr14dR48ehYmJCcaNGwexWKw8GrR582asWrUKsbGxOi2WiIiIqDhodYTo2bNn6NSpE0xMTAAADRs2xI0bN5Tjx4wZgwYNGiAoKEg3VRIREREVI60CkUQiUelvyMnJCQkJCUhISFAOa9WqFZ4+fVr0ComIiIiKmVaByMHBAeHh4crnTk5OAICHDx+qTJeYmKh9ZUREREQlRKtA1KFDB5w6dQqHDh0CALi4uKBChQrYs2cPACAtLQ2nT59G1apVdVcpERERUTHRKhCNGjUKtra2mDFjBoKCgmBhYYE+ffrgyJEj6Nq1K7p164aIiAh0795d1/USERER6ZxWV5lVrlwZ+/btw5YtWyCVSgEA06dPx8uXL3H69GmIxWJ4eXlh/PjxOi2WiIiIqDho3VN11apV8c033yifW1paYsOGDUhJSYGJiQkqVKigkwKJiIiIiluRbt0BANnZ2Xj8+DHS09NhY2OD2rVr66IuIiIiohKjdSCKi4vDypUr8fvvvyMzM1M53MrKCgMGDMDkyZNhamqqkyKJiIiIipNWgejFixf45JNPEBsbC3t7e7Ru3RoWFhZ48eIF7t+/j23btuHKlSvw8/ODmZmZrmsmIiIi0imtAtHatWsRGxuL8ePHY+LEiZBIJMpxqampWL58OXbv3o0NGzZg6tSphV5+XFwcVq1ahbNnzyIlJQX169fHpEmT4OHhUajlxMfHo1evXnjvvffg7+9f6DqIiIiofNDqsvuQkBC0bNkSvr6+KmEIyGlcPW/ePLi5uSE4OLjQy05LS4OPjw+Cg4PRr18/TJ8+HRkZGRg9ejRCQ0MLtazZs2er9J5NRERElBetAlFKSgoaN25c4DQtW7ZEfHx8oZe9c+dOPHjwAKtX/197dx5VVb3/f/x1AEEGAUlFckKpQFNywkysrmiOWBJplkPgkFYOv+iWmlPOmt68a9mIeS1BvVqCmJZWaDlbGpKmLc0JRcMUDVBShPP7g+v5SoACCufgfj7Wcq3j/uzPPu+9ZXNefvZn7/NvRUVFqV+/flq2bJnq1q2radOmyWw2l2g7K1as0JYtW2RnV6ZdBAAABlKmtODv76+ff/75puscPXpUfn5+pd52QkKCGjRooA4dOliWubq6qk+fPjp+/HiBL5EtzokTJzR79my99NJLcnC47RvpAADAXa5Mgei1117TTz/9pHnz5hW4w+y62NhYbdmyRaNGjSrVdjMzM3X06FEFBgYWamvWrJkk3TIQ5ebm6o033pCfn5+GDx9eqvcHAADGVKLhk379+hVa5ubmpkWLFikuLk5NmjRRzZo1lZGRoV9++UVpaWmqX7++vvnmmwIjPbeSlpYms9ksHx+fQm21atWSJKWmpt50Gx988IF+/fVXxcfH3/HRIQeH8rv8Zm/Ppb0bGf14GH3//66yH4/KXj9Qnmzl/ChRYtizZ0+xbenp6UVOdj5x4oRSUlI0c+bMEheTmZkpSUXequ/i4iJJys7OLrb/vn379MEHH2jMmDFq1KhRid+3JOzsTKpe3fWObhPFc3fncQ34P/w8AHcvWzm/SxSIEhMTy7sOSVJeXp4kyWQyFWq7Ppm6qDZJ+uuvv/T6668rKChIAwYMKIfazMrIuHzHt3udvb2dzfxQ2IKMjGzl5uZZuwyr4eehoMr+88C/J1C88jy/3d2dSzwCVaJAVKdOndsqqKRcXfNHYIqal3R9ZKhatWpF9n377bf1+++/65133tGFCxcKtOXk5Cg9PV1OTk6W9yiLa9cq7y/kyiY3N4/jDQt+HoC7l62c37c1ySYtLU1xcXE6ePCgLl++LE9PTz3wwAPq0aNHmUJU3bp1Ldv9u7Nnz0pSkfOLpPxnI2VnZyssLKxQW1JSkh555BGFhYVp9uzZpa4LAADc3cociNasWaOJEyfq6tWrhZ4N9N5772nKlCnq1atXqbbp5uYmX19f7du3r1Db9WVF3YEmSXPnztWVK1cKLX/xxRfVqFEjjR071jIxGwAA4EZlCkTJyckaN26cnJyc9MorrygoKEje3t7KyMjQzp07tWjRIk2YMEF+fn6W2+VLKjQ0VO+++642b96sxx57TFL+06tXrlx50+21atWqyOUmk0keHh5q165d6XYSAAAYRpkC0UcffSR7e3stXbpUjRs3LtAWGBioxx57TH369NHixYv1zjvvlGrbkZGRSkhI0OjRoxUREaGaNWtq5cqVOn36tBYuXGiZVJ2UlKSUlBQFBwerRo0aZdkNAAAASWV8MONPP/2kjh07FgpD1wUEBKhjx4764YcfSr1tNzc3LV26VB07dtTSpUs1d+5cOTs7a9GiRQVGeVasWKE33nhDR44cKcsuAAAAWJRphCgrK0u1a9e+6Tre3t76888/y1SUt7e35s2bd9N1Zs+eXaIJ0kXNRwIAALhRmUaIfHx8lJSUdNN19u7de8vQBAAAYAvKFIg6deqk5ORkffTRR4Xa8vLytGDBAiUnJ6tjx463XSAAAEB5K9Mls+HDh2v9+vX697//rTVr1igoKEjVqlVTWlqa9u7dq5MnT8rHx0fDhg270/UCAADccWUKRB4eHlq2bJkmTpyorVu3FprYHBwcrGnTpql69ep3pEgAAIDyVKZAdOXKFfn4+Ojjjz/W2bNndeDAAWVmZsrNzU1NmjSRt7f3na4TAACg3JQpED3zzDMKCgrSpEmTVKtWLZ4ADQAAKrUyTao+ceKEnJyc7nQtAAAAVlGmEaI6deooJSXlTtcCWN3p06n65JOFkqSIiKG6997Sf0kxAKDyKVMgmjVrloYNG6bXX39dXbt2Vb169eTs7FzkuvXq1butAoGK9Omni/Tzz3slSUuWLNLYsZOsXBEAoCKUKRBFRkbq2rVrWrt2rdauXVvseiaTSQcOHChzcUBFS009aXl96tTJm6wJALiblCkQNW3a9E7XAQAAYDVlCkQxMTF3ug4AAACrKdNdZgAAAHeTEo8QnT9/XgsWLNCmTZt04cIF1a5dW926ddOwYcPk4uJSnjUCAACUqxIFovPnz6t37946c+aMzGazJCklJUXR0dHatGmTli9fLldX13ItFAAAoLyU6JJZdHS0Tp8+rSeffFJfffWVkpOTtXr1aj3++OM6fPiwlixZUt51AqhAVTycinwNAHerEgWiLVu2qEWLFpozZ44aNmwoJycnBQQE6L333lP9+vW1cePG8q4TQAXybOWjqj5uqurjJs9WPtYuBwDKXYkC0ZkzZ9SyZctCy+3t7RUcHKwTJ07c8cIAWE8VDyfV7Oirmh19GSECYAglCkRXrlwp9knU1atX16VLl+5oUQAAABWpRIEoLy+v2DaTyXTTdgAAAFvHc4gAAIDhlelJ1UB5s7e3TlY3mUwFXjs4WKcOa+0/ABhViQNRYmKiUlNTCy3/9ddfJUnjxo0r1GYymTRz5szbKA9G41Gtqsx5eXJ3L3rOWnmzszMVeF29Os/XAgAjKHEgOnjwoA4ePFhse3x8fKFlBCKUlmtVR5ns7HRs7UJlnz9T4e+fk3WxwOsDn06t8BokyaNhU9V57GmrvDcAGFGJAtGsWbPKuw6ggOzzZ5SdllLh72vOzS3w2ho1SFJVr9pWeV8AMKoSBaKwsLDyrgMAAMBqmLkJAAAMj0AEAAAMj0AEAAAMj0AEAAAMj0AEAAAMj0AEAAAMj0AEAAAMj0AEAAAMj0AE3KCWW5UiXwMA7m582z1wg54BXjIfTLe8BgAYA4EIuEEtV0cNac33iAGA0XDJDAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGJ5NBqJz585p/PjxevTRR9W8eXP17dtX27ZtK1Hf3bt3a/DgwWrdurWaNm2qHj166JNPPlFeXl45Vw0AACormwtEly5dUmRkpNauXauwsDC9/vrrys7O1pAhQ7R169ab9v3pp580cOBAHT16VEOGDNG4cePk7e2tWbNmaeLEiRW0BwAAoLJxsHYBfxcbG6tDhw7pww8/VIcOHSRJvXr1Uq9evTRt2jStX79eJpOpyL6TJ09WtWrVtGrVKnl5eUmS+vXrp1GjRunzzz9X//791bhx4wrbFwAAUDnY3AhRQkKCGjRoYAlDkuTq6qo+ffro+PHjSk5OLrLf+fPndejQIXXq1MkShq578sknJUl79uwpv8IBAEClZVMjRJmZmTp69KhCQ0MLtTVr1kySlJycrObNmxdq9/Dw0IYNG+Tk5FSoLT09XZJkb29/hysGAAB3A5sKRGlpaTKbzfLx8SnUVqtWLUlSampqkX0dHBzk6+tbaHlubq5iYmJkMpnUpk2b26rPwaH8BtTs7W1usA6wGZX9/Kjs9QPlyVbOD5sKRJmZmZIkZ2fnQm0uLi6SpOzs7FJtc9asWTp06JB69uwpPz+/MtdmZ2dS9equZe4PoOzc3Qv/TgBwd7CV89umAtH1W+OLmjRtNpuLbSvOnDlzFBMTo/vuu09vvfXWbdZmVkbG5dvaxs3Y29vZzA8FYGsyMrKVm1t5H53B+Q0UrzzPb3d35xKPQNlUIHJ1zR+B+euvvwq1XR8Zqlat2i23c/XqVb355pv64osv1KhRIy1evFhubm63Xd+1a5X3FzJQmeXm5nH+AXcpWzm/bSoQ1a1bV1L+XKK/O3v2rCQVOb/oRllZWXr55Ze1a9cuNWvWTNHR0YXuOgMAALiRbcxk+h83Nzf5+vpq3759hdquLwsMDCy2/+XLlzV48GDt2rVLjz/+uJYsWUIYAgAAt2RTgUiSQkND9dtvv2nz5s2WZZcuXdLKlSvl5+dnuf2+KJMnT9bevXvVpUsXvf/++5aJ2AAAADdjU5fMJCkyMlIJCQkaPXq0IiIiVLNmTa1cuVKnT5/WwoULLZOqk5KSlJKSouDgYNWoUUO//PKL1qxZI0dHR7Vr107r1q0rtO0mTZro/vvvr+hdAgAANs7mApGbm5uWLl2quXPnaunSpcrJyVFAQIAWLVqktm3bWtZbsWKF4uPjtWTJEtWoUUPbt2+XlD+hevLkyUVu+7XXXiMQAQCAQmwuEEmSt7e35s2bd9N1Zs+erdmzZ1v+PnToUA0dOrS8SwMAAHchm5tDBAAAUNEIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPAIRAAAwPBsMhCdO3dO48eP16OPPqrmzZurb9++2rZtW4n6pqSkaPTo0XrkkUfUokULDRo0SPv37y/nigEAQGVmc4Ho0qVLioyM1Nq1axUWFqbXX39d2dnZGjJkiLZu3XrTvmlpaerXr5927dql/v37a/To0Tpx4oT69++vX3/9tYL2AAAAVDYO1i7g72JjY3Xo0CF9+OGH6tChgySpV69e6tWrl6ZNm6b169fLZDIV2fe9997T+fPnFRcXp4CAAElS9+7d1aNHD82ZM0eLFy+usP0AAACVh82NECUkJKhBgwaWMCRJrq6u6tOnj44fP67k5OQi++Xm5uqLL77Qww8/bAlDklSrVi316NFDO3bsUFpaWrnXDwAAKh+bCkSZmZk6evSoAgMDC7U1a9ZMkooNRIcPH9bly5eL7Ws2m7Vv3747WzAAALgr2NQls7S0NJnNZvn4+BRqq1WrliQpNTW12L6SytS3JOzsTPLyci1z/1u5fhVwzOAQ5ebmldv72DrHKvaSpPuf+X8y5+VauRrrsXNwlCS99sRwXTPwcXCwy/958PBwltls5WJuA+d3Ps7vfJzf+Sri/LazK3qKTZH1lE8JZZOZmSlJcnZ2LtTm4uIiScrOzi513+vLiutbEiaTSfb2JT+wZeXhVrXc36MyqOLqbu0SbIK7czVrl2AT7OxsajC7zDi/83F+5+P8zmcr57dtVPE/eXn5/3MqatK0+X/xsbgJ1Tfre52tHHQAAGBbbCohuLrmX5L666+/CrVdH92pVq3oRF2Svm5ubnekTgAAcHexqUBUt25dSSrybrCzZ89KKnqO0O32BQAAxmZTgcjNzU2+vr5F3g12fVlRd5FJUsOGDeXq6nrTvg899NAdrBYAANwtbCoQSVJoaKh+++03bd682bLs0qVLWrlypfz8/Cy33/+do6OjOnfurG3btunQoUOW5WfPntW6dev06KOPysvLq9zrBwAAlY/JbLatm1mzsrLUq1cvnT9/XhEREapZs6ZWrlypw4cPa+HChWrXrp0kKSkpSSkpKQoODlaNGjUkSadPn1ZYWJjs7OwUGRkpJycnxcTEKD09XcuXL5e/v781dw0AANgomwtEUv48oLlz52rz5s3KyclRQECARo8erbZt21rWGTt2rOLj47VkyRI9/PDDluVHjhzR3Llz9cMPP8je3l6BgYF67bXX1KRJE2vsCgAAqARsMhABAABUJJubQwQAAFDRCEQAAMDwCEQAAMDwCEQAAMDwCEQAAMDwCEQwlAULFsjf31+jRo0qdp3o6Gj5+/tr165dFVgZgNKYPn26/P39NXbs2GLXycnJUWhoqAICAvTjjz9WYHWojAhEMKQNGzZow4YN1i4DQBlFRUWpbt26io+P144dO4pc56OPPtLhw4c1cOBABQUFVXCFqGwIRDCsqVOn6uLFi9YuA0AZuLi4aPr06ZKkyZMn68qVKwXajxw5oo8++ki+vr6KioqyRomoZAhEMKTOnTvr3LlzmjlzprVLAVBGjzzyiHr37q0TJ07o/ffftyw3m82aNGmScnNzNWfOHFWtWtWKVaKyIBDBkCIiItSsWTMlJCTo+++/v+X6P/zwgwYPHqxWrVopMDBQYWFhWrlyZQVUCuBmxowZI29vby1atEhHjhyRJH322WfavXu3Bg0apObNm0uSTp06pTFjxig4OFhNmzZV586dtWDBAl29erXA9vbt26dBgwapXbt2atasmbp27ar58+crOzu7wvcNFYtABEOyt7fXzJkzVaVKFU2ePFlZWVnFrrtmzRoNHDhQx44d0+DBgxUVFSUnJydNnDhRkyZNqsCqAfxdtWrV9NZbbyknJ0czZ85Uenq65s2bp/vvv99y88SxY8cUHh6uzZs3q0+fPnrzzTfVvHlzvffeexoyZIiuXbsmSTp+/LgiIiL0+++/a+jQoZo0aZKaNm2qDz/8UOPGjbPmbqICOFi7AMBaHnjgAQ0fPlwLFizQ22+/ralTpxZaJzMzU1OnTlXt2rW1evVqubu7S5IGDhyol19+WStWrFC3bt30yCOPVHT5AP4nJCREoaGhWrt2rYYOHapLly5p9uzZcnR0lCTLuR0XFycfHx9J0vPPP68WLVrorbfe0ueff66+ffvq22+/VVZWlhYvXqzAwEBJUu/evSXljzDl5OSoSpUqVthDVARGiGBow4YNk7+/v1auXKmdO3cWat+2bZsyMzP1wgsvWMKQJNnZ2WnkyJGSpPXr11dYvQCKNn78eHl5eWn//v0aPny4mjZtKkm6ePGiduzYoTZt2sjJyUnp6emWPyEhIapSpYq++eYbSVLt2rUlSfPmzdP27dstl9PmzZun//73v4ShuxwjRDC0KlWqaMaMGXr22Wc1YcIEffHFFwXaT548KUny8/Mr1NfPz08mk0mnTp2qkFoBFM/Ly0uPP/644uPjFRYWZlmekpIis9msr7/+Wl9//XWRfVNTUyVJXbt21ZYtW7R69Wrt2rVLzs7OCgoK0hNPPKEnn3ySydl3OQIRDK9Zs2aKjIzUxx9/rPnz56tGjRqWNrPZXGw/s9kss9lsGZYHYHvy8vIkSaGhoQoPDy9yHScnJ0mSg4OD5syZo1deeUWJiYnasWOHfvzxR23evFmLFi3SZ599VmCkGHcXLpkBkkaNGiVfX1/FxMQoKSnJsrxu3bqSZLl75Ua//fabJOnee++tmCIBlFqdOnUk5T+1ul27dgX+tGnTRhcuXJCLi4sk6cyZM9qxY4fq16+vyMhIRUdHa9euXerfv7+OHz/Ow1zvcgQiQPn/Q5wxY4bMZrM2btxoWd6+fXu5uLjo008/VUZGhmV5Xl6e5bknTzzxRIXXC6BkatasqRYtWigxMVEHDhwo0LZ8+XJFRUXpyy+/lCQtXLhQERER2r9/v2UdR0dHPfjgg5Ly5w7i7sUlM+B/WrdurX79+ik2NtayzN3dXRMmTND48ePVq1cv9e7dWy4uLtqwYYP27Nmj8PBwtW3b1opVA7iVyZMnq1+/fnr++ef13HPPydfXV7/88os+//xz+fr6atCgQZKkAQMGaM2aNRo6dKj69u2re++9VydPntTSpUt17733qkuXLlbeE5QnAhFwg6ioKG3atMkyyVKSwsPDVbt2bUVHRys6OlpS/oTq6dOnW27JBWC7GjdurFWrVundd9/VmjVr9Oeff8rb21vPP/+8hg8frurVq0uSGjZsqNjYWL3//vtatWqV0tPT5eXlpe7du2vEiBFyc3Oz8p6gPJnMN5s1CgAAYABcEAUAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIAAIZHIAIMbteuXfL397/ln6eeesqqdYaEhMjf31/Xrl0rUPc///nPO/Yep06dkr+/v0JCQm66XlxcnPz9/TV27NhCy+bPn1+m97569aqio6OVm5tbpv4Abg/fZQZAklSnTh2FhYUV216jRo0KrKawgQMHKjMz02a/cbxx48YaMWKEWrduXab+/fv3V3JysuWLRgFULAIRAEn5gWjkyJHWLqNYERER1i7hpho3bqzGjRuXuf+5c+fuYDUASss2/6sFAABQgQhEAMpk586dGjFihNq3b6+mTZuqVatWevbZZ7Vq1aoC612f6/PJJ5/oq6++0tNPP63AwEC1b99ec+bM0dWrV3XmzBm9+uqrCgoK0sMPP6xhw4bpxIkTBbbz9zlEf/fll1/K399f48aNK7L91Vdflb+/vw4fPnxnDsDfFDWHKC8vT9HR0QoLC1OLFi3UsmVL9e7dW8uWLZPZbJb0f8cnNTVVkvTggw9qwIABlm3k5uZqyZIlCgsLU2BgoFq0aKG+ffsqISGhUA0hISEKDQ1VYmKiQkJCFBgYqP79+2vIkCHy9/fXjz/+WKhPRkaGAgMDFR4efqcPCVCpcMkMQKl9/vnnmjBhgmrUqKGQkBC5u7srJSVFGzdu1Jtvvqns7Gz179+/QJ+EhAQdPnxYXbp0UVBQkNavX6///Oc/Sk9P1/bt21W7dm0988wz+uWXX/Tdd98pJSVFX3zxhRwcSvZrqlOnTvL09NSGDRs0efJkVa1a1dKWmZmpxMRENWvWTPfff/8dPRY3M2PGDMXGxqply5bq27evcnJylJiYqClTpuj3339XVFSU6tSpoxEjRujTTz9VZmamXn75ZdWrV09S/kTrl156SVu3blW9evX09NNP6+rVq/r+++/1xhtvaM+ePZo6dWqB90xLS1NUVJSeeOIJeXh4yNPTU/fdd5+2bNmi1atXKygoqMD6X375pa5cuaKnn366wo4LYIsIRAAkSampqVqwYEGRbXXq1LF8YObk5Gju3Lm65557tGbNGnl5eVnW27x5s4YOHar4+PhCgejAgQP64IMPLHdw9enTR927d9fq1avVs2dPzZ07VyaTSWazWf369dOePXu0b98+tWjRokT1Ozo6KjQ0VLGxsfr2228VGhpqaVu3bl2pPvQzMjKKPRaSdPDgwVtuIysrS8uWLVPr1q21dOlSy/IRI0aoW7duiomJ0ciRI1W3bl2NHDlS8fHxyszM1CuvvGIJgZ988om2bt2qDh06aP78+XJ2dpYkpaenKzIyUitWrFDbtm3VvXv3ArUPGzZMUVFRlmVXr161hMVJkybJycnJ0hYfH285doCREYgASMoPRO+++26RbW3atLGEidzcXE2ZMkVubm4FwpAktW3bVpJ04cKFQtvw8/MrcDu7n5+fPD09dfHiRQ0ZMkQmk0mSZDKZ1KJFC+3Zs0epqaklDkSSFB4ertjYWK1evbrAB/zq1avl5ORU4g/9zMzMYo9FSZnNZpnNZp05c0anTp1S3bp1JUkCuvtfAAAFlElEQVSenp5atWqV3N3dVaVKlZtuY9WqVbKzs9OUKVMsYUiSvLy8NH78eA0YMEArVqwoEIgkqVu3bgX+7ujoqJ49eyomJkaJiYmW9Y8dO6a9e/eqe/fu8vDwuK39BSo7AhEASfmhJyYm5pbrVa1aVV27dpWUH6J+++03nTp1yvLhKqnIZ+n4+voWWubq6qqLFy+qfv36hd5Dyh/ZKI0mTZqocePG2r59u/744w/VrFlTx44dU1JSknr06CF3d/cSbadOnTrauHFjse1xcXHFzlW6rlq1anryySeVkJCgzp07KzAwUMHBwWrfvr0eeuihWz4+4NKlSzp+/LgaNmwob2/vQu0tW7aUvb19kaNV1y+53eiZZ55RTEyMEhISLIEoPj5ekrhcBohJ1QDKICkpSc8995xCQkL04osvavr06dq2bZuaNGkiSZYJwzdycXEpdnuOjo53rLbw8HDl5uZq7dq1kvJHhyTrfOjPnDlTEydOVEBAgPbu3at3331Xffv21T/+8Q9LXcXJysqSlB+siuLg4CAvLy9dvny5UNuN86euCwgI0IMPPqitW7fq/PnzysvL05o1a+Tt7a3g4OAy7B1wdyEQASiVM2fOaNCgQTp48KDGjh2rhIQEJSUl6auvvtL48eOtXZ569uwpR0dHSyBau3atateurXbt2lV4LQ4ODurfv7/i4uK0fft2zZ8/X0899ZTS09M1ZswY7d69u9i+rq6ukvInSRclLy9PWVlZ8vT0LHE94eHhunbtmtavX6/du3frzJkzCgsLs9mHXQIVibMAQKl8/fXXunz5sgYNGqTIyEgFBARYRiSu39Je1AhRRfH09FTHjh21f/9+fffddzp16pR69epV4R/6R44c0b/+9S9t2rRJUv68n+7du+vtt9/W8OHDJemmgcjNzU0NGjTQ2bNnlZKSUqj9559/VnZ2tvz9/UtcU2hoqJycnPTtt98qMTFRkm76dHLASAhEAErlevj5+5OV//zzT02fPl2Sin1WUEW5/kyd67ekW+NymZ2dnaKjozV//nz99ddfBdpOnTolqeBcn+sTrG88duHh4TKbzZo6daqys7Mtyy9cuKAZM2ZIKl2g8fDwUKdOnfTDDz/oq6++UsuWLYuc2wUYEZOqAZRKhw4d5OnpqRUrVuj333+Xv7+/zp07p40bNyo7O1tubm7KzMzUtWvXSvwMoTstODhYPj4+Sk1NVatWrdSgQYMKr6Fhw4Z67rnntHz5cnXr1k0dOnRQ1apVlZycrN27d6t58+bq3LmzZX0fHx8dP35cb7zxhlq1aqUXXnhBgwYN0o4dO7Rlyxb17NlT7du3V05Ojr7//nv98ccf6t27d6lvlw8PD9e6deuUlpZm01/VAlQ0RogAlEqtWrW0ZMkSdejQQfv371dMTIx++uknPfbYY4qLi1PXrl2Vk5Ojbdu2Wa1GOzs7y63n1ryDasKECZoyZYruuecerVu3TrGxsbpw4YJGjhypxYsXF7jt/p///Kf8/f21ceNGxcbGSsofNVq4cKHGjh0rV1dXxcXFacOGDWrYsKHmz59vGZErjXbt2umee+6Rs7NzodvzASMzma15sR8AyklERISSk5O1detWywRlSKdPn1bHjh311FNPafbs2dYuB7AZjBABuOvs3LlTO3fu1FNPPUUYuoHZbNaCBQuUl5en559/3trlADaFOUQA7hrjxo3T/v37deTIEbm4uGjYsGHWLskmnDt3TpGRkfrzzz+Vlpamjh07KjAw0NplATaFESIAd41atWrp5MmTatSokT744AP5+PhYuySb4OXlpStXrigjI0NdunThUhlQBOYQAQAAw2OECAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGB6BCAAAGN7/B9Dmbrip80nsAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["o = labelDict['label_family_history']\n","g = sns.barplot(x=\"family_history\", y=\"treatment\", hue=\"Gender\", data=train_df)\n","g.set_xticklabels(o)\n","plt.title('Probability of mental health condition')\n","plt.ylabel('Probability x 100')\n","plt.xlabel('Family History')\n","\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"beecc2fe-4cd8-489c-bc0e-bb5ad633931c","_uuid":"7c7baa6c000ab81edb071071d45bac309f796d80"},"source":["Barplot to show probabilities for care options"]},{"cell_type":"code","execution_count":106,"metadata":{"_cell_guid":"c77da62e-f71f-49fb-9c13-fe2fea3d474e","_uuid":"bc61dc5b0c4c0a8204453524438006a84f6168d1","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkQAAAHUCAYAAADbbjeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hTZ/8G8JsEInsoDsBtDSiCuHCgVZS60Ip1VOvCn7ZVq7Wvu7V117rqqK/WUa2CiKPWbevGrVXrVrROpiB7CyTn9wdNXmIAY0gI4/5cl9cVznjyzclJvHPOc55jJAiCACIiIqIKTGToAoiIiIgMjYGIiIiIKjwGIiIiIqrwGIiIiIiowmMgIiIiogqPgYiIiIgqPAYiIiIiqvAYiIiIiKjCYyAiIiKiCo+BiPTu999/h7Ozs9q/Ro0aoVmzZujRowcWLlyIuLg4vTx/REQEnJ2dMXjwYL2037lzZzg7OyM3N/ety165cgXOzs6YMmWKctqMGTPg7OyMixcvFtlmdnY2NmzYAJlMptsX8I5CQkLQu3dvuLm5oXXr1rhw4YJB6ymuBw8e4Pjx41qvr9i/V6xY8dZl32Vf0afCPhNpaWnYvHmzyrSC9s/yaNiwYXB2dsaLFy+U05ydnfH++++rLFeRt1F5Z2zoAqjicHFxgY+Pj/JvQRCQmZmJGzduYOvWrTh27Bh2796NqlWrGrBK/XJycsL48ePh7Oxc5HLDhw9HamoqRKL//WYZOnQobt26hf/7v//Td5mFSkpKwsSJE5Gbm4u+ffvC2toa7733nsHqKa4zZ85gzJgx+Oyzz/DBBx8YuhyD69atG8RisUH3sdJk/PjxsLS0VJlW0Dby8fGBk5MTatWqVdIlkg4xEFGJadSoESZMmFDgvGnTpmH//v1YvXo15s2bV8KVlZyaNWsWug3y8/f3V5umryNo7+LZs2fIyspCp06dsGDBAkOXU2zx8fGQy+WGLqPUiIuLQ/Xq1Q1dRqlR0Ge1oG3k4+Oj8mOPyiaeMqNSYcyYMQCA06dPG7gSKkp2djYAwM7OzsCVEBHpFgMRlQqOjo4AgMTEROW0YcOGoVmzZrhx4wZ69OgBNzc3+Pr6IjMzE0De6ZvFixfDx8cHTZo0QevWrTF27FjcvHmz0Oe5fPkyBg4cCHd3d7Rv3x4zZ85ETEyM2nKxsbFYtGgRevbsCQ8PD7i5ueGDDz7AggULVGrMLyIiAuPHj0ezZs3QokULfPbZZ7h9+7bKMgX1ISpI/r4minUiIyMBAK6urhg2bBiOHDkCZ2dnfP311wW28Z///AfOzs74559/inwuANi/fz8GDRqEZs2aoWnTpujbty8CAwNV+it17twZw4cPBwDs3bsXzs7OmDFjRqFtKvqpfP/997h06RKGDBkCDw8PtGnTBjNnzkRaWhqSkpIwa9YstG3bFi1atMCwYcNw584dtbbefK/btWuHSZMm4cmTJyrLKbbVli1bcPz4cQwYMABNmzaFp6cnvvrqK4SFhSmXHTZsmHLbrVu3Ds7Ozrhy5Ypy/rFjxzBq1Ci0bdsWrq6uaNWqFYYPH46TJ0++dXu+zcuXLzFjxgy0bdsW7u7u6N27N3bu3FngsmfOnIG/vz9atmwJd3d39OnTB4GBgQUe2bp37x6mTJmCTp06oUmTJmjWrBn8/PywefPmIvueKfpBAUBMTEyB721WVhZWrlyJLl26oEmTJvD29saSJUuUn0dNXLp0CZ9//jnatGmjrC04OFitNk0/2/n3satXryq/M5o3b47PPvsM9+7dU6shLi4Oc+bMwfvvvw93d3d8/PHHuHTpUoH15u9DVNQ2KqwP0T///IPJkyfDy8sLTZo0QadOnTBr1ixER0erLKdo+8SJE9i1a5eyj167du3w7bffloqjwxUBT5lRqfD8+XMAQI0aNVSm5+TkYMyYMWjevDk6duyIrKwsmJmZITo6Gp988gmioqLQtGlTdOnSBS9fvsTJkydx5swZLFy4EH5+fiptPX36FKNHj0azZs0wdOhQ3L59G7/99hvOnz+P3bt3o1q1agDyvuz69euHxMREeHt7o3PnzkhNTUVISAgCAwPx999/4/fff1d7DUOHDoWFhQUGDRqEqKgoHD9+HBcvXsTGjRvRtm1brbeNot/R1q1bkZqainHjxqFWrVrw8fGBra0tjh49itmzZ8PU1FS5TmpqKk6ePAk3Nzc0bNiw0LYFQcDMmTOxZ88eVK1aFT169ICJiQnOnTuHBQsW4Ny5c1i7di2MjY0xfPhwhIaGYu/evcr+YI0aNXpr/VeuXMH27dvx/vvvY/DgwQgJCcFvv/2G+Ph4REZGQi6X48MPP0RERAROnDiBTz/9FMeOHYO1tTWAvHD6ySefIDw8HK1bt0bXrl3x6tUr/Pnnnzh9+jR++eUXtGjRQuU5Dx06hLt378Lb2xuenp64fv06/vjjD9y8eRPHjx+HiYkJ+vbtCysrK5w8eRItW7ZEmzZt4OTkBAD46aefsGbNGtSuXRs9e/aEqakpHj9+jDNnzuDKlSv4+eef0blzZ23eTgDAxx9/DEtLS/Tp0wepqak4dOgQZs2ahezsbAwbNky53MaNG7Fs2TJUrlwZ3bp1g7W1Nc6fP48FCxbg6tWrWLVqFYyMjAAA58+fx5gxY2BmZgYfHx/Y29vj5cuXOHHiBBYvXoxXr15h+vTpBdbTqFEjjB8/Hv/9739hYWGBkSNHqr233333HXJzc9GtWzdIJBIcP34cmzZtQnh4OFavXv3W17xt2zYsWLAAZmZm6Ny5M6pWrYqQkBDMmTMHoaGhmDt3LgBo9dm+du0atm/fjlatWmHw4MF49OgRzpw5g6tXr+LkyZOoXLkygLxTpB9//DEiIiLg6emJHj164Pbt2xg9erRyfyuMJtsov/Pnz2Ps2LHIzc1Fx44dUbduXTx48AA7d+7EsWPHsGXLFri4uKiss27dOoSGhqJr1654//33cfbsWezevRuPHj3Crl273rqNqZgEIj3bs2ePIJVKhenTpxc4PycnR/j8888FqVQqLF26VDl96NChglQqFSZNmqS2zqhRowSpVCqsWbNGZfrdu3cFDw8PoUmTJkJUVJQgCIIQHh4uSKVSQSqVCosWLVJZfsWKFYJUKhVmzJihnDZv3jxBKpUKe/fuVVk2MzNT6Ny5syCVSoVHjx4pp3t7ewtSqVQYPHiwkJWVpZx+7tw5oVGjRkKXLl0EmUwmCIIgXL58WZBKpcLkyZOVy02fPl2QSqXChQsX1NrMyckpcpqi1oMHD6rUGhwcLEilUiEoKEht2+V3+PBhQSqVCv379xfi4+OV09PT04X/+7//E6RSqbBhwwbldEX9hb2X+eXf7gEBAcrpCQkJQtOmTQWpVCoMHTpUyM7OVs6bPHmy2usZN26cIJVKhZ07d6q0f//+fcHNzU3w9vZWbhNFfVKpVDh58qRyWblcLowYMUKQSqXCkSNHlNMV++by5cuV0169eiU0btxY8PX1FTIyMlSec/v27YJUKhUmTJhQZBuFUbyHY8eOVXnd58+fF6RSqdCrVy/ltHv37gkuLi5Cr169hISEBOV0mUwmTJo0SW2b9OrVS2jSpInw9OlTled8/Pix4OzsLLRu3Vo5TfHeDBo0SGVZqVQqdOjQQWWaYv/s3Lmz8OrVK+X0+Ph4oUWLFoKzs7PKvlOQ8PBwoUmTJkL79u2F58+fK6dnZWUJffv2FaRSqfDw4UNBELT/bOffxwRBEGbMmCFIpVJh48aNymkzZ84UpFKpsHr1apVlf/zxR2U7+esraHsUtY0Un+G0tDShTZs2gqurq8rnWhAEYefOnYJUKhV8fX0FuVwuCML/9iFXV1fhzp07ymVfv34tdO/eXZBKpcKtW7cK27ykIzxlRiXmwYMHWL16tfLfTz/9hLlz58LX1xenT59Gw4YNlX2J8uvRo4fK3zExMTh37hzq16+PcePGqcxzdXXFqFGjkJ2drXYUx87OTq2T5Pjx42Fvb48jR44o+8f4+vpi7ty5+PDDD1WWNTU1hYeHBwAgISFBrc4ZM2agUqVKyr/bt28PHx8fhIeH4++//37b5tFKv379AAD79u1Tmb5v3z5UqlQJvXr1KnL93377DQDw7bffKn9FA4C5uTnmzJkDkUhU6KkcTVlYWOCTTz5R/m1nZ4f69esDyOs8bmJiopzXvHlzAFCeHoyLi1Me6Ro4cKBKu40aNUKfPn0QGRmpdum/VCpVOYJjZGSETp06AYDKabOCGBsbY8mSJZg/fz7MzMxU5rVp0wYACj1tqqlx48apvG4vLy+Ym5urXPK9e/duyOVyTJkyRaXPlkgkwrRp05TLAHlH+iZOnIgff/wR9erVU3muBg0awN7evtg1DxkyBPb29sq/K1eujObNm0MQBISHhxe5ruLzNXr0aNSpU0c5vVKlSvj6668xYcIEiMVirT/b1tbWKvsYAOX7r3i/c3JycOTIEVSpUgVjx45VWfbLL79UeW3FderUKSQkJKBfv35o166dyryBAwfC09MT//zzD65fv64yr3379mjSpInyb4lEAi8vL5XXQfrDU2ZUYkJDQxEaGqr8WyQSwcLCAnXq1MGECRPg7++vdokrkHdlVn73798HALRq1arA52nZsiWAvACWn6urK8zNzVWmGRsbw83NDadPn8bTp0/h4uKC5s2bo3nz5khLS8PDhw8RFhaGsLAwPHjwQNnH5M3+GxKJBG5ubmq1eHh44OjRo7h//76yLl1q3LgxGjVqhIsXL+LVq1eoWrUqnj17hhs3bsDX1/etpwHu3bsHU1PTAmuvVasWatSogfDwcKSlpRX43miiVq1aEIvFKtMsLCwAALVr11aZrjjtpwin9+7dgyAIyM7OLvC0zMuXLwHk7RMdO3ZUTn8zFACAlZUVgLz/GItia2sLX19fAHmncp88eYKIiAg8efJE+R9YcceCqlu3rto0Ozs7REZGQiaTQSwWK/tSnTt3Tq0vGpC3rR48eABBEGBkZKS8yunVq1d49OgRwsPD8fz5c9y5cwfx8fHKut98L4pTsyJEZ2RkFLmu4rPYrFkztXmtWrVSfpYVF1W862e7oH3szff7xYsXSE9PR4sWLdSWNTY2hoeHB06cOFHk69CU4jvK09OzwPmtWrXCX3/9pfa9UNB+q/gMv22/peJjIKIS07dvXyxatOid13vzV3pqaiqA/33hvUlxSeybnT0L+wWo+M9Z8aWelpaGpUuXYt++fcjKygKQ98XftGlT1K5dG6GhoRAEQa1tRV+OotrWh379+mHBggU4dOgQRo4cqTxa9NFHH7113bS0NNjY2KiMd5Rf9erVERUVhYyMDK0D0ZshND+JRFLkusnJyQCAhw8f4uHDh29drqh2Fe/Pm+9dQUJCQrB8+XLlcxobG+O9996Dm5sbHj9+rFEbRcnf3+tNirZTUlIAAIGBgUW2lZ6eDktLSzx58gSLFy/G2bNnlW3UqlULLVq0wD///IPk5ORi1a1JzYVJSkoCgLfuQ9p+tvMfmVV48/1WbM/C2ra1tS2ytneheB2Fvd7CXkdx91sqHgYiKnMUXzIFXR0G/O+L780vOMX0NynasbGxAZA3JtLJkyfRs2dPfPzxx2jYsCGqVKkCIO/KrfxHud61bX3o3bs3lixZogxEhw4dQo0aNdQO1RfE0tISiYmJyM7OLvDLWBE0dPmfxbtQBMrBgwdjzpw5JfKcd+7cwbhx42BtbY0FCxbAw8MDderUgUQiwZMnT7B3794SqUPx2i9evKjc/wqTkZEBf39/xMfHY+zYsfD29kaDBg2UbShOuxiKoo60tDS1ebm5uZDL5ZBIJFp/tjWhWKewz6ouf7QoXkdsbGyB8w39uaKCsQ8RlTmNGzcGANy8ebPAWyAoTmtJpVKV6ffu3VM71aU4LWZlZYV69eohJSUFp06dgpOTE1asWIE2bdqo/Gf0+PFjAOq/1tLS0vDs2TO1Wq5duwYABZ6S0hVbW1t06dIFd+/eRUhICCIiIuDn51foUZ/8GjduDLlcrtaXAcj7T+n58+eoW7fuW4/k6IviKp6CThkBwOHDh7Fy5coCQ6omCjqqd/DgQchkMkydOhUDBgxAw4YNla+/sPdfHxSv/datW2rz0tLS8P3332Pbtm0A8kJTbGwsevfujYkTJ8Ld3V0ZQhISEpR93gx1lEFxNVVBryUkJATu7u5Yv3691p9tTdSuXRu2tra4c+eO8pSsgiAIhe5j2lC8jqtXrxY4vzivg/SHgYjKnBo1aqB9+/YIDw/H2rVrVeaFhoZi06ZNkEgk6Nmzp8q8mJgYBAUFKf8WBAHLli1DSkoK+vfvD5FIBIlEApFIhMzMTLVfsxs2bMCjR48AoMAv61WrVqn0LTly5AiuXLkCV1dXlY6S2lJ0wi3ouRWdqxWjfGtyuiz/ekuWLFHpdJuZmYnZs2dDLpdr3JY+ODo6wsvLC/fu3cPWrVtV5j19+hRz587Fhg0btD6dZ2ycd5A8/zZVnBpS9LtRiI6OxvLly9WW15f+/fsDAJYuXYpXr16pzPvxxx8REBCg7EujqPnN8Wpev36N7777TvlD4G11m5iY6OW19e7dG2KxGJs3b1Z2mAfy+opt3LgRANChQwetP9uaMDY2Rt++fZGUlIQff/xRJRxu3rwZERERGrWjyTbq0qULbG1tcejQIbUO//v27cP58+dRv3595UUaVDrwlBmVSfPmzcOQIUOwZs0aXLhwAR4eHoiJicHJkychl8sxf/58tfsK1a5dGwsXLsSFCxdQr149XLt2Dbdv34arqyu+/PJLAHn/sfTo0QOHDh3CRx99BG9vbwBQdoC0t7dHXFyc2hU71tbWuHLlCvr374927drh2bNnOHXqFGxtbbF48WKdvGYHBwc8f/4c06ZNQ4sWLTBixAjlPC8vLzg4OCAyMhItWrRQuZKnKL169cK5c+ewb98+9O7dGx07doSJiQnOnz+P8PBwdOjQAaNGjdJJ/dqaP38+hgwZgoULF+Lo0aNo2rQpkpKS8OeffyIjIwMzZ85U63ivKQcHBwB5A1MCQJ8+feDr64tff/0VK1euxL1791C7dm1ERUXh1KlTMDExgYmJibJPjD41b94c48aNw9q1a+Hr64vOnTvDzs4OV69exZ07d1C/fn1MmjQJANCiRQvUrVsX58+fx5AhQ9CsWTOkpKTgzJkzePXqFezs7JCYmIikpCS1Pnlvbo+wsDB888038PT0VBvvR1t16tTBtGnT8MMPP8DPzw9dunSBtbU1QkJC8OLFC4wZM0Z5VEWbz7amJkyYgEuXLmHLli24ceMGmjdvjtDQUFy+fBm1a9fW6EouTbaRhYUFlixZgvHjx2P06NHo1KmTchyiS5cuwc7ODsuXLy/wCCUZDo8QUZnk5OSE33//HSNGjEBcXByCgoJw9epVdO7cGcHBwQUe1WjRogX++9//Ijo6GoGBgYiNjcWoUaMQGBio0vF3/vz5+PzzzyEIAoKDg/HHH3/A0tISS5cuxapVqwDkHebPz8rKCtu2bUPlypURFBSEa9euoWfPnvjtt9+KHBjxXUyZMgXOzs44deqU8lSJgkgkUg5P8K5HdBYtWoSFCxfCyckJhw8fxoEDB2BnZ4c5c+Zgw4YNyqMohqJ4r/39/REbG4vAwECcPXsWzZs3x+bNm5WjZ2ujZcuWGDFiBF6/fo1t27bh1q1bcHZ2xq+//oqWLVvi8uXL2LZtGx48eIAPP/wQBw4cQMuWLREeHq42SrY+TJw4EWvXrkXjxo1x4sQJbN++Henp6RgzZgyCg4OVp3PNzMywefNm9OrVC+Hh4QgICMDFixfh5uaG7du3K7fR226NM2vWLNSpUwcHDhzQeV8pf39/bNiwAY0bN8bx48exfft2mJmZYcGCBfjPf/6jXE6bz7amLCwsEBQUhFGjRinbTkhIwOrVq9UG9yyMptuoY8eO2L17N7p3746bN28iMDAQYWFhGDZsGPbv36/RoKZUsowEdl0nKhf8/f1x69YtnD9/Xtl/hIiINMMjRETlwOXLl3H58mX06dOHYYiISAs8QkRUhn399de4e/cunjx5AlNTUxw+fFjZL4aIiDTHI0REZVi1atUQHh6O+vXr4+eff2YYIiLSEo8QERERUYXHI0RERERU4TEQERERUYXHQEREREQVHkeq1pAgCJDL2d2KiIiorBCJjDQeEZyBSENyuYCEhHRDl0FEREQaqlzZAmKxZoGIp8yIiIiowmMgIiIiogqPgYiIiIgqPAYiIiIiqvAYiIiIiKjCYyAiIiKiCo+X3RNRiZDJciGXyw1dRpkkEokgFvPrmkif+AkjIr3KzExHenoKcnOzDV1KmWZsLIGFhTXMzCwMXQpRucRARER6k5mZjuTkOEgkZrC1rQqxWAxAs0HSSEGATCZDRkYakpPjAIChiEgPSn0gunnzJgYPHozg4GB4eHi8dfmwsDD8+OOP+Ouvv5CVlYVmzZph0qRJaNKkSQlUS0T5paenQCIxg51dVY2Hzyd1JiZApUpmSEx8hfT0FAYiIj0o1Z2qw8LCMGHCBI37HcTExGDIkCG4cuUKhg4diokTJ+LFixcYOnQoQkND9VwtEeUnk+UiNzcb5uaWDEM6YGRkBHNzC+TmZkMmyzV0OUTlTqkNRKdPn8aAAQMQGxur8Tpr1qxBfHw8tmzZgi+++AL+/v4IDg6GiYkJFi9erMdqiehNih8yeafJSBcUHavZOZ1I90plIJo8eTLGjBmDypUrw9fXV6N1ZDIZDh48iNatW8PFxUU5vVq1avD19cWlS5cQExOjr5KJqFA8OqQ73JZE+lIqA9Hjx48xYcIE7Nu3D/Xq1dNonX/++QcZGRlwd3dXm+fm5gZBEHDnzh1dl0pERETlQKnsVL17925IJJJ3Wkdx9MfBwUFtXrVq1QAAkZGRxarL2LhU5kf6l5GREUSisvMLWi4XIAiCocvQG7m87LwX+qLrrlN57RlBIhFDItH913d53yeJilIqA9G7hiEASE1NBQCYmZmpzVNMy8zM1LomkcgIdna8sqM0k8vlEInKTmgta/W+q6wsMeLiRBCLjSrsjwlB0G0oksnyQr+lpSlMTU111/C/yvs+SVSUUhmItKHoZFjU1SzF+aDL5QJSUjK0Xp/0SywWwdraDOvPBCAqufT3FXO0qY7POw5HSkomZLLy2UE2O/s15HI5ZDIBubmavcaUlGQcP34UISEnERkZgcTEBJibm6N27bpo3/599O3bH+bmhv9h8v33c/DHH4ewYsUatGrVusBljIzy9stXqfHIkeXo5HnlMhlSMpKx+tQmpOXq9vuoIuyTVPFYW5tBLNbs//5yE4gsLPK+JLOystTmKY4MWVpaFus5NP1SJ8OJSo7Bi/gIQ5ehMZlMXm73K5ns3U69XL16GfPnz0ZCQjxq1aqN1q3bwdbWFikpybh69Qp+/nk1du/egeXLV6N+/ff0VLXuKM485chy8DpXN4FIkMkhk8sQlfQSia9TdNLmm8rzPklUlHITiGrWrAkABV5Jprh0v6D+RURkePfu3cWUKRNhamqK+fMXwdvbR2W+XC7Hb7/txOrVy/HNN1OxdesOVKpUyUDVElF5VG5OFterVw8WFhYFXkmmmNa0adOSLouI3iI3Nxfz58+CTCbDggVL1MIQkHe6e+DAwejVyw8REeE4ceKoASolovKs3Bwhkkgk6Nq1Kw4ePIhHjx5BKpUCyDs6dPjwYXTo0AGVK1c2cJVE9KarV68gIiIMrVu3K7Q/jsKAAR8jO/s1HB2dlNNkMhn27t2NI0cO4sWL5zA2NoaLS2MMHjwMbdq0U1m/ffuW6NChI0aPHov169fg9u0byM3NhYtLY/j7j0bLlp4qy2dkZGDr1k04deoE4uPjUKtWbQwfPrLQ+mJjY7Blyy+4fPkiEhLiYWdXGR4tm8Pv44GobF9FudyZEyexbuVPGPPVl7h5/TquX7kKMzMzjP5iLFq1a/sum4+IdKTMBqIbN24gLCwMXl5esLe3BwB8+eWXOH36NEaMGIGRI0eiUqVKCAwMhEwmw9SpUw1cMREVJCTkJACgY0fvty5bv/57+O67ecq/ZTIZvvlmCi5cOIe6deujd+++kMlkOHv2FKZM+RJffjkZAwcOVmkjPDwMY8b8H+rWrYdevfzw8mU0zpw5hcmTJ+DXX4OU/ZNev36NCRM+x8OHD+Ds3Ajvv98Rz549w+zZ36BKFXu12p4+fYIvvxyD5OQktG3bHnXr1kNUVAROHj2Gvy5dxuzFC+Hg5KSyTvCWAJiZmaFbL1+Ev3iBho1c1NolopJRZgPRzp07sXfvXgQEBCgDkaOjI7Zv346lS5di3bp1EIvFcHd3x08//QRnZ2cDV0xEBYmICAcANGjQ8J3X3bNnFy5cOIfu3X0xY8Z3MDbO+0r79NOxGDduFNasWYnWrduiTp26ynWeP3+GQYOGYvz4r5TTfv11IzZtWo+9e/dg8uTpAIAdO7bh4cMH6NWrD6ZNm6m8SnXfvj1YtuwHtVoWLJiFlJRkLF26SnlkythYhEPHD2LBd7OxbuVPmLtU9RZC2a9fY8ma1bC2sX7n105EulXqA9GECRMwYcIEtemLFi3CokWL1KY3aNAA69atK4nSiEgHEhLiAQDW1uqhIDT0Pi5cOKc23cLCAoMGDcWBA3shFovxn/9MVYYhRVvDh4/CvHnf4vDhAxg37kuV9YcN81f528urAzZtWo/IyHDltKNHj0AsFmPcuC9Vhuzw8+uHgwf34eHDB8ppDx7cw6NHD+Ht7aN2mq55q1Zwa+aBOzduIjI8HE61ainnuTZ1ZxgiKiVKfSAiovLNxsYW4eFhSElRv4w8NPQ+fv11o9r0qlWroU+ffnj+/CksLCywY0eQ2jKJiYkAgEePQt94PhvY2NiqTLO0tAIA5OTkXR7/+nUWwsJeoG7derC2tlFru2lTjzcC0f1/nzMBmzatV04XiYyQmpWGrH+H/nj2+IlKIKpWvbpa20RkGAxERGRQjo5OuHv3NsLDX8DVtYnKPD+//vDz668yrX37lgCAtLS80enT09MLDE0KbwYtiUT9cn3FgK6K21YoRr63sCh47AVFnn4AACAASURBVLI3Q1Jqat5z3Lz5N27e/LvQWtLS0lRrMeXQAUSlBQMRERlUx46dcezYHzh9+gS6d/fVeD1zc3MAQN269bBt226d1qQIPIrQ9aY3bwOkGD177NgJGDJkhHK6sbEIUUkvdTYwIxHpT7kZh4iIyqZ27drD0dEJFy+ex6VLF4pcVnGLHiDv6I2joxMiIsKRnJyktuzDh6FYs2ZVgX2Q3kYikaBBg/cQERGu7OOU3717quOdSaV5F23cv3+3wPaOHT6C37bvwKsCBo4lotKBgYiIDMrExATz5v0AY2NjzJr1NQ4d2q8SfBQePQrFxIljAfzvFFevXn2Qm5uLH39crOz/A+QdwVm2bCGCgwMLPcrzNr17+0Emk2HlymUqbZ86dULttJibW1PUqVMXZ8+G4MyZ0yrzHty7h4CNm/DH/gOwKqDjOBGVDjxlRkQG5+LSGKtXr8fcud9h0aL5+OWXdWjZ0hP29lWRlpaGu3dv4/HjRwCApk2bYdKkvEvjP/lkOK5fv4ZTp47j0aOH8PRsDZFIhLNnQxAbGwNvbx/4+HTTqqa+fQfgwoVzOHXqOJ49e4JWrVojOjoK58+fRc2atREREaZcViQS4bvv5uOrr8Zh5syp8PRsi/feew+xsTEIOXMKEASMmTgBpmZmxd9YRKQXDEREVCo0aeKOgIAdCAk5iZMnj+HWrRuIj4+DRCJB9eoO+OijAejatQeaNHFXrmNsbIwff/wJe/bsxNGjR3D48AGYmJigZs3aGDFiFHx9P4RYLNaqHrFYjKVLV2H79gAcOXII+/btQbVqNTBlyteIi3ul1pHbxaURNm/ehsDAX3HlyiX8/fdV2NlVRotWnujd/yM0kL77OEtEVHKMBMVlFVQkmUyOhIR0Q5dBhTA2FsHOzgKzDywtE3e7r1OlJuZ+OBWJienl9s7iOTnZiI+PRpUqDjAxkRi6HIPQdadqQSZHenIC9j45qvO73VeEfZIqnsqVLSAWa9Y7iH2IiIiIqMJjICIiIqIKj4GIiIiIKjwGIiIiIqrwGIiIiIiowmMgIiIiogqPgYiIiIgqPAYiIiIiqvAYiIiIiKjCYyAiIiKiCo+BiIiIiCo83tyViAxOJDKCSGRk6DLUyOUC5HLe7pGoImAgIiKDEomMYGtrrvENGEuSTCZHUlJGsUNRUmISdgUG4ua1v5GRno469euh3yeD4d7MQ0eVElFxMRARkUGJREYQi0VYE3wBkbHJhi5HyamaDb4Y7AWRyKhYgSgzMxMLv52FmJfR6PHhh6hsXwWn/jyGRbPnYsacWXBv3kyHVROVvKioSGzZshEA4O//KRwdnQxckXYYiIioVIiMTcbzyERDl6FzR/YfQPiLF5g661s092wFAHi/szdmfPkVfl23AcvXr4WRUek7XUikqa1bN+H27ZsAgICATZgxY5aBK9JO6TtGTURUjpw5dQo1HByUYQgATM3M0LlbN7yMisLjh48MWB1R8UVGhisfR0SEF7Fk6cZARESkJ2lpqYgMj0ADZ6navAbS9wCAgYiolGAgIiLSk1evXkEQBFSxt1ebZ1e5ct4ysTElXRYRFYCBiIhIT9LSUgEAlUxN1eYppr3Oel2iNRFRwRiIiIj0RHF1WoF9pgXFPHaoJioNeJUZEZGemJubAwCyX6sfBXr97zRzC4sSramiKS+XhJP+8QgREZGeODo6AgAS4hPU5iUm5E0rqH8R6Y7ikvDbt28iIGCTocuhUoyBiIhITywsLOHo5IQn//yjNu/Jo8cAgPcKuAKNdKe8XBJO+sdARESkR+07dURkWDhuXv9bOS0rMxOnjh6FU62aqN/wPQNWR0QK7ENERKWCUzUbQ5egQlf19On3EUJOnsLKHxbD1+9D2FaujJN/HkVc7CtMnzuLnaqJSgkGIiIyKLlcgEwmxxeDvQxdihqZTF7sG7uamZtj9qKF2L5lK44eOgKZLBd16tXD1/PnwNXdXUeVElFxMRARkUHJ5QKSkjIgEpW+IyVyuVDsQAQAle2rYPyUSTqoiIj0hYGIiAxOV8GDiEhb7FRNREREFR4DEREREVV4DERERERU4TEQERERUYXHQEREREQVHgMRERERVXgMRERERFThMRARERFRhcdARERERBUeAxERERFVeAxEREREVOHxXmZEZHAikVG5vrkrEZV+DEREZFAikRHs7MwgEokNXYoauVyGxMRMnYaif0IfYva0GZi7ZBEaujjrrF0iKh4GIiIyqLyjQ2I8O7QRmfHRhi5HyayKA+r1+hQikZHOAlFMdDRWLFwEQS7XSXtEpDsMRERUKmTGRyMzJszQZejN339dxc8rVyEtJdXQpRBRARiIiIj0bPXSH3HxzFk41qwJNw8PXDp7ztAlEdEbGIiIiPQsMiwc/YcMRu9+H+HA7j2GLqdU03UHeyMjI5XHxsa6v7iane/LBwYiIiI9m798KUxMTAxdRqknEhnB1tYcYrHuQkv+cJXXgd9CZ20ryGRyJCVlMBSVcQxERER6xjCkGZHICGKxCGuCLyAyNlknbSamZKo8/mbVEZ20q+BUzQZfDPbSaed7MoxSGYji4uKwYsUKnD17FqmpqXBxccGECRPg5eX11nXv3LmDlStX4saNG8jNzUWjRo0wduxYdOrUSf+FExFRsUXGJuN5ZKJO2sqVyVUe66pdKn9K3UjV6enpGDlyJA4dOoS+ffti6tSpyMzMxOjRo3H+/Pki171//z6GDh2Ku3fvYtSoUZg8eTLS0tIwZswYHDmi218FREREVH6UuiNE27Ztw6NHj7Bu3Tp4e3sDAPz8/ODn54f58+fjzz//VOkkl9+6deuQlZWFwMBAuLu7AwD69u2L7t27Y9myZejZs2eJvQ4iIiIqO0rdEaL9+/ejTp06yjAEABYWFhg4cCCeP3+OW7duFbru8+fPYWdnpwxDAGBtbY0WLVogMjISKSkpeq2diIiIyqZSFYhSU1Px9OlTlUCj4ObmBgBFBqL69esjOTkZcXFxKtPDwsJgbm4OS0tL3RZMRERE5UKpOmUWExMDQRDg4OCgNq9atWoAgMjIyELXnzhxIq5fv46JEydixowZsLKyQmBgIEJDQzFp0iSIRKUq/xFRPmZV1D/3hlTa6iEi/SpVgSg1NW9IezMzM7V55ubmAIDMzEy1eQp169bFmDFjsHDhQvTv3185fdiwYfj888+LXZ8+BvQi3dDluCUlqazWrQm5XLPB9fIGtZOhXq9P9VzRu5PLZVpfSl1IV8dSz5D7ZFn+PJTl2ourJAa/LAmlKhDJ/73hYUGdpgVBKHSewuzZs7Fz5040a9YMgwYNgkQiwZ9//onAwEC8fv0a8+fP17o2fQ3oRRWbtbV6+C8vsrLEiIsTQSx++xdkSsprnY5OrCtyuaDzkZP7DxmM/kMG66w9XSvP+6Q+VeTtVhKDX5aEUhWILCzyNmJWVpbaPMWRISsrqwLXffbsGXbt2gU3Nzds27YNxsZ5L61nz56YM2cOgoOD0aVLF63HI5LLBaSkZGi1LumfWCwqk19IKSmZkMnK553Ps7NfQy6XQyYTkJtbPl9jUYyMyuZRA0Puk2X1cwyU78/y2+Q/iiqXC0hMTDdgNaqsrc00/hyWqkBUs2ZNAHl9id4UGxsLAAX2LwKAhw8fQhAE+Pn5KcOQwqBBgxAcHIxLly4Va4DGivilTvolk8nL7X4lk1XsUXuFMvryy/M+qU8VebsJ+XZ2QSi7P4BK1c8XS0tL1K1bF3fu3FGbp5hW0BVoACCRSAAAMplMbZ7iVFxB84iIiIhKVSACgF69euHx48c4e/asclp6ejp27dqFBg0aKC+/f1PLli1hbm6O3bt3q3W8DgoKAgC0b99ef4UTERFRmVWqTpkBwMiRI7F//35MnDgR/v7+qFq1Knbt2oWoqChs3LhR2an6xo0bCAsLg5eXF+zt7WFtbY1vvvkG3333Hfr27Yv+/fvD1NQUp0+fxvnz59GjRw/ez4yIiIgKVOoCkaWlJYKCgrB06VIEBQUhJycHLi4u2LRpE9q0aaNcbufOndi7dy8CAgJgb28PABgwYAAcHR2xYcMGrFmzBrm5uahbty6+/vprDB8+3FAviYiIiEq5UheIAKB69epYtmxZkcssWrQIixYtUpvu5eUFLy8vfZVGRERE5VCp60NEREREVNIYiIiIiKjCYyAiIiKiCo+BiIiIiCq8UtmpmogqFl3fL0xX8m48W0aHnCaid8JAREQGJRIZwdbODGKR2NClqJHJZUhKzCx2KAp7/hx7tu/A/bt3kZmRCfuq9mj3/vvoO2ggTExMdFQtERUHAxERGZRIZASxSIz1ZwIQlax+H0NDcbSpjs87DodIZFSsQPQyKhpzps6A2NgYXX17wLZyZdy7fQd7d+7C40eP8PW8OcoBZ4nIcBiIiKhUiEqOwYv4CEOXoXOb129ATk4OFqxYBsd/b2D9Qc8eCPxlM47s249rl6+gVds2b2mFiPSNnaqJiPREJpPh3p3bcHFtrAxDCh06dwIAPLz/oOQLq0CMTW3yPbY1YCVU2vEIERGRnohEIixfuwavc7LV5qUkpwAAxGL+LtUnq1ptkBp++d/HrQ1cDZVmDERERHpiZGSE6jVq4HVujtq8P/YfAAA0dnMr6bIqFGNTG9g17GboMqgM4E8TIqISdnjvfty8dh3OjRujaYvmhi6HiMBARERUov48cBBBm3+FbWU7TJg6ydDlENG/tDplJggCIiIikJKSgtevX8Pc3BxWVlZwdHTk5aNERAUQBAHBWwJwcM/vsLWzw8wF81ClalVDl0VE/3qnQHTixAkEBwfj2rVryM5W7yRoZmaGZs2aYciQIejcubPOiiQiKstyc3Lw88qfcPHMWVR3qIGv581BdQcHQ5dFRPloFIhkMhkmTZqEY8eOQRAE1K5dG7Vq1YK1tTUkEgmys7ORkpKC8PBwXLhwARcvXkTPnj2xePFiGBuz3zYRVVwymQyrFi/FtctX0KBhQ0yb8x2sbWzeviIRlSiN0sqvv/6Ko0ePomvXrpg+fTqcnJwKXTYiIgKLFy/GkSNH0KRJE4wcOVJnxRIRlTU7twXh2uUrcG7cCDPmzoapmZmhSyKiAmgUiPbs2YPGjRtj1apVb+0jVLNmTaxatQr9+/fHnj17GIj0KCoqElu2bAQA+Pt/CkfHwoMqUWnnaFPd0CWo0EU98fFx2P/bHhgZGaG5pyeuXr6itoyDoyPec5YW+7mIqHg0CkRRUVEYMWKExh2mRSIRvLy8EBgYWKziqGhbt27C7ds3AQABAZswY8YsA1dE9O7kcgEyuQyfdxxu6FLUyOSyYt3H7MaNv5GTkzcGUfCWrQUu06V7NwYiolJAo0Bkb2+PsLCwd2r48ePHsLS01Koo0kxkZLjycUREeBFLEpVecrmApMRMiESl7wpVuVwoViDy8emKxi3dCxyYkYhKF43GIerUqROOHTuGnTt3atRoQEAAQkJC4O3tXaziiKhikMsF5ObKS92/4oQhIipbNDpC9MUXX+DSpUuYM2cO1q9fj9atW6NWrVqwsbGBRCJBTk4OUlNTERYWhr/++gsRERFwdHTExIkT9V0/ERERUbFpFIgqV66MHTt2YPXq1fjtt9+wd+9eAFDpUyQIeb+kLCwsMHDgQHz11Vews7PTQ8lEREREuqXxIEHW1taYOXMmpk2bhvv37+PJkydISUlBRkYGKlWqBBsbGzRo0ACurq6QSCT6rJmIiIhIp9551EQTExM0bdoUTZs21Uc9RERERCXunQNRbGwsrly5gqdPnyI1NVXlXmYNGjRA8+bNUb166RpPhIiIqKzgGHOGoXEgioyMxPfff4+QkBAIgqDsM5SfkZERjIyM0KVLF0yfPh01a9bUabFEVBbxSi1dEoACv3+p/OAYc4ah8cCMAwYMQEJCAjw9PdG2bVvUrl0bVlZWynuZKa4yu3jxIo4fP46bN28iODiYoYioghKJ8kb1kMlkMDExcDHlhSBALsjxWsZxjcozjjFnGBoFohUrViA5ORn//e9/4ePjU+SyY8eOxYkTJzBx4kSsXr0aixcv1kmhRFS2iMXGMDaWICMjDZUqmWk80j0VTBAEIDcXrzLikSnLMnQ5ROWORoHowoUL6N69+1vDkIKPjw+6d++Oy5cvF6s4IirbLCyskZwch8TEVzA3t4BYbAyg4gQjudwIcpkMgkxevIb+DUMp6Um4E/9QN8URkQqNAlFmZiYcHR3fqeEaNWogKSlJq6KIqHwwM7MAAKSnpyApKc7A1ZQ8kUiElIxkyOQyrdsQAMgFOV5lxONO/EOEp0XrrkAiUtIoENWrVw8hISGYOHEijI3fvsrr169x4sQJ1KlTp9gFElHZZmZmATMzC8hkuZDLi3mkpAwRi41gY2OO1ac2ISrppdbtCIKA17IcniYj0jONAtGQIUMwc+ZMjBw5El988QVatmxZYDCSyWT4+++/sXz5coSFheHbb7/VecFEVDaJxcYQiw1dRckxNhbB1NQUabkZSHydYuhyiOgtNApE/fr1w7Nnz/DLL79g5MiREIvFcHBwULmXWUpKCqKjo5GTkwNBEDBkyBAMGTJE3/UTERERFZvG4xBNmTIFvXr1wrZt23D9+nU8f/4c4eH/uxxQJBKhVq1a8PT0RL9+/eDh4aGXgomIiIh07Z1GqnZxccGCBQsAAHK5HGlpacjIyIBEIoGVlRVMONgIERERlUHvfOsOBZFIBGtra1hbW+uyHiIiIqISp3UgIiJ6E+/BRERllcjQBRBR+aG4B9Pt2zcRELDJ0OUQEWlMoyNEly5d0voJ2rZtq/W6RFS28B5MRFRWaRSIRo4cqfV9iB48eKDVekREREQlRaNAtGHDBkydOhUpKSlwdXVFw4YN9V0XERERUYnRKBC9//772Lp1K4YPH46XL19i48aNsLOz03dtRERERCVC407VLi4u+P777xEXF4fFixfrsyYiIiKiEvVOV5l98MEH8Pb2xoEDB/DkyRN91URERERUot55HKK5c+fi9u3bkEgk+qiHiIiozBGLdTeKTf6LmIyMjGBsrNsRcuRyAXK5oNM2y4N3DkTVqlWDj4+PPmohIiIqU2ysTCHI5bC2NtNZmyKRkcpjOzsLnbUNAHK5DImJmQxFb+BI1URERFqyMJXASCTCs0MbkRkfrZM2c9KSVB7f3zpPJ+0CgFkVB9Tr9SlEIiMGojcwEBERERVTZnw0MmPCdNKWIJOpPNZVu/nxFJ86BiIiIqIKwtjCGvIydopPJpchqQRO8TEQERERVRDGlcwhEomw/kwAopJjdNJmUkayyuPZB5bqpF0AcLSpjs87Di+RU3wMRERERBVMVHIMXsRH6KStXLlM5bGu2i1pvNs9ERERVXhaBaLs7GyNlgsNDdWmeSIiIqISpVUg+uijj/DPP/8UOl8QBKxbtw4DBgzQujAiIiKikqJVIHr8+DH69++PoKAgtXnh4eEYPHgwVq5ciUqVKhW7QCIiIiJ90yoQrVmzBubm5liwYAHGjh2LxMREAEBwcDA+/PBD3Lx5Ex07dsShQ4e0KiouLg4zZ85Ehw4d4OHhgUGDBuHChQsarZueno5ly5ahc+fOcHd3R48ePbBp0ybk5uZqVQsRERGVf1pdZdalSxd4eHjg66+/xunTp9GnTx/Ur18fV65cga2tLebNm4fevXtrVVB6ejpGjhyJsLAwjBgxAtWrV8euXbswevRobNy4Ee3bty903ezsbIwcORJ3797FoEGD0LBhQ5w5cwZLlixBZGQkZs2apVVNuiISGamM11Bc5WUwLCIiIkPT+rL7KlWqYMOGDZg3bx62b9+OV69ewdbWFr///jscHBy0Lmjbtm149OgR1q1bB29vbwCAn58f/Pz8MH/+fPz5558qQSC/LVu24NatW1iwYIGy/9LgwYMxduxYBAUF4fPPP0f16tW1rq04RCIj2Nqa63R0UL0PhiWTIykpg6GIiIjKPa0DUXp6OpYvX46dO3fC2NgYtWrVwrNnz+Dv748FCxagVatWWrW7f/9+1KlTRxmGAMDCwgIDBw7EsmXLcOvWLXh4eBS47q5duyCVStU6c48dOxaNGjVCVlaWVjXpgkhkBLFYhDXBFxAZm/z2FTSQmJKp8vibVUd00i4AOFWzwReDvXi/GyIiqhC0CkQhISGYM2cOXr58iXr16mHx4sVwdXXFzz//jHXr1mHEiBEYOHAgpk6dCgsLzY9apKam4unTp+jVq5faPDc3NwAoNBBFR0cjPDwco0aNUk5LT0+HmZkZ3N3d4e7ursUr1b3I2GQ8j0zUSVu5MrnKY121S0REVNFoFYjGjBkDIyMjDB06FFOnTlVeTTZ+/Hh07NgR06dPx44dO3DmzBmcPn1a43ZjYmIgCEKBp9yqVasGAIiMjCxw3adPnwIAnJyc8Ouvv2LLli14+fIlLCws8NFHH6nUqa3i9NHR5amyklRW6i4rdb6prNZdGH33aytLyup7a8i6y+o2I/0riX1Dq0BUo0YN/PDDD2jbtq3aPDc3N+zbtw9Lly7Ftm3b3qnd1NRUAICZmfpN58zNzQEAmZmZavMAIDk57zRUYGAgUlJS8Nlnn8HBwQEnTpxAYGAgwsPDsX79+neqJz999NEpC3R5A0BSV962r777tZH+lbd9ksqHktgvtQpEBw8ehJWVVaHzJRIJZs6cCR8fn3dqVy7POwVUUKdpQRAKnQcAOTk5AICIiAjs378fDRo0AAB069YNJiYm2LNnD86fP1/kVWpF1yYgJSVDq3WBvHRbFr9oUlIyIct3aq604vYtHfL3N5PLBSQmphuwGsPiPvnuyuo2I/3Tdr+0tjbT+OiSVoGoqDCUX+vWrd+pXUV/o4I6PyuODBX23IojSG3atFGGIYWBAwdiz549uHjxotaBCAByc8vPf1yaksnkFfJ1l5Tytn0VP1wUj8vTa6soyts+SeVDSeyXpeqEbc2aNQHk9SV6U2xsLAAUekm/4nJ6e3t7tXlVqlQBAKSlpemkTiIiIipfSlUgsrS0RN26dXHnzh21eYpphV0tJpVKYWpqikePHqnNCwsLA/C/wEVERFRaVbM0KfAx6VepCkQA0KtXLzx+/Bhnz55VTktPT8euXbvQoEED5eX3bzI1NUX37t1x7949lSvb5HI5Nm/eDLFYjG7duum9fiIiouLo7VIZ0ipmkFYxQ2+XyoYup8LQemBGfRk5ciT279+PiRMnwt/fH1WrVsWuXbsQFRWFjRs3KjtV37hxA2FhYfDy8lKeJpsyZQquXr2KiRMn4pNPPkGtWrVw9OhRXLlyBePGjUOdOnUM+dKIiIjeqpqFBKNb1jB0GRWOVoHoyZMnah2XdcXS0hJBQUFYunQpgoKCkJOTAxcXF2zatAlt2rRRLrdz507s3bsXAQEBykCkCE8//fQTDh06hJSUFNStWxfff/89+vfvr5d6iYiIqOzTKhD5+vqiadOm+Oijj+Dr6wtLS0udFlW9enUsW7asyGUWLVqERYsWqU23t7fHvHnzMG/ePJ3WREREROWXVn2IevTogdDQUMyePRvt27fHlClTcOnSJV3XRkRERFQitDpCtGLFCqSlpeHQoUPYt28fDh06hMOHD6NGjRro27cv+vbti1q1aum6ViIiIiK90PoqM0tLSwwaNAg7duzAn3/+ic8++wwikQhr165F165dMXToUOzdu7fQW20QERERlRY6uey+bt26+M9//oOTJ09i/fr1cHR0xPXr1/HNN9+gffv2mD9/foGDLRIRERGVBjq57D4+Ph4HDx7E4cOHcffuXeUd63v06IH79+9j+/btOHDgAH7++We0bNlSF09JREREpDNaB6Ls7GycOHEC+/btw8WLF5GbmwuJRILu3bujX79+8PLyUo4ZdPnyZYwaNQrz5s3DgQMHdFY8ERERkS5oFYhmzpyJo0ePIj09HYIgoFGjRujXrx969+4NGxsbteXbtGmD+vXrIzw8vNgFExEREemaVoFoz549sLGxwZAhQ9CvXz80atTores0adIEnTt31ubpiIiIiPRKq0C0fPly+Pj4QCKRaLzODz/8oM1TEREREemdVoFox44dyM7Ohp+fX6HLBAQEICgoCEePHtW6OCLSL5HICCKRkc7aU/QbVDw2Ntbt/aPlcgFyuaDTNomIAA0DkSAIEARB+fivv/6Cp6cn5HJ5gcvn5ubi2rVriI6O1l2lRKRTIpERbG3NIRbrLrTkD1cikRHs7Cx01jYAyGRyJCVlMBQRkc5pFIh++eUXLF++XGXamjVrsGbNmiLXc3Z21r4yItIrkcgIYrEIa4IvIDI2WSdtJqZkqjz+ZtURnbQLAE7VbPDFYC+IREYMRESkcxoFIn9/fxw/fhxxcXEAgOjoaFhaWsLKykpt2bzD5MZwdHTElClTdFstEelcZGwynkcm6qStXJlc5bGu2iUi0jeNApGJiQl27dql/NvFxQUjRozA+PHj9VYYERERUUnRqlN1QEAAnJycdF0LERERkUFoFIjkcjlEov91vFTcfqOwTtX55V+PiIiIqDTSKBC5urpi/Pjx+OKLL5R/a8LIyAj379/XvjoiIiKiEqBRIHJwcFDpQO3g4KC3goiIiIhKmkaB6NSpU0X+TURERFSWsYMPERERVXgaHSG6dOmS1k/Qtm1brdclIiIiKgkaBaKRI0eq3KPoXTx48ECr9YiIiIhKikaByM/PT+tARERERFTaaRSIFi1apO86iIiIiAyGnaqJiIiowtPoCNG0adPQtWtX+Pj4KP/WhJGRERYvXqx9dUREREQlQKNAdODAAdSuXVsZiA4cOKBR4wxE+mVsaoPs7LR/H9sauBoiIqKyS6NA9ObNXAMCAvRWEGnOqlYbpIZf/vdxawNXQ0REVHZpFIg8PT2L/JsMw9jUBnYNuxm6DCIiojJPo0BUlL///hv3799HRkYGXKqyfwAAIABJREFUbGxs4ObmhsaNG+uiNiIiIqISoXUgunLlCr777juEh4cDAARBUI5V1KRJEyxatAgNGjTQTZVEREREeqRVILp9+zZGjx4NuVyODz74AM2aNYOFhQViYmJw9epV/PXXXxg2bBh27dqFmjVr6rpmIiIiIp3SKhCtWbMGgiBg48aNaNeundr8I0eOYPLkyVi5ciWWLVtW7CKJiIiI9EmrgRmvX7+ODz74oMAwBAA9e/aEt7c3zp07V6ziiIiIiEqCVoFILpfD0dGxyGXq16+P7OxsrYoiIiIiKklaBaJ27drh5MmThQYeuVyOixcvokWLFsUqjoiIiKgkaBSI5HK5yr+pU6ciPT0do0aNwt27d1WWffHiBaZMmYKYmBh88803eimaiIiISJc06lTt6upa4PS4uDgMGDAAEokEVapUQWpqKtLS8m4lYW1tjc8++wwnTpzQXbVEREREeqBRIHJwcNCoMSsrK1hZWSn/lsvl2lVFREREVII0CkSnTp3Sdx1EREREBqNVp2oiIiKi8qRY9zJ78uQJEhISIJPJIAiCcnpOTg6SkpIQEhKC5cuXF7tIIiIiIn3SKhAlJSVh9OjRuHfv3luXZSAiIiKi0k6rU2Zr1qzB3bt34eTkhJ49e8LU1BTOzs7o0aMH3nvvPQiCgCpVqiAoKEjX9RIRERHpnFZHiM6cOQMHBwccOXIEEokEY8aMgUgkUh4N2rBhA1asWIHo6GidFktERESkD1odIXr58iU6deoEiUQCAGjcuDFu3bqlnP/ZZ5+hUaNG2LVrl26qJCIiItIjrQKRWCxWGW+odu3aSEhIQEJCgnKap6cnXrx4UfwKiYiIiPRMq0Dk6OiI58+fK/+uXbs2AODx48cqyyUlJWlfGREREVEJ0SoQdejQAadOncKBAwcAAM7OzqhUqRJ27twJAEhPT8fp06dRvXp13VVKREREpCdaBaJRo0bB1tYW06dPx65du2BhYYE+ffrg8OHD6NKlC7p27YqwsDB0795d1/USERER6ZxWV5lVrVoVe/bswcaNGyGVSgEAU6dOxatXr3D69GmIRCL4+vpi7NixOi2WiIiISB+0Hqm6evXq+Pbbb5V/W1paYu3atUhNTYVEIkGlSpV0UiARERGRvhXr1h0AkJubi6dPnyIjIwM2NjaoV6+eLuqicigqKhJbtmwEAPj7fwpHRycDV0RERJRH60AUFxeH5cuX448//kBWVpZyupWVFfr3748vv/wSpqamOimSyoetWzfh9u2bAICAgE2YMWOWgSsiIiLKo1Ugio2Nxccff4zo6GjY29ujdevWsLCwQGxsLB4+fIjNmzfj6tWrCAgIgJmZma5rpjIqMjJc+TgiIryIJYmIiEqWVoHop59+QnR0NMaOHYvx48dDLBYr56WlpWHZsmXYsWMH1q5di8mTJ79z+3FxcVjx/+3dfVzNd/8H8NepSHdSIpEVcU6sErqhhssyutzsqhk/Flt3prYL18XPzYYYlsLGtRaT9Zu7RIbpsv3YNVzLbYwQcrPoRlFTUojS+f7+6Ne5HOeUOqpz8n09Hw+P5fP5fj/n/T0+s9c+38/5ntWrkZKSgrKyMjg6OmLatGnw9vZu0DhFRUUYPXo0evTogS1btjS4DiIiIhIHjT52/+9//xvu7u6YMWOGUhgCqjdXL168GM7Ozti3b1+Dx3748CGCgoKwb98++Pv7Y/bs2SgvL0doaCiOHj3aoLHmz5+v9PRsIiIiInU0CkRlZWXo06dPnce4u7ujqKiowWNv3boV165dw5o1azBz5kwEBARg27ZtsLW1xdKlSyEIQr3G2bFjB44cOQI9PY0ukYiIiEREo7Qgk8lw4cKFOo+5ceMGHBwcGjz23r17YWdnh6FDhyraTExMMH78eGRlZSl9iWxtsrOzERUVhfDwcBgYvPQH6YiongzamD/zczstVkJE1DAaBaJZs2bh7NmzWLVqldInzGps3boVR44cwfTp0xs0bllZGW7cuAEXFxeVPmdnZwB4YSCqqqrCnDlz4ODggLCwsAa9PhG9HLOuA9C6bRe0btsFZl09tV0OEVG91Wv5JCAgQKXN1NQU8fHx2L17N3r37o0OHTqgtLQUly5dQkFBAV577TX861//UlrpeZGCggIIggAbGxuVvo4dOwIA8vLy6hxj3bp1uHLlCvbs2dPoq0MGBprfftPXb5m37hqzbolEovTzy7yfz+P7qxuvbdDGHBY9RzT6uM9qKX/WLaXO571qc5JeDc0xN+qVGM6cOVNrX3FxsdrNztnZ2cjJyUFkZGS9iykrKwMAtR/VNzY2BgCUl5fXen56ejrWrVuHuXPnonv37vV+3frQ05PAwsKkUcdsCdq2bbzHJujpSZR+FuP7+bzGfH/Fgu9Z0+L7S7qoOeZlvQLRwYMHm7oOAIBcLgegvJJQo2Yztbo+AHj8+DFmz54Nd3d3TJ48uQlqE1Ba+kjj8/X19VrkXzSlpeWoqpI3ylhyuaD08717DxtlXIDvryb4njUtvr8N11LfM2p6ms7Ltm2N6r26VK9A1KVL83zFgolJ9YqBun1JNStDZmZmas9dsWIF7ty5gy+//BL37t1T6qusrERxcTEMDQ0Vr6GJp091/y/hxlZVJW+06372E4KCIIjy/XxeY76/YtGY7xm/TkYV5yTpouaYly+1yaagoAC7d+9GRkYGHj16hHbt2kEqlWLUqFEahShbW1vFuM8rLCwEALX7i4DqZyOVl5fD399fpS8tLQ0DBw6Ev78/oqKiGlwXEb2a+HUyRFRD40CUnJyMhQsXoqKiQuXZQLGxsfjss8/g5+fXoDFNTU1hb2+P9PR0lb6aNnWfQAOAlStX4smTJyrtH374Ibp374558+YpNmYTEQH8Ohki+g+NAtH58+fxySefwNDQEB9//DHc3d1hbW2N0tJSnDx5EvHx8ViwYAEcHBwUH5evr9GjR+Prr79GSkoKBg8eDKD66dVJSUl1jte/f3+17RKJBObm5vDy8mrYRRIREZFoaBSI1q9fD319fSQkJKBXr15KfS4uLhg8eDDGjx+P7777Dl9++WWDxg4KCsLevXsxY8YMBAYGokOHDkhKSkJ+fj42bNig2FSdlpaGnJwceHt7w8rKSpPLICIiIgKg4YMZz549Cx8fH5UwVMPR0RE+Pj44depUg8c2NTVFQkICfHx8kJCQgJUrV8LIyAjx8fFKqzw7duzAnDlzkJmZqcklEBERESlotEL04MEDdOrUqc5jrK2tcf/+fY2Ksra2xqpVq+o8Jioqql4bpNXtR6L644MZiYhIDDQKRDY2NkhLS6vzmHPnzr0wNJHuMjdrA0Eu54MZiYhIFDQKRMOGDcPGjRuxfv16TJ06ValPLpcjNjYW58+fxwcffNAoRVLzM2nTGhI9PdzctwHlRbcbZczKByVKP1/etKRRxgUA825O6DL4nUYbj4iIxEWjQBQWFob9+/djzZo1SE5Ohru7O8zMzFBQUIBz584hNzcXNjY2KmGJWp7yotsoL8hplLGEqiqlnxtrXABoY8nVSCIi0pxGgcjc3Bzbtm3DwoULcfToUZWNzd7e3li6dCksLCwapUgiIiKipqRRIHry5AlsbGzw7bfforCwEJcvX0ZZWRlMTU3Ru3dvWFtbN3adREREpINamRui6mGl4ueWSqNA9O6778Ld3R0RERHo2LEjnwBNREQkUu3626BEuK34uaXS6LPK2dnZMDRsuSmQiIiIGkcrc0N08LFHBx/7Fr1CpFEg6tKlC3JyGm9DLBEREZE2aXTLbPny5Zg6dSpmz54NX19fdO3aFUZG6p9X07Vr15cqkIiIiKipaRSIgoKC8PTpU+zbtw/79u2r9TiJRILLly9rXBwRERFRc9AoEDk5OTV2HURERERao1Eg2rJlS2PXQURERKQ1GgUiIiJt4RcOE1FTqHcgKioqQkxMDA4fPox79+6hU6dO+POf/4ypU6fC2Ni4KWskIuIXDhNRk6pXICoqKsK4ceNw+/ZtCIIAAMjJyUFcXBwOHz6MxMREmJjwLxIiajr8wmEiakr1CkRxcXHIz8/HX/7yF4SFhaFz5864efMm1qxZg19//RWbN29GeHh4U9dKRMQvHCaiJlGvm9xHjhxB3759ER0djW7dusHQ0BCOjo6IjY3Fa6+9hkOHDjV1nfQK6GjaSu3PRERE2lavQHT79m3069dPpV1fXx/e3t7Izs5u9MLo1TPG0RLS9kaQtjfCGEdLbZdDRESkUK9bZk+ePKn1SdQWFhZ4+PBhoxZFr6aOJq0R6sbbCEREpHvqtUIkl8tr7ZNIJHX2ExEREek6PiiDiIiIRI+BiIiIiESv3g9mPHjwIPLy8lTar1y5AgD45JNPVPokEgkiIyNfojwiIiKiplfvQJSRkYGMjIxa+/fs2aPSxkBERERELUG9AtHy5cubug4iIiIiralXIPL392/qOoiIiIi0hpuqiYiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiEi0Opq2UvszEYlPvb/clYjoVTPG0RJCRrHiZyISLwYiIhKtjiatEerWSdtlEJEO4C0zIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPZ0MRHfv3sX8+fMxaNAguLq6YsKECTh27Fi9zv3tt98QEhICNzc3ODk5YdSoUdi4cSPkcnkTV01EREQtlc4FoocPHyIoKAj79u2Dv78/Zs+ejfLycoSGhuLo0aN1nnv27Fm8//77uHHjBkJDQ/HJJ5/A2toay5cvx8KFC5vpCoiIiKilMdB2Ac/bunUrrl27hm+++QZDhw4FAPj5+cHPzw9Lly7F/v37IZFI1J67aNEimJmZYdeuXbC0tAQABAQEYPr06fj+++8xadIk9OrVq9muhYiIiFoGnVsh2rt3L+zs7BRhCABMTEwwfvx4ZGVl4fz582rPKyoqwrVr1zBs2DBFGKrx9ttvAwDOnDnTdIUTERFRi6VTK0RlZWW4ceMGRo8erdLn7OwMADh//jxcXV1V+s3NzXHgwAEYGhqq9BUXFwMA9PX1G7liIiIiehXoVCAqKCiAIAiwsbFR6evYsSMAIC8vT+25BgYGsLe3V2mvqqrCli1bIJFI4OHh8VL1GRhovqCmr69zi3GkA7Q5LzgnSR3OSdJFzTE3dCoQlZWVAQCMjIxU+oyNjQEA5eXlDRpz+fLluHbtGsaMGQMHBweNa9PTk8DCwkTj84nUadtWda4TaRPnJOmi5piXOhWIaj4ar27TtCAItfbVJjo6Glu2bEGPHj2wePHil6xNQGnpI43P19fX4180pKK0tBxVVdp5JATnJKnDOUm6SNN52batUb1Xl3QqEJmYVK/APH78WKWvZmXIzMzsheNUVFTg008/xT//+U90794d3333HUxNTV+6vqdP+SwjalxVVXLOK9IpnJOki5pjXupUILK1tQVQvZfoeYWFhQCgdn/Rsx48eICPPvoIqampcHZ2RlxcnMqnzoiIiIiepVM72ExNTWFvb4/09HSVvpo2FxeXWs9/9OgRQkJCkJqaiiFDhmDz5s0MQ0RERPRCOhWIAGD06NH4/fffkZKSomh7+PAhkpKS4ODgoPj4vTqLFi3CuXPnMGLECKxdu1axEZuIiIioLjp1ywwAgoKCsHfvXsyYMQOBgYHo0KEDkpKSkJ+fjw0bNig2VaelpSEnJwfe3t6wsrLCpUuXkJycjNatW8PLyws//vijyti9e/dGz549m/uSiIiISMfpXCAyNTVFQkICVq5ciYSEBFRWVsLR0RHx8fEYMGCA4rgdO3Zgz5492Lx5M6ysrHD8+HEA1RuqFy1apHbsWbNmMRARERGRCp0LRABgbW2NVatW1XlMVFQUoqKiFL+fMmUKpkyZ0tSlERER0StI5/YQERERETU3BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9BiIiIiISPQYiIiIiEj0GIiIiIhI9nQxEd+/exfz58zFo0CC4urpiwoQJOHbsWL3OzcnJwYwZMzBw4ED07dsXwcHBuHjxYhNXTERERC2ZzgWihw8fIigoCPv27YO/vz9mz56N8vJyhIaG4ujRo3WeW1BQgICAAKSmpmLSpEmYMWMGsrOzMWnSJFy5cqWZroCIiIhaGgNtF/C8rVu34tq1a/jmm28wdOhQAICfnx/8/PywdOlS7N+/HxKJRO25sbGxKCoqwu7du+Ho6AgAGDlyJEaNGoXo6Gh89913zXYdRERE1HLo3ArR3r17YWdnpwhDAGBiYoLx48cjKysL58+fV3teVVUV/vnPf8LT01MRhgCgY8eOGDVqFE6cOIGCgoImr5+IiIhaHp0KRGVlZbhx4wZcXFxU+pydnQGg1kB0/fp1PHr0qNZzBUFAenp64xZMRERErwSdumVWUFAAQRBgY2Oj0texY0cAQF5eXq3nAtDo3PrQ05PA0tJE4/Nr7vLNDXkTVVVyjcdpLq1b6QMAer77NwjyKi1X82J6Bq0BALPeCsPTFlCvgV71+2tubgRB0E4NnJNNi3Oy4VranAQ4L5vay85LPT31W2zUvlbDh286ZWVlAAAjIyOVPmNjYwBAeXl5g8+taavt3PqQSCTQ16//G1sbc9M2Lz1Gc2pl0lbbJTRIWyMzbZfQIHp62l+k5ZxsWpyTDdfS5iTAednUmmNean/mP0Mur/4/AnWbpoX/j4a1baiu69wauvAvOhEREekenUoIJibVt6QeP36s0lezumNmpj7V1udcU1PTRqmTiIiIXi06FYhsbW0BQO2nwQoLCwGo3yP0sucSERGRuOlUIDI1NYW9vb3aT4PVtKn7FBkAdOvWDSYmJnWe26dPn0asloiIiF4VOhWIAGD06NH4/fffkZKSomh7+PAhkpKS4ODgoPj4/fNat26N4cOH49ixY7h27ZqivbCwED/++CMGDRoES0vLJq+fiIiIWh6JIGjrA5bqPXjwAH5+figqKkJgYCA6dOiApKQkXL9+HRs2bICXlxcAIC0tDTk5OfD29oaVlRUAID8/H/7+/tDT00NQUBAMDQ2xZcsWFBcXIzExETKZTJuXRkRERDpK5wIRUL0PaOXKlUhJSUFlZSUcHR0xY8YMDBgwQHHMvHnzsGfPHmzevBmenp6K9szMTKxcuRKnTp2Cvr4+XFxcMGvWLPTu3Vsbl0JEREQtgE4GIiIiIqLmpHN7iIiIiIiaGwMRERERiR4DEREREYkeAxERERGJHgMRERERiR4DETWKmJgYyGQyTJ8+vdZj4uLiIJPJkJqa2oyVka5qrjmTnZ2t8blEL2PZsmWQyWSYN29ercdUVlZi9OjRcHR0xOnTp5uxOnoeAxE1qgMHDuDAgQPaLoNakKacM4sXL0Z4eHiTjE30IjNnzoStrS327NmDEydOqD1m/fr1uH79Ot5//324u7s3c4X0LAYianRLlixBSUmJtsugFqSp5kxKSgrkcnmjj0tUH8bGxli2bBkAYNGiRXjy5IlSf2ZmJtavXw97e3vMnDlTGyXSMxiIqFENHz4cd+/eRWRkpLZLoRaCc4ZeZQMHDsS4ceOQnZ2NtWvXKtoFQUBERASqqqoQHR2NNm3aaLFKAhiIqJEFBgbC2dkZe/fuxa+//vrC40+dOoWQkBD0798fLi4u8Pf3R1JSUjNUSrqioXMGePG8uXXrFmQyGfLy8nDz5k3IZDLExMTUOl5VVRXWrFkDX19fuLi4wMPDA1OmTFHZ0yGTyRASEqJy/rx58yCTyfDHH38AAFJTUyGTybB9+3YEBATAyckJw4cPR3l5OQDg6tWrmDZtGjw9PeHs7IzRo0dj06ZNXM16Rc2dOxfW1taIj49HZmYmAGDnzp347bffEBwcDFdXVwDV83bu3Lnw9vZWzJmYmBhUVFQojZeeno7g4GB4eXnB2dkZvr6+WL16tWJ+kWYYiKhR6evrIzIyEq1atcKiRYvw4MGDWo9NTk7G+++/j5s3byIkJAQzZ86EoaEhFi5ciIiIiGasmrSpIXMGqN+8sbS0xIoVK2BhYYEOHTpgxYoVeOutt2odc8mSJVi/fj0GDBiAhQsXIjQ0FNevX0dQUBCuXLmi8bVFR0ejffv2WLhwIcaNGwcjIyP89ttvGD9+PC5duoTAwEDMmzcPXbt2RWRkJObOnavxa5HuMjMzw+LFi1FZWYnIyEgUFxdj1apV6Nmzp+JDBTdv3sTYsWORkpKC8ePH49NPP4WrqytiY2MRGhqKp0+fAgCysrIQGBiIO3fuYMqUKYiIiICTkxO++eYbfPLJJ9q8zJZPIGoEX331lSCVSoW0tDRBEAQhJiZGkEqlwsKFCxXHrF+/XpBKpcLJkyeF0tJSoX///sKQIUOE+/fvK46pqqoSpk6dKkilUuH48ePNfh3UfBo6ZwRBaPC8GTp0qDBixIgX1tKnTx9hypQpSm3p6enC8OHDhZ07dyrapFKpEBwcrHL+3LlzBalUKhQWFgqCIAgnT54UpFKpMGrUKEEulyuOk8vlwvDhw4Vhw4YJZWVlSmOsXLlSkEqlQkpKygvrpZZp5syZglQqFd555x2hd+/eQnp6uqIvMDBQ8PDwEPLz85XO2bZtmyCVSoXExERBEARhw4YNglQqFc6fP6903KxZs4T/+q//EioqKpr+Ql5RXCGiJjF16lTIZDIkJSXh5MmTKv3Hjh1DWVkZPvjgA7Rt21bRrqenh2nTpgEA9u/f32z1kva9aM4ATTdvrK2tcerUKcTHx+PWrVsAACcnJxw4cADvvvuuBldTbcCAAZBIJIrfZ2RkICsrC0OHDkVFRQWKi4sVv3x9fQEA//rXvzR+PdJt8+fPh6WlJS5evIiwsDA4OTkBAEpKSnDixAl4eHjA0NBQaV68+eabaNWqlWJedOrUCQCwatUqHD9+XHE7bdWqVdi+fTtatWqlnYt7BTAQUZNo1aoVPv/8c+jp6WHBggUq97Zzc3MBAA4ODirnOjg4QCKRKP7DROLwojkDNN28+fzzz2FqaooVK1bAx8cHI0aMQGRkJC5fvtzwC3lG+/btlX6flZUFANi0aRMGDhyo9Gvs2LEAgLy8vJd6TdJdlpaWGDJkCADA399f0Z6TkwNBEPDzzz+rzIvBgwejsrJSMS98fX3h5+eH1NRUBAUFKfa7JSUl4fHjx1q5rleFgbYLoFeXs7MzgoKC8O2332L16tWwsrJS9AmCUOt5giBAEAS0bt26OcokHVLXnAGabt64ubnh0KFDOHbsGI4cOYITJ05g06ZN2Lx5MxYuXIiAgIA6z6/Z3/E8fX19tfUHBgYq/sP4vGdXvkgcajbTjx49WhGMn2doaAgAMDAwQHR0ND7++GMcPHgQJ06cwOnTp5GSkoL4+Hjs3LmTc0hDXCGiJjV9+nTY29tjy5YtSEtLU7Tb2toCgOITF8/6/fffAQCdO3duniJJp9Q2Z4CmmTcVFRW4cOEC7ty5g6FDhyIiIgL/+7//i+TkZJibm2P9+vWKY/X19VWeJQMAd+/erddrdenSBUD1LT4vLy+lX05OTigpKYGxsXGD6qeWr2ZeVFZWqswLDw8P3Lt3TzEvbt++jRMnTuC1115DUFAQ4uLikJqaikmTJiErK4sPxn0JDETUpAwNDfH5559DEAQcOnRI0f7GG2/A2NgYmzZtQmlpqaJdLpcrntVR16eC6NVV25wBGj5v9PT06lxVAoDS0lJMmDBB5TlIPXr0gJmZmdIqT8eOHXH9+nWlUJSbm4uzZ8/W69qcnJzQuXNn7Ny5E3fu3FHqW7t2Lf7+97/j1KlT9RqLXh0dOnRA3759cfDgQZXbtImJiZg5cyZ++uknAMCGDRsQGBiIixcvKo5p3bo1Xn/9dQDVc540w1tm1OTc3NwQEBCArVu3Ktratm2LBQsWYP78+fDz88O4ceNgbGyMAwcO4MyZMxg7diwGDBigxapJm9TNGaDh88bKygoXL17Exo0b0bdvX/Tp00fltaysrDB+/HgkJiYiLCwMgwYNAlD9lSK5ubn49NNPFcf6+flh3bp1CAoKwl/+8hfcvXsXiYmJsLW1Vbtq9TwDAwN89tln+Oijj+Dn54cJEybAxsYGJ0+exE8//YR+/fop7S0h8Vi0aBECAgLw3nvvYeLEibC3t8elS5fw/fffw97eHsHBwQCAyZMnIzk5GVOmTMGECRPQuXNn5ObmIiEhAZ07d8aIESO0fCUtFwMRNYuZM2fi8OHDShtGx44di06dOiEuLg5xcXEAqjfGLlu2DOPGjdNWqaQj1M0ZoGHzZsaMGYiIiMCqVavg5+enNhABwIIFC2BnZ4fdu3fjiy++gCAIkMlkWLlyJd5++23FcR+d6uXDAAAMgElEQVR//DEEQUBycjKWLl0KOzs7/O1vf8ODBw+wfPnyel3X4MGDsW3bNnzzzTdITExEeXk5OnfujPDwcISGhir2ipC49OrVC7t27cLXX3+N5ORk3L9/H9bW1njvvfcQFhYGCwsLAEC3bt2wdetWrF27Frt27UJxcTEsLS0xcuRI/PWvf4WpqamWr6TlkggvWk8mIiIiesXxZiMRERGJHgMRERERiR4DEREREYkeAxERERGJHgMRERERiR4DEREREYkeAxERERGJHgMRERERiR4DEREREYkeAxER1cvNmzexYsUKjBkzBm5ubnBxccGf//xnREZGoqCgQNvlaV1RURESEhKU2iZPngyZTIbs7GwtVUVE9cWv7iCiF4qPj8fq1ashl8sxcOBAdO/eHXK5HOfOncPFixdhamqKb7/9Fn379tV2qVpRVFSE4cOHQyqVIjExUdG+e/du5OXlYfLkyWjXrp0WKySiF+GXuxJRnTZu3IgVK1ZAKpUiJiYG9vb2Sv179uzBp59+itDQUOzduxe2trbaKVSLysvL8eDBA5X2d955RwvVEJEmeMuMiGqVm5uLVatWoW3btti0aZNKGAIAf39/vP/++3jw4AHi4+Obv0giokbAQEREtfrhhx9QWVmJgIAAWFpa1npccHAwZs2aBX9/f6X27OxsRERE4K233oKLiwv69OmDkSNHYs2aNXj8+LHSsTKZDFOnTsWOHTvg5eUFV1dX/Pd//7eiPzMzE7NmzYK3tzecnJzg4+OD6Oho3L9/v97XU1JSgujoaAwbNgxOTk7w9PREeHg4zp07p3TcrVu3IJPJEBERgRMnTmDcuHFwcXHBkCFDsHjxYhQVFSmOjYmJgY+PDwDg7NmzkMlkiImJAVD7HqKzZ88iPDwcnp6ecHJywltvvYXo6GiUlJQoHRcTEwOZTIb09HTExcVhxIgRcHJywp/+9CdERUXh4cOHSsffu3cPn332GXx9feHi4gJPT0+Ehobi+PHj9X6PiMSKe4iIqFZjx47FxYsXsX379gbvD7py5QoCAgLw9OlTDBs2DJ07d0ZxcTF++eUXlJSUYMSIEfjqq68Ux8tkMrRv3x4PHjyAn58fBEFA7969MXHiRJw8eRLh4eGorKzEsGHDYGtri4yMDBw9ehT29vZITEysM7ABwO3bt/Hee+8hPz8fffr0Qd++fXHnzh0cPHgQcrkckZGR8PPzA1AdiHx8fODo6IjMzEz06dMHffr0wblz53DmzBl07doV27dvh5WVFVJTU/HLL79g8+bNsLGxwdixY+Hh4QFPT09MnjwZp06dws8//ww7OzsAwK5du7BgwQIYGBjAx8cH1tbWOHv2LC5cuABbW1ts27YN1tbWAKoD0ddffw1nZ2dkZmbC19cX7dq1w4EDB5CXl4eRI0di9erVAICKigpMnDgRGRkZ8PHxgb29Pe7evYv9+/fj8ePHWL9+PQYPHtygP0MiURGIiGrh5eUlSKVSoaSkpMHnTp06VZBKpcKpU6eU2u/evSv069dPcHR0FMrKyhTtUqlUkEqlwvbt25WOf/z4seDt7S24uroKly5dUurbtm2bIJVKhZkzZ76wnpCQEEEqlQqxsbFK7RcvXhRcXV0FJycnIT8/XxAEQcjNzVXUs2zZMqXjv/jiC0EqlQrz589XtNUcP2HCBKVjJ02aJEilUiErK0sQBEHIy8sTnJycBA8PDyEjI0NxnFwuF7788ktBKpUKoaGhivavvvpKkEqlgoeHh5Cbm6toLykpETw8PIRevXoJhYWFgiAIwqFDhwSpVCqsXr1aqYbTp08LUqlUCA4OfuF7RCRmvGVGRLWquR1lbGzc4HMnT56M6OhouLu7K7W3b98ePXv2hFwuV7lFBAC+vr5Kvz906BD++OMPTJw4Eb1791bqmzhxIuzt7bF//361m5prFBQU4MiRI+jevTs++ugjpb7XX38dISEhqKiowO7du5X62rVrhxkzZii1TZ8+HVZWVvjxxx9RUVFR+xugRnJyMioqKhASEgJHR0dFu0QiwbRp02BnZ4eUlBTcvn1b6bwxY8YobVY3NzdHv379UFVVhVu3bgEAhP9f7M/IyMCjR48Ux7q5ueHnn3/GunXrGlQrkdjwU2ZEVCsLCwsUFhaitLQU7du3b9C53t7eAKr37Vy9ehU5OTnIycnBpUuXcPHiRQCAXC5XOsfc3Bzm5uZKbenp6QCqn4NUszfnWfr6+nj69CmuXr2K/v37q63l8uXLAKASzmq4ubkBqA4Tz3J2doapqalSm4GBAZydnXH48GHcvHkTMplM7Zh11eHh4aHSZ2BggL59+yI7OxuXL1+GjY2Nok/dZva2bdsCACorKwEAXl5esLe3x7///W94e3vD09MTXl5eGDRoELp161bvGonEioGIiGr12muvobCwEFlZWS8MRJmZmejWrRv09KoXngsLCxEVFYUDBw7g6dOnAABra2v069cP1tbWuHXrlmJVo0abNm1Uxi0tLQVQvVJ06NChWl+/rs3VZWVlAAAzMzO1/TV7dsrLy5Xanw0lz6oJSTXj1pemdRgaGqocK5FIAPxnZahNmzbYsWMH4uLisH//fhw+fBiHDx8GUL0KtnjxYri4uDSoXiIxYSAioloNGTIEv/32G44cOVLr6gsA5OfnY9SoUbCwsMChQ4fQpk0bfPjhh8jIyEBAQABGjRqFHj16KFZ/xo8fr7jV8yImJiYAgNWrV2PkyJEaXUdNgKntido1oev5hyc+H0yeP97CwkLjOhwcHFT6a0Kdpg9xbNeuHebMmYM5c+YgOzsbx48fx4EDB3DixAmEhobi0KFDKiteRFSNe4iIqFZjxoyBkZEREhISUFxcXOtx3333HQRBgJubG4yMjHD16lVkZGTA3d0dERER6N+/vyIMVVZWIisrCwBUVojU6dWrFwDgwoULavvXrl2LdevWqd2PVKNm79G5c+cUq1XPSk1NBQBIpVKldnWvWVlZiQsXLqBdu3aKT47VrNa8SE0dp0+fVtt/6tQpSCQS9OzZs17jPevIkSNYtmyZ4iP+dnZ2mDhxIjZu3AhPT0/cv38f165da/C4RGLBQEREtbKxsUF4eDhKS0vxwQcfICcnR6lfLpdj48aN2Lx5M4yNjfH3v/8dwH9u8dy/f18pgFRVVWH58uWKlRB14eR5w4YNQ7t27ZCQkIDz588r9f3000/4xz/+gR9++EGxp0adTp064Y033kBubi7Wrl2r1HflyhXEx8ejdevWKitQ2dnZ2Lhxo+L3giBg9erVuHfvHt555x0YGFQvstf880XX8/bbb6NVq1bYtGkTrly5otS3du1a3LhxA97e3opbZw2Rn5+PLVu2YMOGDUrtT548wR9//AE9PT106dKlweMSiQVvmRFRnT788EPcv38f8fHx8PX1hbe3N3r06IGysjKcOXMGN27cgKmpKf7xj3+ge/fuAKo3Affr1w9nz57Fu+++i4EDB6KyshJHjhxR7EcqKiqqc1WnhqmpKVasWIG//vWvmDhxIt58803Y2dkhMzMTv/76K4yNjREVFaXYu1SbJUuWICAgALGxsTh27BhcXV1RUFCgeA7R0qVL0bVrV5XXjoqKwq+//gqZTIa0tDScO3cOr7/+OqZNm6Y4ztLSEoaGhrh8+TKWLVuGgQMHKh7W+KwuXbpg0aJFiIiIwLhx4xTPIUpLS8P58+dha2uLZcuW1eePRcXbb7+NHTt2YOfOnbh69Src3NxQWVmJlJQUZGdnIzg4WKOgRSQWXCEiojpJJBLMmTMHO3bswJgxY3Dr1i3s2LEDycnJkEgkCA4Oxk8//YQ33nhD6ZzY2FhMnDgRpaWl2Lp1Kw4ePIiuXbsiLi4Oc+fOBQDFpt8XGTJkCHbu3AlfX1+kpaVh06ZNuHbtGsaMGYPvv/++Xg+N7NKlC3bv3o0PPvgAd+/eRUJCAk6fPo0333wTiYmJar93TCqVIjY2Fvfu3UNCQgKKiooQHh6OrVu3Kj2KoFWrVliyZAk6dOiA7du345dffqm1jnHjxmHLli3w8vLC8ePHsW3bNpSWliIsLAw//PBDrRu5X8TIyAj/8z//g7CwMDx69Ajbt2/Hrl27YGlpiaioKMyZM0ejcYnEgk+qJiJ6Ts2Tqvv166f07fVE9OriChERERGJHgMRERERiR4DEREREYke9xARERGR6HGFiIiIiESPgYiIiIhEj4GIiIiIRI+BiIiIiESPgYiIiIhEj4GIiIiIRI+BiIiIiESPgYiIiIhE7/8AF7TQosMTmsUAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["o = labelDict['label_care_options']\n","g = sns.barplot(x=\"care_options\", y=\"treatment\", hue=\"Gender\", data=train_df)\n","g.set_xticklabels(o)\n","plt.title('Probability of mental health condition')\n","plt.ylabel('Probability x 100')\n","plt.xlabel('Care options')\n","\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"56de0fc1-8ee1-41b8-868e-133db7635c64","_uuid":"5f9e29712de3b44df01755c481b898a38e508f07"},"source":["Barplot to show probabilities for benefits"]},{"cell_type":"code","execution_count":107,"metadata":{"_cell_guid":"4fab65ea-f3f5-4831-9f3f-7560fb908d3e","_uuid":"25c2da49fd8c83fc2d42355c0e147f439c00a7c0","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkQAAAHUCAYAAADbbjeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1hTZ/8G8JsEInsoDsBtDSiCuAdaRakLrVhHtS78aVu1Wvu6W1t3rVbrqK+to1oFEUet29aNW6vWrWidhCHI3gLJ+f1Bk5cYwBgSwrg/1+V1hTOefHNyEu+c85znmAiCIICIiIioAhMZuwAiIiIiY2MgIiIiogqPgYiIiIgqPAYiIiIiqvAYiIiIiKjCYyAiIiKiCo+BiIiIiCo8BiIiIiKq8BiIiIiIqMJjICKD+/333+Hq6qrxr1GjRmjWrBl69uyJRYsWIS4uziDPHxERAVdXVwwZMsQg7Xfp0gWurq7Izc1947KXL1+Gq6srpk6dqpo2c+ZMuLq64sKFC0W2mZ2djfXr10Mul+v3Bbyl0NBQ9OnTBx4eHmjTpg3Onz9v1HqK6/79+zh27JjO6yv37xUrVrxx2bfZVwypsM9EWloaNm3apDatoP2zPBo+fDhcXV3x/Plz1TRXV1e8++67astV5G1U3pkauwCqONzc3ODr66v6WxAEZGZm4vr169iyZQuOHj2KXbt2oWrVqkas0rBcXFwwYcIEuLq6FrnciBEjkJqaCpHof79Zhg0bhps3b+L//u//DF1moZKSkjBp0iTk5uaiX79+sLW1xTvvvGO0eorr9OnTGDt2LD755BO89957xi7H6Lp37w6xWGzUfaw0mTBhAqytrdWmFbSNfH194eLiglq1apV0iaRHDERUYho1aoSJEycWOG/69OnYt28fVq9ejfnz55dwZSWnZs2ahW6D/AICAjSmGeoI2tt4+vQpsrKy0LlzZyxcuNDY5RRbfHw8FAqFscsoNeLi4lC9enVjl1FqFPRZLWgb+fr6qv3Yo7KJp8yoVBg7diwA4NSpU0auhIqSnZ0NAHBwcDByJURE+sVARKWCs7MzACAxMVE1bfjw4WjWrBmuX7+Onj17wsPDA35+fsjMzASQd/pmyZIl8PX1RZMmTdCmTRuMGzcON27cKPR5Ll26hEGDBsHT0xMdOnTArFmzEBMTo7FcbGwsFi9ejF69esHLywseHh547733sHDhQrUa84uIiMCECRPQrFkztGjRAp988glu3bqltkxBfYgKkr+viXKdyMhIAIC7uzuGDx+Ow4cPw9XVFV9++WWBbfznP/+Bq6sr/vnnnyKfCwD27duHwYMHo1mzZmjatCn69euHoKAgtf5KXbp0wYgRIwAAe/bsgaurK2bOnFlom8p+Kt9++y0uXryIoUOHwsvLC23btsWsWbOQlpaGpKQkzJ49G+3atUOLFi0wfPhw3L59W6Ot19/r9u3bY/LkyXj8+LHacspttXnzZhw7dgwDBw5E06ZN0bp1a3zxxRcIDw9XLTt8+HDVtlu7di1cXV1x+fJl1fyjR49i9OjRaNeuHdzd3dGqVSuMGDECJ06ceOP2fJMXL15g5syZaNeuHTw9PdGnTx/s2LGjwGVPnz6NgIAAtGzZEp6enujbty+CgoIKPLJ19+5dTJ06FZ07d0aTJk3QrFkz+Pv7Y9OmTUX2PVP2gwKAmJiYAt/brKwsrFy5El27dkWTJk3g4+OD77//XvV51MbFixfx6aefom3btqraQkJCNGrT9rOdfx+7cuWK6jujefPm+OSTT3D37l2NGuLi4jB37ly8++678PT0xIcffoiLFy8WWG/+PkRFbaPC+hD9888/mDJlCry9vdGkSRN07twZs2fPRnR0tNpyyraPHz+OnTt3qvrotW/fHl9//XWpODpcEfCUGZUKz549AwDUqFFDbXpOTg7Gjh2L5s2bo1OnTsjKyoKFhQWio6Px0UcfISoqCk2bNkXXrl3x4sULnDhxAqdPn8aiRYvg7++v1taTJ08wZswYNGvWDMOGDcOtW7fw22+/4dy5c9i1axeqVasGIO/Lrn///khMTISPjw+6dOmC1NRUhIaGIigoCH///Td+//13jdcwbNgwWFlZYfDgwYiKisKxY8dw4cIFbNiwAe3atdN52yj7HW3ZsgWpqakYP348atWqBV9fX9jb2+PIkSOYM2cOzM3NVeukpqbixIkT8PDwQMOGDQttWxAEzJo1C7t370bVqlXRs2dPmJmZ4ezZs1i4cCHOnj2Ln376CaamphgxYgTCwsKwZ88eVX+wRo0avbH+y5cvY9u2bXj33XcxZMgQhIaG4rfffkN8fDwiIyOhUCjw/vvvIyIiAsePH8fHH3+Mo0ePwtbWFkBeOP3oo48gk8nQpk0bdOvWDS9fvsSff/6JU6dO4ZdffkGLFi3UnvPgwYO4c+cOfHx80Lp1a1y7dg1//PEHbty4gWPHjsHMzAz9+vWDjY0NTpw4gZYtW6Jt27ZwcXEBAPz4449Ys2YNateujV69esHc3ByPHj3C6dOncfnyZfz888/o0qWLLm8nAODDDz+EtbU1+vbti9TUVBw8eBCzZ89GdnY2hg8frlpuw4YNWLZsGSpXrozu3bvD1tYW586dw8KFC3HlyhWsWrUKJiYmAIBz585h7NixsLCwgK+vLxwdHfHixQscP34cS5YswcuXLzFjxowC62nUqBEmTJiA//73v7CyssKoUaM03ttvvvkGubm56N69OyQSCY4dO4aNGzdCJpNh9erVb3zNW7duxcKFC2FhYYEuXbqgatWqCA0Nxdy5cxEWFoZ58+YBgE6f7atXr2Lbtm1o1aoVhgwZgocPH+L06dO4cuUKTpw4gcqVKwPIO0X64YcfIiIiAq1bt0bPnj1x69YtjBkzRrW/FUabbZTfuXPnMG7cOOTm5qJTp06oW7cu7t+/jx07duDo0aPYvHkz3Nzc1NZZu3YtwsLC0K1bN7z77rs4c+YMdu3ahYcPH2Lnzp1v3MZUTAKRge3evVuQSqXCjBkzCpyfk5MjfPrpp4JUKhWWLl2qmj5s2DBBKpUKkydP1lhn9OjRglQqFdasWaM2/c6dO4KXl5fQpEkTISoqShAEQZDJZIJUKhWkUqmwePFiteVXrFghSKVSYebMmapp8+fPF6RSqbBnzx61ZTMzM4UuXboIUqlUePjwoWq6j4+PIJVKhSFDhghZWVmq6WfPnhUaNWokdO3aVZDL5YIgCMKlS5cEqVQqTJkyRbXcjBkzBKlUKpw/f16jzZycnCKnKWs9cOCAWq0hISGCVCoVgoODNbZdfocOHRKkUqkwYMAAIT4+XjU9PT1d+L//+z9BKpUK69evV01X1l/Ye5lf/u0eGBiomp6QkCA0bdpUkEqlwrBhw4Ts7GzVvClTpmi8nvHjxwtSqVTYsWOHWvv37t0TPDw8BB8fH9U2UdYnlUqFEydOqJZVKBTCyJEjBalUKhw+fFg1XblvLl++XDXt5cuXQuPGjQU/Pz8hIyND7Tm3bdsmSKVSYeLEiUW2URjlezhu3Di1133u3DlBKpUKvXv3Vk27e/eu4ObmJvTu3VtISEhQTZfL5cLkyZM1tknv3r2FJk2aCE+ePFF7zkePHgmurq5CmzZtVNOU783gwYPVlpVKpULHjh3Vpin3zy5duggvX75UTY+PjxdatGghuLq6qu07BZHJZEKTJk2EDh06CM+ePVNNz8rKEvr16ydIpVLhwYMHgiDo/tnOv48JgiDMnDlTkEqlwoYNG1TTZs2aJUilUmH16tVqy/7www+qdvLXV9D2KGobKT/DaWlpQtu2bQV3d3e1z7UgCMKOHTsEqVQq+Pn5CQqFQhCE/+1D7u7uwu3bt1XLvnr1SujRo4cglUqFmzdvFrZ5SU94yoxKzP3797F69WrVvx9//BHz5s2Dn58fTp06hYYNG6r6EuXXs2dPtb9jYmJw9uxZ1K9fH+PHj1eb5+7ujtGjRyM7O1vjKI6Dg4NGJ8kJEybA0dERhw8fVvWP8fPzw7x58/D++++rLWtubg4vLy8AQEJCgkadM2fORKVKlVR/d+jQAb6+vpDJZPj777/ftHl00r9/fwDA3r171abv3bsXlSpVQu/evYtc/7fffgMAfP3116pf0QBgaWmJuXPnQiQSFXoqR1tWVlb46KOPVH87ODigfv36API6j5uZmanmNW/eHABUpwfj4uJUR7oGDRqk1m6jRo3Qt29fREZGalz6L5VK1Y7gmJiYoHPnzgCgdtqsIKampvj++++xYMECWFhYqM1r27YtABR62lRb48ePV3vd3t7esLS0VLvke9euXVAoFJg6dapany2RSITp06erlgHyjvRNmjQJP/zwA+rVq6f2XA0aNICjo2Oxax46dCgcHR1Vf1euXBnNmzeHIAiQyWRFrqv8fI0ZMwZ16tRRTa9UqRK+/PJLTJw4EWKxWOfPtq2trdo+BkD1/ivf75ycHBw+fBhVqlTBuHHj1Jb9/PPP1V5bcZ08eRIJCQno378/2rdvrzZv0KBBaN26Nf755x9cu3ZNbV6HDh3QpEkT1d8SiQTe3t5qr4MMh6fMqMSEhYUhLCxM9bdIJIKVlRXq1KmDiRMnIiAgQOMSVyDvyqz87t27BwBo1apVgc/TsmVLAHkBLD93d3dYWlqqTTM1NYWHhwdOnTqFJ0+ewM3NDc2bN0fz5s2RlpaGBw8eIDw8HOHh4bh//76qj8nr/TckEgk8PDw0avHy8sKRI0dw7949VV361LhxYzRq1AgXLlzAy5cvUbVqVTx9+hTXr1+Hn5/fG08D3L17F+bm5gXWXqtWLdSoUQMymQxpaWkFvjfaqFWrFsRisdo0KysrAEDt2rXVpitP+ynD6d27dyEIArKzsws8LfPixQsAeftEp06dVNNfDwUAYGNjAyDvP8ai2Nvbw8/PD0DeqdzHjx8jIiICjx8/Vv0HVtyxoOrWrasxzcHBAZGRkZDL5RCLxaq+VGfPntXoiwbkbav79+9DEASYmJiornJ6+fIlHj58CJlMhmfPnuH27duIj49X1f36e1GcmpUhOiMjo8h1lZ/FZs2aacxr1aqV6rOsvKjibT/bBe1jr7/fz58/R3p6Olq0aKGxrKmpKby8vHD8+PEiX4e2lN9RrVu3LnB+q1at8Ndff2l8LxS03yo/w2/ab6n4GIioxPTr1w+LFy9+6/Ve/5WempoK4H9feK9TXhL7emfPwn4BKv9zVn6pp6WlYenSpdi7dy+ysrIA5H3xN23aFLVr10ZYWBgEQdBoW9mXo6i2DaF///5YuHAhDh48iFGjRqmOFn3wwQdvXDctLQ12dnZq4x3lV716dURFRSEjI0PnQPR6CM1PIpEUuW5ycjIA4MGDB3jw4MEblyuqXeX78/p7V5DQ0FAsX75c9ZympqZ455134OHhgUePHmnVRlHy9/d6nbLtlJQUAEBQUFCRbaWnp8Pa2hqPHz/GkiVLcObMGVUbtWrVQosWLfDPP/8gOTm5WHVrU3NhkpKSAOCN+5Cun+38R2aVXn+/lduzsLbt7e2LrO1tKF9HYa+3sNdR3P2WioeBiMoc5ZdMQVeHAf/74nv9C045/XXKduzs7ADkjYl04sQJ9OrVCx9++CEaNmyIKlWqAMi7civ/Ua63bdsQ+vTpg++//14ViA4ePIgaNWpoHKoviLW1NRITE5GdnV3gl7EyaOjzP4u3oQyUQ4YMwdy5c0vkOW/fvo3x48fD1tYWCxcuhJeXF+rUqQOJRILHjx9jz549JVKH8rVfuHBBtf8VJiMjAwEBAYiPj8e4cePg4+ODBg0aqNpQnnYxFmUdaWlpGvNyc3OhUCggkUh0/mxrQ7lOYZ9Vff5oUb6O2NjYAucb+3NFBWMfIipzGjduDAC4ceNGgbdAUJ7WkkqlatPv3r2rcapLeVrMxsYG9erVQ0pKCk6ePAkXFxesWLECbdu2VfvP6NGjRwA0f62lpaXh6dOnGrVcvXoVAAo8JaUv9vb26Nq1K+7cuYPQ0FBERETA39+/0KM++TVu3BgKhUKjLwOQ95/Ss2fPULdu3TceyTEU5VU8BZ0yAoBDhw5h5cqVBYZUbRR0VO/AgQOQy+WYNm0aBg4ciIYNG6pef2HvvyEoX/vNmzc15qWlpeHbb7/F1q1bAeSFptjYWPTp0weTJk2Cp6enKoQkJCSo+rwZ6yiD8mqqgl5LaGgoPD09sW7dOp0/29qoXbs27O3tcfv2bdUpWSVBEArdx3ShfB1XrlwpcH5xXgcZDgMRlTk1atRAhw4dIJPJ8NNPP6nNCwsLw8aNGyGRSNCrVy+1eTExMQgODlb9LQgCli1bhpSUFAwYMAAikQgSiQQikQiZmZkav2bXr1+Phw8fAkCBX9arVq1S61ty+PBhXL58Ge7u7modJXWl7IRb0HMrO1crR/nW5nRZ/vW+//57tU63mZmZmDNnDhQKhdZtGYKzszO8vb1x9+5dbNmyRW3ekydPMG/ePKxfv17n03mmpnkHyfNvU+WpIWW/G6Xo6GgsX75cY3lDGTBgAABg6dKlePnypdq8H374AYGBgaq+NMqaXx+v5tWrV/jmm29UPwTeVLeZmZlBXlufPn0gFouxadMmVYd5IK+v2IYNGwAAHTt21PmzrQ1TU1P069cPSUlJ+OGHH9TC4aZNmxAREaFVO9pso65du8Le3h4HDx7U6PC/d+9enDt3DvXr11ddpEGlA0+ZUZk0f/58DB06FGvWrMH58+fh5eWFmJgYnDhxAgqFAgsWLNC4r1Dt2rWxaNEinD9/HvXq1cPVq1dx69YtuLu74/PPPweQ9x9Lz549cfDgQXzwwQfw8fEBAFUHSEdHR8TFxWlcsWNra4vLly9jwIABaN++PZ4+fYqTJ0/C3t4eS5Ys0ctrdnJywrNnzzB9+nS0aNECI0eOVM3z9vaGk5MTIiMj0aJFC7UreYrSu3dvnD17Fnv37kWfPn3QqVMnmJmZ4dy5c5DJZOjYsSNGjx6tl/p1tWDBAgwdOhSLFi3CkSNH0LRpUyQlJeHPP/9ERkYGZs2apdHxXltOTk4A8gamBIC+ffvCz88Pv/76K1auXIm7d++idu3aiIqKwsmTJ2FmZgYzMzNVnxhDat68OcaPH4+ffvoJfn5+6NKlCxwcHHDlyhXcvn0b9evXx+TJkwEALVq0QN26dXHu3DkMHToUzZo1Q0pKCk6fPo2XL1/CwcEBiYmJSEpK0uiT9/r2CA8Px1dffYXWrVtrjPejqzp16mD69On47rvv4O/vj65du8LW1hahoaF4/vw5xo4dqzqqostnW1sTJ07ExYsXsXnzZly/fh3NmzdHWFgYLl26hNq1a2t1JZc228jKygrff/89JkyYgDFjxqBz586qcYguXrwIBwcHLF++vMAjlGQ8PEJEZZKLiwt+//13jBw5EnFxcQgODsaVK1fQpUsXhISEFHhUo0WLFvjvf/+L6OhoBAUFITY2FqNHj0ZQUJBax98FCxbg008/hSAICAkJwR9//AFra2ssXboUq1atApB3mD8/GxsbbN26FZUrV0ZwcDCuXr2KXr164bfffityYMS3MXXqVLi6uuLkyZOqUyVKIpFINTzB2x7RWbx4MRYtWgQXFxccOnQI+/fvh4ODA+bOnYv169erjqIYi/K9DggIQGxsLIKCgnDmzBk0b94cmzZtUo2erYuWLVti5MiRePXqFbZu3YqbN2/C1dUVv/76K1q2bIlLly5h69atuH//Pt5//33s378fLVu2hEwm0xgl2xAmTZqEn376CY0bN8bx48exbds2pKenY+zYsQgJCVGdzrWwsMCmTZvQu3dvyGQyBAYG4sKFC/Dw8MC2bdtU2+hNt8aZPXs26tSpg/379+u9r1RAQADWr1+Pxo0b49ixY9i2bRssLCywcOFC/Oc//1Etp8tnW1tWVlYIDg7G6NGjVW0nJCRg9erVGoN7FkbbbdSpUyfs2rULPXr0wI0bNxAUFITw8HAMHz4c+/bt02pQUypZJgK7rhOVCwEBAbh58ybOnTun6j9CRETa4REionLg0qVLuHTpEvr27cswRESkAx4hIirDvvzyS9y5cwePHz+Gubk5Dh06pOoXQ0RE2uMRIqIyrFq1apDJZKhfvz5+/vlnhiEiIh3xCBERERFVeDxCRERERBUeAxERERFVeAxEREREVOFxpGotCYIAhYLdrYiIiMoKkchE6xHBGYi0pFAISEhIN3YZREREpKXKla0gFmsXiHjKjIiIiCo8BiIiIiKq8BiIiIiIqMJjICIiIqIKj4GIiIiIKjwGIiIiIqrweNk9EZUIuTwXCoXC2GWUSSKRCGIxv66JDImfMCIyqMzMdKSnpyA3N9vYpZRppqYSWFnZwsLCytilEJVLDEREZDCZmelITo6DRGIBe/uqEIvFALQbJI2UBMjlcmRkpCE5OQ4AGIqIDKDUB6IbN25gyJAhCAkJgZeX1xuXDw8Pxw8//IC//voLWVlZaNasGSZPnowmTZqUQLVElF96egokEgs4OFTVevh80mRmBlSqZIHExJdIT09hICIygFLdqTo8PBwTJ07Uut9BTEwMhg4disuXL2PYsGGYNGkSnj9/jmHDhiEsLMzA1RJRfnJ5LnJzs2Fpac0wpAcmJiawtLRCbm425PJcY5dDVO6U2kB06tQpDBw4ELGxsVqvs2bNGsTHx2Pz5s347LPPEBAQgJCQEJiZmWHJkiUGrJaIXqf8IZN3moz0Qdmxmp3TifSvVAaiKVOmYOzYsahcuTL8/Py0Wkcul+PAgQNo06YN3NzcVNOrVasGPz8/XLx4ETExMYYqmYgKxaND+sNtSWQopTIQPXr0CBMnTsTevXtRr149rdb5559/kJGRAU9PT415Hh4eEAQBt2/f1nepREREVA6Uyk7Vu3btgkQieat1lEd/nJycNOZVq1YNABAZGVmsukxNS2V+pH+ZmJhAJCo7v6AVCgGCIBi7DINRKMrOe2Eo+u46ldeeCSQSMSQS/X99l/d9kqgopTIQvW0YAoDU1FQAgIWFhcY85bTMzEydaxKJTODgwCs7SjOFQgGRqOyE1rJW79vKyhIjLk4Esdikwv6YEAT9hiK5PC/0W1ubw9zcXH8N/6u875NERSmVgUgXyk6GRV3NUpwPukIhICUlQ+f1ybDEYhFsbS2w7nQgopJLf18xZ7vq+LTTCKSkZEIuL58dZLOzX0GhUEAuF5Cbq91rTElJxrFjRxAaegKRkRFITEyApaUlateuiw4d3kW/fgNgaWn8HybffjsXf/xxECtWrEGrVm0KXMbEJG+/fJkajxx5jl6eVyGXIyUjGatPbkRarn6/jyrCPkkVj62tBcRi7f7vLzeByMoq70syKytLY57yyJC1tXWxnkPbL3UynqjkGDyPjzB2GVqTyxXldr+Sy9/u1MuVK5ewYMEcJCTEo1at2mjTpj3s7e2RkpKMK1cu4+efV2PXru1Yvnw16td/x0BV64/yzFOOPAevcvUTiAS5AnKFHFFJL5D4KkUvbb6uPO+TREUpN4GoZs2aAFDglWTKS/cL6l9ERMZ39+4dTJ06Cebm5liwYDF8fHzV5isUCvz22w6sXr0cX301DVu2bEelSpWMVC0RlUfl5mRxvXr1YGVlVeCVZMppTZs2LemyiOgNcnNzsWDBbMjlcixc+L1GGALyTncPGjQEvXv7IyJChuPHjxihUiIqz8rNESKJRIJu3brhwIEDePjwIaRSKYC8o0OHDh1Cx44dUblyZSNXSUSvu3LlMiIiwtGmTftC++MoDRz4IbKzX8HZ2UU1TS6XY8+eXTh8+ACeP38GU1NTuLk1xpAhw9G2bXu19Tt0aImOHTthzJhxWLduDW7duo7c3Fy4uTVGQMAYtGzZWm35jIwMbNmyESdPHkd8fBxq1aqNESNGFVpfbGwMNm/+BZcuXUBCQjwcHCrDq2Vz+H84CJUdq6iWO338BNau/BFjv/gcN65dw7XLV2BhYYExn41Dq/bt3mbzEZGelNlAdP36dYSHh8Pb2xuOjo4AgM8//xynTp3CyJEjMWrUKFSqVAlBQUGQy+WYNm2akSsmooKEhp4AAHTq5PPGZevXfwfffDNf9bdcLsdXX03F+fNnUbduffTp0w9yuRxnzpzE1Kmf4/PPp2DQoCFqbchk4Rg79v9Qt2499O7tjxcvonH69ElMmTIRv/4arOqf9OrVK0yc+CkePLgPV9dGePfdTnj69CnmzPkKVao4atT25MljfP75WCQnJ6Fduw6oW7ceoqIicOLIUfx18RLmLFkEJxcXtXVCNgfCwsIC3Xv7Qfb8ORo2ctNol4hKRpkNRDt27MCePXsQGBioCkTOzs7Ytm0bli5dirVr10IsFsPT0xM//vgjXF1djVwxERUkIkIGAGjQoOFbr7t7906cP38WPXr4YebMb2BqmveV9vHH4zB+/GisWbMSbdq0Q506dVXrPHv2FIMHD8OECV+opv366wZs3LgOe/bsxpQpMwAA27dvxYMH99G7d19Mnz5LdZXq3r27sWzZdxq1LFw4GykpyVi6dJXqyJSpqQgHjx3Awm/mYO3KHzFvqfothLJfvcL3a1bD1s72rV87EelXqQ9EEydOxMSJEzWmL168GIsXL9aY3qBBA6xdu7YkSiMiPUhIiAcA2NpqhoKwsHs4f/6sxnQrKysMHjwM+/fvgVgsxn/+M00VhpRtjRgxGvPnf41Dh/Zj/PjP1dYfPjxA7W9v747YuHEdIiNlqmlHjhyGWCzG+PGfqw3Z4e/fHwcO7MWDB/dV0+7fv4uHDx/Ax8dX4zRd81at4NHMC7ev30CkTAaXWrVU89ybejIMEZUSpT4QEVH5ZmdnD5ksHCkpmpeRh4Xdw6+/btCYXrVqNfTt2x/Pnj2BlZUVtm8P1lgmMTERAPDwYdhrz2cHOzt7tWnW1jYAgJycvMvjX73KQnj4c9StWw+2tnYabTdt6vVaILr373MmYOPGdarpIpEJUrPSkPXv0B9PHz1WC0TVqlfXaJuIjIOBiIiMytnZBXfu3IJM9hzu7k3U5vn7D4C//wC1aR06tAQApKXljU6fnp5eYGhSej1oSSSal+srB3RV3rZCOfK9lVXBY/vUeQcAACAASURBVJe9HpJSU/Oe48aNv3Hjxt+F1pKWlqZeizmHDiAqLRiIiMioOnXqgqNH/8CpU8fRo4ef1utZWloCAOrWrYetW3fptSZl4FGGrte9fhsg5ejZ48ZNxNChI1XTTU1FiEp6obeBGYnIcMrNOEREVDa1b98Bzs4uuHDhHC5ePF/ksspb9AB5R2+cnV0QESFDcnKSxrIPHoRhzZpVBfZBehOJRIIGDd5BRIRM1ccpv7t31cc7k0rzLtq4d+9Oge0dPXQYv23bjpcFDBxLRKUDAxERGZWZmRnmz/8OpqammD37Sxw8uE8t+Cg9fBiGSZPGAfjfKa7evfsiNzcXP/ywRNX/B8g7grNs2SKEhAQVepTnTfr08YdcLsfKlcvU2j558rjGaTEPj6aoU6cuzpwJxenTp9Tm3b97F4EbNuKPffthU0DHcSIqHXjKjIiMzs2tMVavXod5877B4sUL8Msva9GyZWs4OlZFWloa7ty5hUePHgIAmjZthsmT8y6N/+ijEbh27SpOnjyGhw8foHXrNhCJRDhzJhSxsTHw8fGFr293nWrq128gzp8/i5Mnj+Hp08do1aoNoqOjcO7cGdSsWRsREeGqZUUiEb75ZgG++GI8Zs2ahtat2+Gdd95BbGwMQk+fBAQBYydNhLmFRfE3FhEZBAMREZUKTZp4IjBwO0JDT+DEiaO4efM64uPjIJFIUL26Ez74YCC6deuJJk08VeuYmprihx9+xO7dO3DkyGEcOrQfZmZmqFmzNkaOHA0/v/chFot1qkcsFmPp0lXYti0Qhw8fxN69u1GtWg1Mnfol4uJeanTkdnNrhE2btiIo6FdcvnwRf/99BQ4OldGiVWv0GfABGkjffpwlIio5JoLysgoqklyuQEJCurHLoEKYmorg4GCFOfuXlom73depUhPz3p+GxMT0cntn8ZycbMTHR6NKFSeYmUmMXY5R6LtTtSBXID05AXseH9H73e4rwj5JFU/lylYQi7XrHcQ+RERERFThMRARERFRhcdARERERBUeAxERERFVeAxEREREVOExEBEREVGFx0BEREREFR4DEREREVV4DERERERU4TEQERERUYXHQEREREQVHm/uSkRGJxKZQCQyMXYZGhQKAQoFb/dIVBEwEBGRUYlEJrC3t9T6BowlSS5XICkpo9ihKCkxCTuDgnDj6t/ISE9Hnfr10P+jIfBs5qWnSomouBiIiMioRCITiMUirAk5j8jYZGOXo+JSzQ6fDfGGSGRSrECUmZmJRV/PRsyLaPR8/31UdqyCk38exeI58zBz7mx4Nm+mx6qJSl5UVCQ2b94AAAgI+BjOzi5Grkg3DEREVCpExibjWWSiscvQu8P79kP2/Dmmzf4azVu3AgC828UHMz//Ar+uXY/l636CiUnpO11IpK0tWzbi1q0bAIDAwI2YOXO2kSvSTek7Rk1EVI6cPnkSNZycVGEIAMwtLNCle3e8iIrCowcPjVgdUfFFRspUjyMiZEUsWboxEBERGUhaWioiZRFo4CrVmNdA+g4AMBARlRIMREREBvLy5UsIgoAqjo4a8xwqV85bJjampMsiogIwEBERGUhaWioAoJK5ucY85bRXWa9KtCYiKhgDERGRgSivTiuwz7SgnMcO1USlAa8yIyIyEEtLSwBA9ivNo0Cv/p1maWVVojVVNOXlknAyPB4hIiIyEGdnZwBAQnyCxrzEhLxpBfUvIv1RXhJ+69YNBAZuNHY5VIoxEBERGYiVlTWcXVzw+J9/NOY9fvgIAPBOAVegkf6Ul0vCyfAYiIiIDKhD506IDJfhxrW/VdOyMjNx8sgRuNSqifoN3zFidUSkxD5ERFQquFSzM3YJavRVT9/+HyD0xEms/G4J/Pzfh33lyjjx5xHExb7EjHmz2amaqJRgICIio1IoBMjlCnw2xNvYpWiQyxXFvrGrhaUl5ixehG2bt+DIwcOQy3NRp149fLlgLtw9PfVUKREVFwMRERmVQiEgKSkDIlHpO1KiUAjFDkQAUNmxCiZMnayHiojIUBiIiMjo9BU8iIh0xU7VREREVOExEBEREVGFx0BEREREFR4DEREREVV4DERERERU4TEQERERUYXHQEREREQVHgMRERERVXgMRERERFThMRARERFRhcdARERERBUe72VGREYnEpmU65u7ElHpx0BEREYlEpnAwcECIpHY2KVoUCjkSEzM1Gso+ifsAeZMn4l53y9GQzdXvbVLRMXDQERERpV3dEiMpwc3IDM+2tjlqFhUcUK93h9DJDLRWyCKiY7GikWLISgUemmPiPSHgYiISoXM+GhkxoQbuwyD+fuvK/h55SqkpaQauxQiKgADERGRga1e+gMunD4D55o14eHlhYtnzhq7JCJ6DQMREZGBRYbLMGDoEPTp/wH279pt7HJKNX13sDcxMVF7bGqq/4ur2fm+fGAgIiIysAXLl8LMzMzYZZR6IpEJ7O0tIRbrL7TkD1d5Hfit9Na2klyuQFJSBkNRGcdARERkYAxD2hGJTCAWi7Am5DwiY5P10mZiSqba469WHdZLu0ou1ezw2RBvvXa+J+MolYEoLi4OK1aswJkzZ5Camgo3NzdMnDgR3t7eb1z39u3bWLlyJa5fv47c3Fw0atQI48aNQ+fOnQ1fOBERFVtkbDKeRSbqpa1cuULtsb7apfKn1I1UnZ6ejlGjRuHgwYPo168fpk2bhszMTIwZMwbnzp0rct179+5h2LBhuHPnDkaPHo0pU6YgLS0NY8eOxeHD+v1VQEREROVHqTtCtHXrVjx8+BBr166Fj48PAMDf3x/+/v5YsGAB/vzzT7VOcvmtXbsWWVlZCAoKgqenJwCgX79+6NGjB5YtW4ZevXqV2OsgIiKisqPUHSHat28f6tSpowpDAGBlZYVBgwbh2bNnuHnzZqHrPnv2DA4ODqowBAC2trZo0aIFIiMjkZKSYtDaiYiIqGwqVYEoNTUVT548UQs0Sh4eHgBQZCCqX78+kpOTERcXpzY9PDwclpaWsLa21m/BREREVC6UqlNmMTExEAQBTk5OGvOqVasGAIiMjCx0/UmTJuHatWuYNGkSZs6cCRsbGwQFBSEsLAyTJ0+GSFSq8h8R5WNRRfNzb0ylrR4iMqxSFYhSU/OGtLewsNCYZ2lpCQDIzMzUmKdUt25djB07FosWLcKAAQNU04cPH45PP/202PUZYkAv0g99jltSkspq3dpQKLQbXC9vUDs56vX+2MAVvT2FQq7zpdSFdHUs9Yy5T5blz0NZrr24SmLwy5JQqgKR4t8bHhbUaVoQhELnKc2ZMwc7duxAs2bNMHjwYEgkEvz5558ICgrCq1evsGDBAp1rM9SAXlSx2dpqhv/yIitLjLg4EcTiN39BpqS80uvoxPqiUAh6Hzl5wNAhGDB0iN7a07fyvE8aUkXebiUx+GVJKFWByMoqbyNmZWVpzFMeGbKxsSlw3adPn2Lnzp3w8PDA1q1bYWqa99J69eqFuXPnIiQkBF27dtV5PCKFQkBKSoZO65LhicWiMvmFlJKSCbm8fN75PDv7FRQKBeRyAbm55fM1FsXEpGweNTDmPllWP8dA+f4sv0n+o6gKhYDExHQjVqPO1tZC689hqQpENWvWBJDXl+h1sbGxAFBg/yIAePDgAQRBgL+/vyoMKQ0ePBghISG4ePFisQZorIhf6mRYcrmi3O5XcnnFHrVXKKMvvzzvk4ZUkbebkG9nF4Sy+wOoVP18sba2Rt26dXH79m2NecppBV2BBgASiQQAIJfLNeYpT8UVNI+IiIioVAUiAOjduzcePXqEM2fOqKalp6dj586daNCggery+9e1bNkSlpaW2LVrl0bH6+DgYABAhw4dDFc4ERERlVml6pQZAIwaNQr79u3DpEmTEBAQgKpVq2Lnzp2IiorChg0bVJ2qr1+/jvDwcHh7e8PR0RG2trb46quv8M0336Bfv34YMGAAzM3NcerUKZw7dw49e/bk/cyIiIioQKUuEFlbWyM4OBhLly5FcHAwcnJy4Obmho0bN6Jt27aq5Xbs2IE9e/YgMDAQjo6OAICBAwfC2dkZ69evx5o1a5Cbm4u6deviyy+/xIgRI4z1koiIiKiUK3WBCACqV6+OZcuWFbnM4sWLsXjxYo3p3t7e8Pb2NlRpREREVA6Vuj5ERERERCWNgYiIiIgqPAYiIiIiqvAYiIiIiKjCK5WdqomoYtH3/cL0Je/Gs2V0yGkieisMRERkVCKRCewdLCAWiY1diga5Qo6kxMxih6LwZ8+we9t23LtzB5kZmXCs6oj2776LfoMHwczMTE/VElFxMBARkVGJRCYQi8RYdzoQUcma9zE0Fme76vi00wiIRCbFCkQvoqIxd9pMiE1N0c2vJ+wrV8bdW7exZ8dOPHr4EF/On6sacJaIjIeBiIhKhajkGDyPjzB2GXq3ad165OTkYOGKZXD+9wbW7/XqiaBfNuHw3n24eukyWrVr+4ZWiMjQ2KmaiMhA5HI57t6+BTf3xqowpNSxS2cAwIN790u+sArE1Nwu32N7I1ZCpR2PEBERGYhIJMLyn9bgVU62xryU5BQAgFjM36WGZFOrLVJll/593MbI1VBpxkBERGQgJiYmqF6jBl7l5mjM+2PffgBAYw+Pki6rQjE1t4NDw+7GLoPKAP40ISIqYYf27MONq9fg2rgxmrZobuxyiAgMREREJerP/QcQvOlX2Fd2wMRpk41dDhH9S6dTZoIgICIiAikpKXj16hUsLS1hY2MDZ2dnXj5KRFQAQRAQsjkQB3b/DnsHB8xaOB9VqlY1dllE9K+3CkTHjx9HSEgIrl69iuxszU6CFhYWaNasGYYOHYouXbrorUgiorIsNycHP6/8ERdOn0F1pxr4cv5cVHdyMnZZRJSPVoFILpdj8uTJOHr0KARBQO3atVGrVi3Y2tpCIpEgOzsbKSkpkMlkOH/+PC5cuIBevXphyZIlMDVlv20iqrjkcjlWLVmKq5cuo0HDhpg+9xvY2tm9eUUiKlFapZVff/0VR44cQbdu3TBjxgy4uLgUumxERASWLFmCw4cPo0mTJhg1apTeiiUiKmt2bA3G1UuX4dq4EWbOmwNzCwtjl0REBdAqEO3evRuNGzfGqlWr3thHqGbNmli1ahUGDBiA3bt3MxAZUFRUJDZv3gAACAj4GM7OhQdVotLO2a66sUtQo4964uPjsO+33TAxMUHz1q1x5dJljWWcnJ3xjqu02M9FRMWjVSCKiorCyJEjte4wLRKJ4O3tjaCgoGIVR0XbsmUjbt26AQAIDNyImTNnG7kiorenUAiQK+T4tNMIY5eiQa6QF+s+Ztev/42cnLwxiEI2bylwma49ujMQEZUCWgUiR0dHhIeHv1XDjx49grW1tU5FkXYiI2WqxxERsiKWJCq9FAoBSYmZEIlK3xWqCoVQrEDk69sNjVt6FjgwIxGVLlqNQ9S5c2ccPXoUO3bs0KrRwMBAhIaGwsfHp1jFEVHFoFAIyM1VlLp/xQlDRFS2aHWE6LPPPsPFixcxd+5crFu3Dm3atEGtWrVgZ2cHiUSCnJwcpKamIjw8HH/99RciIiLg7OyMSZMmGbp+IiIiomLTKhBVrlwZ27dvx+rVq/Hbb79hz549AKDWp0gQ8n5JWVlZYdCgQfjiiy/g4OBggJKJiIiI9EvrQYJsbW0xa9YsTJ8+Hffu3cPjx4+RkpKCjIwMVKpUCXZ2dmjQoAHc3d0hkUgMWTMRERGRXr31qIlmZmZo2rQpmjZtaoh6iIiIiErcWwei2NhYXL58GU+ePEFqaqravcwaNGiA5s2bo3r10jWeCBERUVnBMeaMQ+tAFBkZiW+//RahoaEQBEHVZyg/ExMTmJiYoGvXrpgxYwZq1qyp12KJqCzilVr6JAAFfv9S+cEx5oxD64EZBw4ciISEBLRu3Rrt2rVD7dq1YWNjo7qXmfIqswsXLuDYsWO4ceMGQkJCGIqIKiiRKG9UD7lcDjMzIxdTXggCFIICr+Qc16g84xhzxqFVIFqxYgWSk5Px3//+F76+vkUuO27cOBw/fhyTJk3C6tWrsWTJEr0USkRli1hsClNTCTIy0lCpkoXWI91TwQRBAHJz8TIjHpnyLGOXQ1TuaBWIzp8/jx49erwxDCn5+vqiR48euHTpUrGKI6KyzcrKFsnJcUhMfAlLSyuIxaYAKk4wUihMoJDLIcgVxWvo3zCUkp6E2/EP9FMcEanRKhBlZmbC2dn5rRquUaMGkpKSdCqKiMoHCwsrAEB6egqSkuKMXE3JE4lESMlIhlwh17kNAYBCUOBlRjxuxz+ALC1afwUSkYpWgahevXoIDQ3FpEmTYGr65lVevXqF48ePo06dOsUukIjKNgsLK1hYWEEuz4VCUcwjJWWIWGwCOztLrD65EVFJL3RuRxAEvJLn8DQZkYFpFYiGDh2KWbNmYdSoUfjss8/QsmXLAoORXC7H33//jeXLlyM8PBxff/213gsmorJJLDaFWGzsKkqOqakI5ubmSMvNQOKrFGOXQ0RvoFUg6t+/P54+fYpffvkFo0aNglgshpOTk9q9zFJSUhAdHY2cnBwIgoChQ4di6NChhq6fiIiIqNi0Hodo6tSp6N27N7Zu3Ypr167h2bNnkMn+dzmgSCRCrVq10Lp1a/Tv3x9eXl4GKZiIiIhI395qpGo3NzcsXLgQAKBQKJCWloaMjAxIJBLY2NjAjIONEBERURn01rfuUBKJRLC1tYWtra0+6yEiIiIqcToHIiKi1/EeTERUVomMXQARlR/KezDdunUDgYEbjV0OEZHWtDpCdPHiRZ2foF27djqvS0RlC+/BRERllVaBaNSoUTrfh+j+/fs6rUdERERUUrQKROvXr8e0adOQkpICd3d3NGzY0NB1EREREZUYrQLRu+++iy1btmDEiBF48eIFNmzYAAcHB0PXRkRERFQitO5U7ebmhm+//RZxcXFYsmSJIWsiIiIiKlFvdZXZe++9Bx8fH+zfvx+PHz82VE1EREREJeqtxyGaN28ebt26BYlEYoh6iIiIyhyxWH+j2OS/iMnExASmpvodIUehEKBQCHptszx460BUrVo1+Pr6GqIWIiKiMsXOxhyCQgFbWwu9tSkSmag9dnCw0lvbAKBQyJGYmMlQ9BqOVE1ERKQjK3MJTEQiPD24AZnx0XppMyctSe3xvS3z9dIuAFhUcUK93h9DJDJhIHoNAxEREVExZcZHIzMmXC9tCXK52mN9tZsfT/FpYiAiIiKqIEytbKEoY6f45Ao5kkrgFB8DERERUQVhWskSIpEI604HIio5Ri9tJmUkqz2es3+pXtoFAGe76vi004gSOcXHQERERFTBRCXH4Hl8hF7aylXI1R7rq92SxrvdExERUYWnUyDKzs7WarmwsDBdmiciIiIqUToFog8++AD//PNPofMFQcDatWsxcOBAnQsjIiIiKik6BaJHjx5hwIABCA4O1pgnk8kwZMgQrFy5EpUqVSp2gURERESGplMgWrNmDSwtLbFw4UKMGzcOiYmJAICQkBC8//77uHHjBjp16oSDBw/qVFRcXBxmzZqFjh07wsvLC4MHD8b58+e1Wjc9PR3Lli1Dly5d4OnpiZ49e2Ljxo3Izc3VqRYiIiIq/3S6yqxr167w8vLCl19+iVOnTqFv376oX78+Ll++DHt7e8yfPx99+vTRqaD09HSMGjUK4eHhGDlyJKpXr46dO3dizJgx2LBhAzp06FDoutnZ2Rg1ahTu3LmDwYMHo2HDhjh9+jS+//57REZGYvbs2TrVpC8ikYnaeA3FVV4GwyIiIjI2nS+7r1KlCtavX4/58+dj27ZtePnyJezt7fH777/DyclJ54K2bt2Khw8fYu3atfDx8QEA+Pv7w9/fHwsWLMCff/6pFgTy27x5M27evImFCxeq+i8NGTIE48aNQ3BwMD799FNUr15d59qKQyQygb29pV5HBzX4YFhyBZKSMhiKiIio3NM5EKWnp2P58uXYsWMHTE1NUatWLTx9+hQBAQFYuHAhWrVqpVO7+/btQ506dVRhCACsrKwwaNAgLFu2DDdv3oSXl1eB6+7cuRNSqVSjM/e4cePQqFEjZGVl6VSTPohEJhCLRVgTch6RsclvXkELiSmZao+/WnVYL+0CgEs1O3w2xJv3uyEiogpBp0AUGhqKuXPn4sWLF6hXrx6WLFkCd3d3/Pzzz1i7di1GjhyJQYMGYdq0abCy0v6oRWpqKp48eYLevXtrzPPw8ACAQgNRdHQ0ZDIZRo8erZqWnp4OCwsLeHp6wtPTU4dXqn+Rscl4Fpmol7Zy5Qq1x/pql4iIqKLRKRCNHTsWJiYmGDZsGKZNm6a6mmzChAno1KkTZsyYge3bt+P06dM4deqU1u3GxMRAEIQCT7lVq1YNABAZGVnguk+ePAEAuLi44Ndff8XmzZvx4sULWFlZ4YMPPlCrU1fF6aOjz1NlJams1F1W6nxdWa27MIbu11aWlNX31ph1l9VtRoZXEvuGToGoRo0a+O6779CuXTuNeR4eHti7dy+WLl2KrVu3vlW7qampAAALC82bzllaWgIAMjMzNeYBQHJy3mmooKAgpKSk4JNPPoGTkxOOHz+OoKAgyGQyrFu37q3qyc8QfXTKAn3eAJA0lbfta+h+bWR45W2fpPKhJPZLnQLRgQMHYGNjU+h8iUSCWbNmwdfX963aVSjyTgEV1GlaEIRC5wFATk4OACAiIgL79u1DgwYNAADdu3eHmZkZdu/ejXPnzhV5lVrRtQlIScnQaV0gL92WxS+alJRMyPOdmiutuH1Lh/z9zRQKAYmJ6Uasxri4T769srrNyPB03S9tbS20PrqkUyAqKgzl16ZNm7dqV9nfqKDOz8ojQ4U9t/IIUtu2bVVhSGnQoEHYvXs3Lly4oHMgAoDc3PLzH5e25HJFhXzdJaW8bV/lDxfl4/L02iqK8rZPlkXVrM2QmJWrekwls1+Wqrvd16xZE0BeX6LXxcbGAkChl/QrL6d3dHTUmFelShUAQFpaml7qJCIiMpQ+bpUh3E9QPaaSUaoCkbW1NerWrYvbt29rzFNOK+xqMalUCnNzczx8+FBjXnh4OID/BS4iIqLSqpqVBGNa1jB2GRVOqevS37t3bzx69AhnzpxRTUtPT8fOnTvRoEED1eX3rzM3N0ePHj1w9+5dtSvbFAoFNm3aBLFYjO7duxu8fiIiIip7StURIgAYNWoU9u3bh0mTJiEgIABVq1bFzp07ERUVhQ0bNqg6VV+/fh3h4eHw9vZWnSabOnUqrly5gkmTJuGjjz5CrVq1cOTIEVy+fBnjx49HnTp1jPnSiIiIqJTSKRA9fvxYo+OyvlhbWyM4OBhLly5FcHAwcnJy4Obmho0bN6Jt27aq5Xbs2IE9e/YgMDBQFYiU4enHH3/EwYMHkZKSgrp16+Lbb7/FgAEDDFIvERERlX06BSI/Pz80bdoUH3zwAfz8/GBtba3XoqpXr45ly5YVuczixYuxePFijemOjo6YP38+5s+fr9eaiIiIqPzSqQ9Rz549ERYWhjlz5qBDhw6YOnUqLl68qO/aiIiIiEqETkeIVqxYgbS0NBw8eBB79+7FwYMHcejQIdSoUQP9+vVDv379UKtWLX3XSkRERGQQOl9lZm1tjcGDB2P79u34888/8cknn0AkEuGnn35Ct27dMGzYMOzZs6fQW20QERERlRZ6uey+bt26+M9//oMTJ05g3bp1cHZ2xrVr1/DVV1+hQ4cOWLBgQYGDLRIRERGVBnq57D4+Ph4HDhzAoUOHcOfOHdUd63v27Il79+5h27Zt2L9/P37++We0bNlSH09JREREpDc6B6Ls7GwcP34ce/fuxYULF5CbmwuJRIIePXqgf//+8Pb2Vo0ZdOnSJYwePRrz58/H/v379VY8ERERkT7oFIhmzZqFI0eOID09HYIgoFGjRujfvz/69OkDOzs7jeXbtm2L+vXrQyaTFbtgIiIiIn3TKRDt3r0bdnZ2GDp0KPr3749GjRq9cZ0mTZqgS5cuujwdERERkUHpFIiWL18OX19fSCQSrdf57rvvdHkqIiIiIoPTKRBt374d2dnZ8Pf3L3SZwMBABAcH48iRIzoXR0SGJRKZQCQy0Vt7yn6Dysempvq9f7RCIUChEPTaJhERoGUgEgQBgiCoHv/1119o3bo1FApFgcvn5ubi6tWriI6O1l+lRKRXIpEJ7O0tIRbrL7TkD1cikQkcHKz01jYAyOUKJCVlMBQRkd5pFYh++eUXLF++XG3amjVrsGbNmiLXc3V11b0yIjIokcgEYrEIa0LOIzI2WS9tJqZkqj3+atVhvbQLAC7V7PDZEG+IRCYMRESkd1oFooCAABw7dgxxcXEAgOjoaFhbW8PGxkZj2bzD5KZwdnbG1KlT9VstEeldZGwynkUm6qWtXLlC7bG+2iUiMjStApGZmRl27typ+tvNzQ0jR47EhAkTDFYYERERUUnRqVN1YGAgXFxc9F0LERERkVFoFYgUCgVEov91vFTefqOwTtX55V+PiIiIqDTSKhC5u7tjwoQJ+Oyzz1R/a8PExAT37t3TvToiIiKiEqBVIHJyclLrQO3k5GSwgoiIiIhKmlaB6OTJk0X+TURERFSWsYMPERERVXhaHSG6ePGizk/Qrl07ndclIiIiKglaBaJRo0ap3aPobdy/f1+n9YiIiIhKilaByN/fX+dARERERFTaaRWIFi9ebOg6iIiIiIyGnaqJiIiowtPqCNH06dPRrVs3+Pr6qv7WhomJCZYsWaJ7dUREREQlQKtAtH//ftSuXVsViPbv369V4wxEhmVqbofs7LR/H9sbuRoiIqKyS6tA9PrNXAMDAw1WEGnPplZbpMou/fu4jZGrISIiKru0CkStW7cu8m8yDlNzOzg07G7sMoiIiMo8rQJRUf7++2/cu3cPGRkZsLOzg4eH8YnolgAAIABJREFUBxo3bqyP2oiIiIhKhM6B6PLly/jmm28gk8kAAIIgqMYqatKkCRYvXowGDRrop0oiIiIiA9IpEN26dQtjxoyBQqHAe++9h2bNmsHKygoxMTG4cuUK/vrrLwwfPhw7d+5EzZo19V0zERERkV7pFIjWrFkDQRCwYcMGtG/fXmP+4cOHMWXKFKxcuRLLli0rdpFEREREhqTTwIzXrl3De++9V2AYAoBevXrBx8cHZ8+eLVZxRERERCVBp0CkUCjg7Oxc5DL169dHdna2TkURERERlSSdAlH79u1x4sSJQgOPQqHAhQsX0KJFi2IVR0RERFQStApECoVC7d+0adOQnp6O0aNH486dO2rLPn/+HFOnTkVMTAy++uorgxRNREREpE9adap2d3cvcHpcXBwGDhwIiUSCKlWqIDU1FWlpebeSsLW1xSeffILjx4/rr1oiIiIiA9AqEDk5OWnVmI2NDWxsbFR/KxQK3aoiIiIiKkFaBaKTJ08aug4iIiIio9GpUzURERFReVKse5k9fvwYCQkJkMvlEARBNT0nJwdJSUkIDQ3F8uXLi10kERERkSHpFIiSkpIwZswY3L17943LMhARERFRaafTKbM1a9bgzp07cHFxQa9evWBubg5XV1f07NkT77zzDgRBQJUqVRAcHKzveomIiIj0TqcjRKdPn4aTkxMOHz4MiUSCsWPHQiQSqY4GrV+/HitWrEB0dLReiyUiIiIyBJ2OEL148QKdO3eGRCIBADRu3Bg3b95Uzf/kk0/QqFEj7Ny5Uz9VEhERERmQToFILBarjTdUu3ZtJCQkICEhQTWtdevWeP78efErJCIiIjIwnQKRs7Mznj17pvq7du3aAIBHjx6pLZeUlKR7ZUREREQlRKdA1LFjR5w8eRL79+8HALi6uqJSpUrYsWMHACA9PR2nTp1C9erV9VcpERERkYHoFIhGjx4Ne3t7zJgxAzt37oSVlRX69u2LQ4cOoWvXrujWrRvCw8PRo0cPfddLREREpHc6XWVWtWpV7N69Gxs2bIBUKgUATJs2DS9fvsSpU6cgEong5+eHcePG6bVYIiIiIkPQeaTq6tWr4+uvv1b9bW1tjZ9++gmpqamQSCSoVKmSXgokIiIiMrRi3boDAHJzc/HkyRNkZGTAzs4O9erV00ddVA5FRUVi8+YNAICAgI/h7Oxi5IqIiIjy6ByI4uLisHz5cvzxxx/IyspSTbexscGAAQPw+eefw9zcXC9FUvmwZctG3Lp1AwAQGLgRM2fONnJFpG+m5nbIzk7797G9kashItKeToEoNjYWH374IaKjo+Ho6Ig2bdrAysoKsbGxePDgATZt2oQrV64gMDAQFhYW+q6ZyqjISJnqcUSErIglqayyqdUWqbJL/z5uY+RqiIi0p1Mg+vHHHxEdHY1x48ZhwoQJEIvFqnlpaWlYtmwZtm////buPL6me9//+CsJUhkox1BChbSJaBJzQlIcQ7VHnZKjtEpLiIpD6eHSoopLDeW27lUlwakKdaSnnDj0UlXzlBqLUq0h0ZiaoUQEGdbvD7/s2y2hyZZhJ+v9fDw8Htt3fdd3f9buSvr2Xd+19j/4+OOPGTNmTKHHT0pK4sMPP2THjh2kpaXRuHFj3njjDUJCQgo1TnJyMt27d+eJJ54gOjq60HWISOFUeKQq1Z58trTLEBEpNJtuu9+2bRutW7dm1KhRVmEI7i6unjJlCv7+/qxfv77QY6enpxMWFsb69esJDQ1l7NixZGRkEB4ezq5duwo11sSJE62eni0iIiKSH5sCUVpaGk2bNn1gn9atW5OcnFzosVesWMHp06eZN28eo0ePpl+/fnz22WfUq1ePadOmYRhGgcZZvXo1O3fuxNHRpkMUERERE7EpLfj4+PDdd989sM/Zs2fx8vIq9NixsbE0aNCAjh07WtpcXV3p06cP58+ft/oS2fuJj49n1qxZDBs2jAoVHvpGOhERESnnbApEY8aM4dChQ8ydO9fqDrNcK1asYOfOnYwcObJQ46alpXH27FkCAgLybPP39wf43UCUnZ3NuHHj8PLyIiIiolDvLyIiIuZUoOmTfv365Wlzc3Nj6dKlrFmzhiZNmlCzZk2uX7/OiRMnuHLlCo8//jibN2+2mun5PVeuXMEwDOrUqZNnW61atQBITEx84BgLFy7k1KlTrF27tshnhypUsP3ym5NT2bx0V5R1Ozg4WL1+mM/zXvp8y9Z7P4yirDsx8Wf+/ve7z8YaNGgIHh71imxsfb5l673FvpXEuVGgxHDw4MH7bktJScl3sXN8fDwJCQnMmDGjwMWkpaUB5HurvouLCwAZGRn33f/YsWMsXLiQt956i0aNGhX4fQvC0dGBatVci3TMsqBKlaJ7bIKjo4PVazN+nvcqys/XLIryM5s9+xOOHj0MwMqVy5g5c2aRjV1W6ZwUe1QS52WBAtGWLVuKuw4AcnJyAOuZhFy5i6nz2wZw69Ytxo4dS+vWrXn11VeLoTaD69dv2ry/k5NjmfxFc/16BtnZOUUyVk6OYfU6NTW9SMYFfb620GcG58/HW16fO3de5yQ6J8U+2XpeVqlSucCzSwUKRB4eJfMVC66ud2cM8luXlDsz5O7unu++77//PpcvX+aDDz4gNTXValtmZiYpKSk4Oztb3sMWWVml80uiNGVn5xTZcf/2DkHDMEz5ed6rKD9fs9A5Wbx0Too9Konz8qEW2Vy5coU1a9Zw8uRJbt68yaOPPoq3tzfPP/+8TSGqXr16lnHvdfXqVYB81xfB3WcjZWRkEBoammfb4cOHadu2LaGhocyaNavQdYmIiEj5ZnMgWrduHZMmTeLOnTt5ng20YMECpk6dSs+ePQs1ppubG56enhw7dizPtty2/O5AA5gzZw63b9/O0/7666/TqFEj3n77bcvCbBEREZHfsikQHT16lPHjx+Ps7Mzw4cNp3bo1tWvX5vr16+zbt4+lS5fyzjvv4OXlZbldvqC6d+/ORx99xI4dO2jfvj1w9+nVMTExDxyvZcuW+bY7ODhQtWpVgoODC3eQIiIiYho2BaLIyEicnJxYuXIlvr6+VtsCAgJo3749ffr04ZNPPuGDDz4o1NhhYWHExsYyatQoBg4cSM2aNYmJieHixYssXrzYsqj68OHDJCQkEBISQo0aNWw5DBERERHAxgczHjp0iM6dO+cJQ7kaN25M586diYuLK/TYbm5urFy5ks6dO7Ny5UrmzJlD5cqVWbp0qdUsz+rVqxk3bhxnzpyx5RBERERELGyaIbpx4waPPfbYA/vUrl2ba9eu2VRU7dq1mTt37gP7zJo1q0ALpPNbjyQFpwczioiIGdgUiOrUqcPhw4cf2OfIkSO/G5rEflV1fwQjJ0cPZhQREVOwKRB16dKFZcuWERkZydChQ6225eTksGDBAo4ePcqAAQOKpEgpea6PVMLB0ZFz6xeTkXypSMbMvPGr1evvP/3PIhkXoGpDPzza/6XIxhMREXOxKRBFRESwceNG5s2bx7p162jdujXu7u5cuXKFI0eOcOHCBerUqZMnLEnZk5F8iYwrCUUylpGdbfW6qMYFeKS6ZiNFRMR2NgWiqlWr8tlnnzFp0iR27dqVZ2FzSEgI06ZNo1q1akVSpIiIiEhxsikQ3b59mzp16rBkyRKuXr3K999/T1paGm5ubjRp0oTatWsXdZ0iIiJihypWdSY7PdPyuqyyKRC9+OKLtG7dmnfffZdatWrpCdAiIiIm9WjLOvxqXLK8Lqtsulc5Pj4eZ+eymwJFRESkaFSs6kzNzp7U7OxZpmeIbApEHh4eJCQU3YJYERERkdJk0yWzmTNnMnToUMaOHctzzz1H/fr1qVw5/+fV1K9f/6EKFBERESluNgWisLAwsrKyWL9+PevXr79vPwcHB77//nubixMREREpCTYFIj8/v6KuQ0RERKTU2BSIoqOji7oOERERkVJjUyASESkt+sJhESkOBQ5EycnJzJ8/n61bt5Kamspjjz3Gn/70J4YOHYqLi0tx1igioi8cFpFiVaBAlJycTO/evbl06RKGYQCQkJBAVFQUW7duZdWqVbi66heJiBQffeGwiBSnAgWiqKgoLl68SI8ePYiIiKBu3bqcO3eOefPmsX37dpYvX86wYcOKu1YREX3hsIgUiwJd5N65cyfNmzdn9uzZNGzYEGdnZxo3bsyCBQt4/PHH+eabb4q7ThEREZFiU6BAdOnSJVq0aJGn3cnJiZCQEOLj44u8MCl/arlVzPe1iIhIaSvQJbPbt2/f90nU1apVIz09vUiLkvLpz42rY5xMsbwWERGxFwUKRDk5Offd5uDg8MDtIrlquVYivJXWVYiIiP3RgzJERETE9BSIRERExPQK/GDGLVu2kJiYmKf91KlTAIwfPz7PNgcHB2bMmPEQ5YmIiIgUvwIHopMnT3Ly5Mn7bl+7dm2eNgUiERERKQsKFIhmzpxZ3HWIiIiIlJoCBaLQ0NDirkNERESk1GhRtYiIiJieApGIiIiYngKRiIiImJ4CkYiIiJieApGIiIiYngKRiIiImJ4CkYiIiJieApGIiIiYngKRiIiImJ4CkYiYVi23ivm+FhHzKfCXu4qIlDd/blwd42SK5bWImJcCkYiYVi3XSoS3eqy0yxARO6BLZiIiImJ6CkQiIiJiegpEIiIiYnoKRCIiImJ6CkQiIiJiegpEIiIiYnoKRCIiImJ6CkQiIiJiegpEIiIiYnoKRCIiImJ6CkQiIiJiegpEIiIiYnoKRCIiImJ6CkQiIiJiegpEIiIiYnoKRCIiImJ6CkQiIiJiegpEIiIiYnp2GYiSkpKYOHEi7dq1o1mzZrz88svs3r27QPseOHCAwYMH06pVK/z8/Hj++edZtmwZOTk5xVy1iIiIlFV2F4jS09MJCwtj/fr1hIaGMnbsWDIyMggPD2fXrl0P3PfQoUO89tprnD17lvDwcMaPH0/t2rWZOXMmkyZNKqEjEBERkbKmQmkXcK8VK1Zw+vRpFi1aRMeOHQHo2bMnPXv2ZNq0aWzcuBEHB4d89508eTLu7u588cUXVK9eHYB+/foxcuRI/vnPf9K/f398fX1L7FhERESkbLC7GaLY2FgaNGhgCUMArq6u9OnTh/Pnz3P06NF890tOTub06dN06dLFEoZyvfDCCwAcPHiw+AoXERGRMsuuZojS0tI4e/Ys3bt3z7PN398fgKNHj9KsWbM826tWrcqmTZtwdnbOsy0lJQUAJyenIq5YREREygO7CkRXrlzBMAzq1KmTZ1utWrUASExMzHffChUq4Onpmac9Ozub6OhoHBwcCAwMfKj6KlSwfULNycnuJuPEDpTmeaFzUvKjc1LsUUmcG3YViNLS0gCoXLlynm0uLi4AZGRkFGrMmTNncvr0af785z/j5eVlc22Ojg5Uq+Zq8/4i+alSJe+5LlKadE6KPSqJ89KuAlHurfH5LZo2DOO+2+5n9uzZREdH88QTTzBlypSHrM3g+vWbNu/v5OSoXzSSx/XrGWRnl84jIXROSn50Too9svW8rFKlcoFnl+wqELm63p2BuXXrVp5tuTND7u7uvzvOnTt3mDBhAv/+979p1KgRn3zyCW5ubg9dX1aWnmUkRSs7O0fnldgVnZNij0rivLSrQFSvXj3g7lqie129ehUg3/VFv3Xjxg3++te/sn//fvz9/YmKispz15mIiIjIb9nVCjY3Nzc8PT05duxYnm25bQEBAffd/+bNmwwePJj9+/fToUMHli9frjAkIiIiv8uuAhFA9+7d+emnn9ixY4elLT09nZiYGLy8vCy33+dn8uTJHDlyhGeffZaPP/7YshBbRERE5EHs6pIZQFhYGLGxsYwaNYqBAwdSs2ZNYmJiuHjxIosXL7Ysqj58+DAJCQmEhIRQo0YNTpw4wbp166hUqRLBwcFs2LAhz9hNmjThySefLOlDEhERETtnd4HIzc2NlStXMmfOHFauXElmZiaNGzdm6dKltGnTxtJv9erVrF27luXLl1OjRg327NkD3F1QPXny5HzHHjNmjAKRiIiI5GF3gQigdu3azJ0794F9Zs2axaxZsyx/HzJkCEOGDCnu0kRERKQcsrs1RCIiIiIlTYFIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMzy4DUVJSEhMnTqRdu3Y0a9aMl19+md27dxdo34SEBEaNGkXbtm1p3rw5gwYN4vjx48VcsYiIiJRldheI0tPTCQsLY/369YSGhjJ27FgyMjIIDw9n165dD9z3ypUr9OvXj/3799O/f39GjRpFfHw8/fv359SpUyV0BCIiIlLWVCjtAu61YsUKTp8+zaJFi+jYsSMAPXv2pGfPnkybNo2NGzfi4OCQ774LFiwgOTmZNWvW0LhxYwC6devG888/z+zZs/nkk09K7DhERESk7LC7GaLY2FgaNGhgCUMArq6u9OnTh/Pnz3P06NF898vOzubf//43QUFBljAEUKtWLZ5//nn27t3LlStXir1+ERERKXvsKhClpaVx9uxZAgIC8mzz9/cHuG8g+vHHH7l58+Z99zUMg2PHjhVtwSIiIlIu2NUlsytXrmAYBnXq1MmzrVatWgAkJibed1/Apn0LwtHRgerVXW3eP/cq31uDO5GdnWPzOCWlUkUnAJ588U2MnOxSrub3OVaoBMCYZyLIKgP1VnC8+/lWrVoZwyidGnROFi+dk4VX1s5J0HlZ3B72vHR0zH+JTb7vVfjhi09aWhoAlStXzrPNxcUFgIyMjELvm9t2v30LwsHBASengn+w91PV7ZGHHqMkVXStUtolFEqVyu6lXUKhODqW/iStzsnipXOy8MraOQk6L4tbSZyXpX/m/0ZOzt1/EeS3aNr4/9HwfguqH7RvLnv4QRcRERH7Y1cJwdX17iWpW7du5dmWO7vj7p5/qi3Ivm5ubkVSp4iIiJQvdhWI6tWrB5Dv3WBXr14F8l8j9LD7ioiIiLnZVSByc3PD09Mz37vBctvyu4sMoGHDhri6uj5w36ZNmxZhtSIiIlJe2FUgAujevTs//fQTO3bssLSlp6cTExODl5eX5fb7e1WqVImuXbuye/duTp8+bWm/evUqGzZsoF27dlSvXr3Y6xcREZGyx8EwSusGy/zduHGDnj17kpyczMCBA6lZsyYxMTH8+OOPLF68mODgYAAOHz5MQkICISEh1KhRA4CLFy8SGhqKo6MjYWFhODs7Ex0dTUpKCqtWrcLHx6c0D01ERETslN0FIri7DmjOnDns2LGDzMxMGjduzKhRo2jTpo2lz9tvv83atWtZvnw5QUFBlvYzZ84wZ84c4uLicHJyIiAggDFjxtCkSZPSOBQREREpA+wyEImIiIiUJLtbQyQiIiJS0hSIRERExPQUiERERMT0FIhERETE9BSIRERExPQUiMqw+fPn4+PjY/XH19eXFi1aEBoaSlRUFHfu3Cn2On7++Wd8fHx49dVXrdrj4+N/d9/cYzhy5EhxlScmlnt+jRw58r59oqKi8PHxYf/+/SVYmZjB9OnT8fHx4e23375vn8zMTLp3707jxo359ttvS7A6uVeF0i5AHl5ERASNGjUCICsri5SUFHbu3Ml//dd/sXHjRpYvX17iX2wbGRlJZGQkhw4dKtH3FcnPpk2b2LRpE88++2xplyImMnr0aLZu3cratWvp0aMHbdu2zdMnMjKSH3/8kQEDBtC6detSqFJyaYaoHAgODqZHjx706NGDXr16MWTIEJYvX86bb77JiRMnmDx5crG+/yOPPAKAs7OzpW3Xrl1kZmYW6/uKFMZ//ud/8uuvv5Z2GWIiLi4uTJ8+HYDJkydz+/Ztq+1nzpwhMjIST09PRo8eXRolym8oEJVjERERtGjRgi+//JJz584V2/vUqFEDNzc3yyyViL3p2rUrSUlJzJgxo7RLEZNp27YtvXv3Jj4+no8//tjSbhgG7777LtnZ2cyePdvyD0spPQpE5ZiDgwOhoaHk5OSwbds2q22bN2+mb9++NG/enGbNmvHyyy+zefNmqz5r1qzBx8eHQ4cOMX36dJ5++mn8/f154YUXWLdunVVfLy8vnnjiCQB8fHyIi4vjzp07v3v9PD9btmzBz8+PXr16ce3aNQA6derEyJEj2blzJy+99BJNmzYlKCiIcePG8csvv1jtn5WVxZIlS+jWrRt+fn4EBQUxfPhwTp06ZekzatQomjRpYhk/d78WLVrg5+dHRkaGpT0jI4OAgADeeeedQh2H2I+BAwfi7+9PbGws27dv/93+cXFxDB48mJYtWxIQEEBoaCgxMTElUKmUR2+99Ra1a9dm6dKlnDlzBoDPP/+cAwcOMGjQIJo1awbcXY/51ltvERISgp+fH127dmX+/Pl51oIeO3aMQYMGERwcjL+/P8899xwffvih1e8tKTwFonIu9wttv//+e0vbokWLGDFiBOnp6fz1r39l+PDhpKenM2LECCIjI/OM8R//8R8cOnSI8PBw/va3v3Ht2jXGjh1LXFycpU9MTAx9+vQB4P3336dRo0ZUrFiR999/n5deeqnA9W7bto1Ro0bx1FNPsWzZMqpWrWrZ9t133/HGG2/g7+/PxIkTadeuHbGxsVZTzdnZ2QwbNow5c+ZQv3593n77bfr27cuBAwfo06cP+/btA+4GrOzsbPbs2WPZ9+jRo6Snp5OZmcnBgwct7Xv37uX27dt07ty5wMch9sXJyYkZM2ZQsWJFJk+ezI0bN+7bd926dbz22mucO3eOwYMHM3r0aJydnZk0aRLvvvtuCVYt5YW7uztTpkwhMzOTGTNmkJKSwty5c3nyySctC/7PnTtHr1692LFjB3369GHChAk0a9aMBQsWEB4eTlZWFgDnz59n4MCBXL58mSFDhvDuu+/i5+fHokWLGD9+fGkeZtlnSJn1P//zP4a3t7exb9+++/Y5f/684e3tbQwePNjyd19fX6NXr17G7du3Lf1u3bplhIaGGr6+vsa5c+cMwzCML774wvD29jZ69+5tZGVlWfoeOHDA8Pb2NsaPH3/f9+3fv7/h5+dX4GM4fPiwsWPHDsPPz8945ZVXjLS0NKt+HTt2NLy9vY1vvvnGqn3gwIGGt7e3kZiYaFXztGnTrPolJCQYzZo1Mzp16mRkZWUZqamphq+vrzFx4kSrWoKCggx/f39j7ty5lvZJkyYZTZs2NW7duvW7xyP25bfnl2EYxvz58w1vb29j0qRJlj6RkZGWn6Pr168bLVu2NDp06GBcu3bN0ic7O9sYOnSo4e3tbezZs6fEj0PKh9GjRxve3t7GX/7yF6NJkybGsWPHLNsGDhxoBAYGGhcvXrTa57PPPjO8vb2NVatWGYZhGIsXLza8vb2No0ePWvUbM2aM8dJLLxl37twp/gMppzRDVM7l/qvCwcEBgK+//prs7Gxef/11KlWqZOnn7OxMREQE2dnZfPXVV1ZjdOvWDScnJ8vf/f39AUhKSiqyOvfu3cvw4cNp2LAhixcvzveuOHd3d/74xz9atfn5+VnVsmnTJgCGDx9u1a9+/fr06tWLn3/+mePHj/Poo4/SokULqxmi3bt307ZtW/z9/S0zSQDbt2/n6aeftlo0LmXT0KFD8fHxISYmxuq/ca7du3eTlpbGgAEDqFKliqXd0dGRN954A4CNGzeWWL1SvkycOJHq1atz/PhxIiIiLL+/fv31V/bu3UtgYCDOzs6kpKRY/nTq1ImKFStaljQ89thjAMydO5c9e/ZYLqfNnTuXf/zjH1SsWLF0Dq4cUCAq51JSUgCoXr06ABcuXADurvm5V+4aoJ9//tmq/Q9/+IPV33ODVHZ2dpHVOW/ePDIzM4mPj8+zJui3deQGu3trycnJAe4eX40aNahWrVqe/e89vk6dOpGYmMjZs2e5ceMGx44do02bNrRu3ZoTJ05w48YNTp48yeXLl3W5rJyoWLEi7733Ho6Ojrzzzjt51lw86OfDy8sLBweHPD8fIgVVvXp1OnToAEBoaKilPSEhAcMw+Oqrr2jbtq3Vn/bt25OZmUliYiIAzz33HD179mT//v2EhYURGBjIkCFDiImJ4datW6VyXOWFnkNUzp04cQKAJk2aAP8XHPKTu+23M0dw91/HxS04OJihQ4cSFhbGhAkTWLFiRZ7wc+/f8/Og48sNcLnH16lTJ2bPns3u3bupU6cOWVlZtG3blkuXLrFw4UK+/fZbTp06hZOTU56ZKSm7/P39CQsLY8mSJXz44YfUqFHDss0wjPvuZxgGhmHk+fkQeVi5v7e6d+9Or1698u2TO0NdoUIFZs+ezfDhw9myZQt79+7l22+/ZceOHSxdupTPP//canZTCk4zROXcunXrcHR0pEuXLsDdS0eA5U6H3/rpp58AqFu3bskV+P+NGjWKNm3a0L9/fw4cOEB0dLRN49SvX5+kpCRSU1PzbMs95jp16gDg6elJw4YN2b17N/v27cPDw4PHH3+c5s2b88gjj7DVVCn8AAAKJUlEQVRv3z62b99Oy5Yt851xkrJr5MiReHp6Eh0dzeHDhy3t9erVA+zv50PKNw8PD+DuU6uDg4Ot/gQGBpKamoqLiwsAly5dYu/evTz++OOEhYURFRXF/v376d+/P+fPn7csG5DCUyAqx5YsWcKJEycIDQ21/MB16dIFR0fHPF/rcefOHaKionB0dCySy0OOjo4P/Nf2/fztb3/Dw8ODDz74wHL5ojC6du0KwIIFC6zaExMTWbt2LR4eHjz11FOW9k6dOhEXF8eePXsICgoC7s4gtWjRgq+//prvvvtOl8vKIWdnZ9577z0Mw+Cbb76xtD/99NO4uLjw6aefcv36dUt7Tk6O5RkyzzzzTInXK+VbzZo1ad68OVu2bLG6Ixhg1apVjB49mi+//BKAxYsXM3DgQI4fP27pU6lSJcvvtZKY0S+vdMmsHNizZw+XL18G7l4WSk5OZteuXezbt4+mTZsyceJES9+GDRsyfPhw5s+fz4svvkiPHj0wDIPY2FhOnz7NyJEjadCgwUPXVKNGDTIzM/noo49o2bJlvo+sz4+LiwtTp04lPDycCRMmsHz58gJdKssVGhrKl19+SXR0NBcuXKB9+/YkJSWxatUqsrKymD59utV4nTp1sjwbJCIiwtLetm1by4JrBaLyqVWrVvTr148VK1ZY2qpUqcI777zDxIkT6dmzJ71798bFxYVNmzZx8OBBevXqRZs2bUqxaimvJk+eTL9+/XjllVfo27cvnp6enDhxgn/+8594enoyaNAgAF599VXWrVvHkCFDePnll6lbty4XLlxg5cqV1K1bV19P8xAUiMqBRYsWWV47Ojri5uaGl5cXEyZMoG/fvnnWPIwYMYJGjRrx6aefMn/+fJycnGjSpAkLFiywXFp7WEOGDOH06dMsWrSIwMDAAgcigHbt2tGjRw9iY2P57LPP6NevX4H3rVChApGRkSxdupTY2FhmzpxJlSpVCAoKYtiwYTRu3Niqf/PmzalWrRqpqalW/6PLfe3t7W25zCjlT+53TeUuWAXo1asXjz32GFFRUURFRQF3F1RPnz6d3r17l1apUs75+vryxRdf8NFHH7Fu3TquXbtG7dq1eeWVV4iIiLBctm/YsCErVqzg448/5osvviAlJYXq1avTrVs3RowYUeLfW1meOBi2XNcQERERKUd0sVFERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhERERMT4FIRERETE+BSERERExPgUhEStz8+fPx8fHJ8ycgIIBOnToxYcIEm77ct6Skp6czfvx4goKCCAgIYPDgwaxZswYfHx8+/PBDq74nT55k8+bNpVSpiBSUvstMREpNYGAggYGBABiGQUZGBufOneNf//oXmzZtIiYmBi8vr1KuMq+FCxdaAlCHDh1o0KABvr6+jBgxglatWln6bd++nYiICF5//XWeeeaZUqxYRH6PApGIlJrAwEDeeOONPO0bNmxg9OjRzJkzx+rLi+3FyZMnAXjvvffw9/e3tPv6+lr1S05OJicnp0RrExHb6JKZiNidbt264ebmxv79+0u7lHzduXMHwPIN5CJS9ikQiYjdcXBwwMnJiUqVKlm1//rrr8yePZsuXbrg5+dHcHAwo0eP5syZM1b99u/fj4+PD8uWLWPz5s307t2bpk2bEhgYyJtvvklCQkKe9yzI2LmXyeLi4gDo3LkzPj4+/Pzzz3nWEL366quMHz8egEWLFuHj42MJeKmpqUydOpXnnnuOgIAAgoKCCA8PZ8+ePUX3IYpIoeiSmYjYnY0bN3Lt2jX69u1rabt69SqvvPIKFy5cICgoiK5du/LLL7+wceNGtm7dypIlS2jZsqXVOOvXr+f48eN07NiRwMBADh48yP/+7/9y5MgRNm/eTMWKFQs1du46obVr15KYmMhrr71GlSpVqFKlSp5jCA0Nxd3dnS1bttCqVSvatGmDh4cHd+7cITw8nJMnT9K5c2eeeeYZkpKS2LhxI7t37yYyMpL27dsX7wcsInkoEIlIqYmLi2P+/PmWv9++fZuzZ8+ybds2goKCGDt2rGXb1KlTuXDhAtOmTaNPnz6W9kGDBvHSSy8xduxYvvrqKypU+L9fa8eOHWPhwoV06tQJuLtwOywsjL179/L111/zpz/9qVBj+/r64uvrS1xcHImJiQwYMIB69erle2x/+ctfACyBKHet1NatWzl+/DjDhg3jzTfftPTv1asX/fr149NPP1UgEikFCkQiUmri4uIsl5/u9Yc//IHU1FRcXV1JSkpiy5Yt+Pv7WwUWuLuQuUePHsTExLB79246dOhg2ebt7W0JQ3D3Utwf//hH9u7da7lsZuvYtjIMA7i7MPvmzZu4uLgA0KpVK7766ivq1Knz0O8hIoWnQCQipWbEiBFWd5ndvn2bq1evsmHDBv77v/+bAwcO8K9//YsTJ05gGAZ37tyxmlHKdfnyZQC+//57q9DSsGHDPH3d3d0ByMzMBLB5bFsFBwfj6enJtm3bCAkJISgoiODgYNq1a5dvvSJSMhSIRMRuODs7U79+fSIiIkhNTWXZsmUsX77c8iyiH374gR9++OG++1+7ds3q7/cuyoa7s0TwfzM1ufsUdmxbPfLII6xevZqoqCjLGqWtW7cC8NRTTzFlyhQCAgKK5L1EpOAUiETELgUHB7Ns2TJOnTplCQh9+/ZlypQpRfo+rq6uxTb2/Tz66KOMGzeOcePGER8fz549e9i0aRN79+4lPDycb775Bjc3txKpRUTu0m33ImKXUlNTAXBzc7M88PC7777Lt++GDRuYN28ep06dKvT7FOfYubNRv7Vz506mT59OfHw8AA0aNKBv374sW7aMoKAgrl27xunTpwv9XiLycBSIRMTu3Lx5k+XLlwPwzDPPULduXUJCQjhx4gSffvqpVd+zZ88ydepUoqKibJpVKc6xc+94y8rKsrRdvHiR6OhoFi9ebNX39u3b/PLLLzg6OuLh4VHo9xKRh6NLZiJSau697d4wDJKSkti8eTMpKSl07tyZZ599FoBp06bRr18/ZsyYwaZNm2jatCm//vorGzdu5ObNm0ycOPG+t8D/nuIaO/eOsdjYWAB69OjBCy+8wOrVq/n888/54YcfaNWqFZmZmezYsYP4+HgGDRpE7dq1bToOEbGdApGIlJp7b7t3cnLC3d0db29vunfvzosvvmi57OTh4cGaNWuIjIxky5YtREdHU7VqVVq0aMGgQYMICQmxuY7iGrtVq1YMGDCAtWvXsmLFCjw9PfH29ubvf/87n3zyCV9//TX/+Mc/APDx8WHYsGH07NnT5uMQEds5GLm3WoiIiIiYlNYQiYiIiOkpEImIiIjpKRCJiIiI6SkQiYiIiOkpEImIiIjpKRCJiIiI6SkQiYiIiOkpEImIiIjpKRCJiIiI6SkQiYiIiOkpEImIiIjpKRCJiIiI6f0/t3NgSTVrvToAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["o = labelDict['label_benefits']\n","g = sns.barplot(x=\"care_options\", y=\"treatment\", hue=\"Gender\", data=train_df)\n","g.set_xticklabels(o)\n","plt.title('Probability of mental health condition')\n","plt.ylabel('Probability x 100')\n","plt.xlabel('Benefits')\n","\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"bebe13ce-94d5-487c-88b8-7a634f361223","_uuid":"9cfc643a94d39e2c06ed870c306deee6a9219b60"},"source":["Barplot to show probabilities for work interfere"]},{"cell_type":"code","execution_count":108,"metadata":{"_cell_guid":"1606646f-0db7-41f9-b4bc-f8f2c982087c","_uuid":"a7f3daeded334645d4cf5bd202e3116811159481","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAkQAAAHUCAYAAADbbjeEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1wT9/8H8BcJRPZQHIAiag2o4N64pVZF67ZaF1brqtZvHdVqq1atdY9arEq1CiKKtW5b68KttdataJ0sRdlbJLnfH/ySEsMIIZAAr+fjweNx+dzn7t65yyVvPve5zxkJgiCAiIiIqBwT6TsAIiIiIn1jQkRERETlHhMiIiIiKveYEBEREVG5x4SIiIiIyj0mRERERFTuMSEiIiKico8JEREREZV7TIiIiIio3GNCRMXut99+g6urq9pfvXr10KRJE/To0QNLlixBTExMsWw/IiICrq6uGDp0aLGsv0uXLnB1dUVWVlaBda9cuQJXV1fMmDFDWTZ79my4urri4sWL+a4zMzMTmzdvhkwm0+0bKKSQkBD07t0bHh4eaNWqFS5cuKDXeIrq/v37OH78uNbLKz7fa9asKbBuYT4rxSmvcyIlJQVbt25VKcvt81kWjRgxAq6urnj+/LmyzNXVFR06dFCpV573UVlnrO8AqPxwc3ODl5eX8rUgCEhPT8f169exfft2/Pnnn9izZw8qV66sxyiLl5OTEyZPngxXV9d8640cORLJyckQif77n2X48OG4efMmPvnkk+IOM08JCQmYOnUqsrKy0K9fP1hbW+O9997TWzxFdebMGUyYMAHjxo3D+++/r+9w9O6DDz6AWCzW62fMkEyePBmWlpYqZbntIy8vLzg5OaFGjRolHSLpEBMiKjH16tXDlClTcp335Zdf4sCBA1i/fj0WLlxYwpGVnOrVq+e5D3Ly8fFRKyuuFrTCePr0KTIyMtCpUycsXrxY3+EUWWxsLORyub7DMBgxMTGoWrWqvsMwGLmdq7ntIy8vL5V/9qh04iUzMggTJkwAAJw+fVrPkVB+MjMzAQB2dnZ6joSISLeYEJFBcHR0BADEx8cry0aMGIEmTZrg+vXr6NGjBzw8PODt7Y309HQA2Zdvli1bBi8vL7i7u6NVq1aYOHEibty4ked2Ll++jMGDB6Nhw4Zo164d5s6di+joaLV6r169wtKlS9GzZ080btwYHh4eeP/997F48WKVGHOKiIjA5MmT0aRJEzRr1gzjxo3DrVu3VOrk1ocoNzn7miiWiYyMBAA0aNAAI0aMwNGjR+Hq6oqvvvoq13V88cUXcHV1xb///pvvtgDgwIEDGDJkCJo0aYJGjRqhX79+CAgIUOmv1KVLF4wcORIAsG/fPri6umL27Nl5rlPRT+W7777DpUuXMGzYMDRu3BitW7fG3LlzkZKSgoSEBMybNw9t2rRBs2bNMGLECNy+fVttXe8e67Zt22LatGl4/PixSj3Fvtq2bRuOHz+OQYMGoVGjRmjZsiX+97//ISwsTFl3xIgRyn23ceNGuLq64sqVK8r5f/75J8aMGYM2bdqgQYMGaNGiBUaOHImTJ08WuD8L8vLlS8yePRtt2rRBw4YN0bt3b+zevTvXumfOnIGPjw+aN2+Ohg0bok+fPggICMi1Zevu3buYMWMGOnXqBHd3dzRp0gR9+/bF1q1b8+17pugHBQDR0dG5HtuMjAysXbsWXbt2hbu7Ozp37ozly5crz0dNXLp0CePHj0fr1q2VsQUFBanFpum5nfMzdvXqVeV3RtOmTTFu3DjcvXtXLYaYmBgsWLAAHTp0QMOGDfHRRx/h0qVLucabsw9Rfvsorz5E//77L6ZPnw5PT0+4u7ujU6dOmDdvHl68eKFST7HuEydOIDg4WNlHr23btvj6668NonW4POAlMzIIz549AwBUq1ZNpfzt27eYMGECmjZtio4dOyIjIwNmZmZ48eIFPv74Y0RFRaFRo0bo2rUrXr58iZMnT+LMmTNYsmQJ+vbtq7KuJ0+eYOzYsWjSpAmGDx+OW7du4ddff8X58+exZ88eVKlSBUD2l92AAQMQHx+Pzp07o0uXLkhOTkZISAgCAgLwzz//4LffflN7D8OHD4eFhQWGDBmCqKgoHD9+HBcvXoSfnx/atGmj9b5R9Dvavn07kpOTMWnSJNSoUQNeXl6wtbXFsWPHMH/+fJiamiqXSU5OxsmTJ+Hh4YG6devmuW5BEDB37lzs3bsXlStXRo8ePWBiYoJz585h8eLFOHfuHDZs2ABjY2OMHDkSoaGh2Ldvn7I/WL169QqM/8qVK9i5cyc6dOiAoUOHIiQkBL/++itiY2MRGRkJuVyODz/8EBEREThx4gQ+/fRT/Pnnn7C2tgaQnZx+/PHHCA8PR6tWrdCtWze8fv0af/zxB06fPo2ff/4ZzZo1U9nm4cOHcefOHXTu3BktW7bEtWvX8Pvvv+PGjRs4fvw4TExM0K9fP1hZWeHkyZNo3rw5WrduDScnJwDADz/8AF9fXzg7O6Nnz54wNTXFo0ePcObMGVy5cgU//fQTunTpos3hBAB89NFHsLS0RJ8+fZCcnIzDhw9j3rx5yMzMxIgRI5T1/Pz8sHLlSlSsWBEffPABrK2tcf78eSxevBhXr17FunXrYGRkBAA4f/48JkyYADMzM3h5ecHe3h4vX77EiRMnsGzZMrx+/RqzZs3KNZ569eph8uTJ+PHHH2FhYYHRo0erHdtvvvkGWVlZ+OCDDyCRSHD8+HFs2bIF4eHhWL9+fYHveceOHVi8eDHMzMzQpUsXVK5cGSEhIViwYAFCQ0Px7bffAoBW5/bff/+NnTt3okWLFhg6dCgePnyIM2fO4OrVqzh58iQqVqwIIPsS6UcffYSIiAi0bNkSPXr0wK1btzB27Fjl5y0vmuyjnM6fP4+JEyciKysLHTt2hIuLC+7fv4/du3fjzz//xLZt2+Dm5qayzMaNGxEaGopu3bqhQ4cOOHv2LPbs2YOHDx8iODi4wH1MRSQQFbO9e/cKUqlUmDVrVq7z3759K4wfP16QSqXCihUrlOXDhw8XpFKpMG3aNLVlxowZI0ilUsHX11el/M6dO0Ljxo0Fd3d3ISoqShAEQQgPDxekUqkglUqFpUuXqtRfs2aNIJVKhdmzZyvLFi5cKEilUmHfvn0qddPT04UuXboIUqlUePjwobK8c+fOglQqFYYOHSpkZGQoy8+dOyfUq1dP6Nq1qyCTyQRBEITLly8LUqlUmD59urLerFmzBKlUKly4cEFtnW/fvs23TBHroUOHVGINCgoSpFKpEBgYqLbvcjpy5IgglUqFgQMHCrGxscry1NRU4ZNPPhGkUqmwefNmZbki/ryOZU4597u/v7+yPC4uTmjUqJEglUqF4cOHC5mZmcp506dPV3s/kyZNEqRSqbB7926V9d+7d0/w8PAQOnfurNwnivikUqlw8uRJZV25XC6MGjVKkEqlwtGjR5Xlis/m6tWrlWWvX78W6tevL3h7ewtpaWkq29y5c6cglUqFKVOm5LuOvCiO4cSJE1Xe9/nz5wWpVCr06tVLWXb37l3Bzc1N6NWrlxAXF6csl8lkwrRp09T2Sa9evQR3d3fhyZMnKtt89OiR4OrqKrRq1UpZpjg2Q4YMUakrlUqF9u3bq5QpPp9dunQRXr9+rSyPjY0VmjVrJri6uqp8dnITHh4uuLu7C+3atROePXumLM/IyBD69esnSKVS4cGDB4IgaH9u5/yMCYIgzJ49W5BKpYKfn5+ybO7cuYJUKhXWr1+vUnfVqlXK9eSML7f9kd8+UpzDKSkpQuvWrYUGDRqonNeCIAi7d+8WpFKp4O3tLcjlckEQ/vsMNWjQQLh9+7ay7ps3b4Tu3bsLUqlUuHnzZl67l3SEl8yoxNy/fx/r169X/v3www/49ttv4e3tjdOnT6Nu3brKvkQ59ejRQ+V1dHQ0zp07h9q1a2PSpEkq8xo0aIAxY8YgMzNTrRXHzs5OrZPk5MmTYW9vj6NHjyr7x3h7e+Pbb7/Fhx9+qFLX1NQUjRs3BgDExcWpxTl79mxUqFBB+bpdu3bw8vJCeHg4/vnnn4J2j1YGDBgAANi/f79K+f79+1GhQgX06tUr3+V//fVXAMDXX3+t/C8aAMzNzbFgwQKIRKI8L+VoysLCAh9//LHytZ2dHWrXrg0gu/O4iYmJcl7Tpk0BQHl5MCYmRtnSNXjwYJX11qtXD3369EFkZKTarf9SqVSlBcfIyAidOnUCAJXLZrkxNjbG8uXLsWjRIpiZmanMa926NQDkedlUU5MmTVJ5356enjA3N1e55XvPnj2Qy+WYMWOGSp8tkUiEL7/8UlkHyG7pmzp1KlatWoVatWqpbKtOnTqwt7cvcszDhg2Dvb298nXFihXRtGlTCIKA8PDwfJdVnF9jx45FzZo1leUVKlTAV199hSlTpkAsFmt9bltbW6t8xgAoj7/ieL99+xZHjx5FpUqVMHHiRJW6n3/+ucp7K6pTp04hLi4OAwYMQNu2bVXmDR48GC1btsS///6La9euqcxr164d3N3dla8lEgk8PT1V3gcVH14yoxITGhqK0NBQ5WuRSAQLCwvUrFkTU6ZMgY+Pj9otrkD2nVk53bt3DwDQokWLXLfTvHlzANkJWE4NGjSAubm5SpmxsTE8PDxw+vRpPHnyBG5ubmjatCmaNm2KlJQUPHjwAGFhYQgLC8P9+/eVfUze7b8hkUjg4eGhFkvjxo1x7Ngx3Lt3TxmXLtWvXx/16tXDxYsX8fr1a1SuXBlPnz7F9evX4e3tXeBlgLt378LU1DTX2GvUqIFq1aohPDwcKSkpuR4bTdSoUQNisVilzMLCAgDg7OysUq647KdITu/evQtBEJCZmZnrZZmXL18CyP5MdOzYUVn+blIAAFZWVgCyfxjzY2trC29vbwDZl3IfP36MiIgIPH78WPkDVtSxoFxcXNTK7OzsEBkZCZlMBrFYrOxLde7cObW+aED2vrp//z4EQYCRkZHyLqfXr1/j4cOHCA8Px7Nnz3D79m3ExsYq4373WBQlZkUSnZaWlu+yinOxSZMmavNatGihPJcVN1UU9tzO7TP27vF+/vw5UlNT0axZM7W6xsbGaNy4MU6cOJHv+9CU4juqZcuWuc5v0aIF/vrrL7Xvhdw+t4pzuKDPLRUdEyIqMf369cPSpUsLvdy7/6UnJycD+O8L712KW2Lf7eyZ13+Aih9nxZd6SkoKVqxYgf379yMjIwNA9hd/o0aN4OzsjNDQUAiCoLZuRV+O/NZdHAYMGIDFixfj8OHDGD16tLK1qH///gUum5KSAhsbG5XxjnKqWrUqoqKikJaWpnVC9G4SmpNEIsl32cTERADAgwcP8ODBgwLr5bdexfF599jlJiQkBKtXr1Zu09jYGO+99x48PDzw6NEjjdaRn5z9vd6lWHdSUhIAICAgIN91paamwtLSEo8fP8ayZctw9uxZ5Tpq1KiBZs2a4d9//0ViYmKR4tYk5rwkJCQAQIGfIW3P7ZwtswrvHm/F/sxr3ba2tvnGVhiK95HX+83rfRT1c0tFw4SISh3Fl0xud4cB/33xvfsFpyh/l2I9NjY2ALLHRDp58iR69uyJjz76CHXr1kWlSpUAZN+5lbOVq7DrLg69e/fG8uXLlQnR4cOHUa1aNbWm+txYWloiPj4emZmZuX4ZKxINXf5YFIYioRw6dCgWLFhQItu8ffs2Jk2aBGtrayxevBiNGzdGzZo1IZFI8PjxY+zbt69E4lC894sXLyo/f3lJS0uDj48PYmNjMXHiRHTu3Bl16tRRrkNx2UVfFHGkpKSozcvKyoJcLodEItH63NaEYpm8zlVd/tOieB+vXr3Kdb6+zyvKHfsQUalTv359AMCNGzdyfQSC4rKWVCpVKb97967apS7FZTErKyvUqlULSUlJOHXqFJycnLBmzRq0bt1a5cfo0aNHANT/W0tJScHTp0/VYvn7778BINdLUrpia2uLrl274s6dOwgJCUFERAT69u2bZ6tPTvXr14dcLlfrywBk/yg9e/YMLi4uBbbkFBfFXTy5XTICgCNHjmDt2rW5JqmayK1V79ChQ5DJZJg5cyYGDRqEunXrKt9/Xse/OCje+82bN9XmpaSk4LvvvsOOHTsAZCdNr169Qu/evTF16lQ0bNhQmYTExcUp+7zpq5VBcTdVbu8lJCQEDRs2xKZNm7Q+tzXh7OwMW1tb3L59W3lJVkEQhDw/Y9pQvI+rV6/mOr8o74OKDxMiKnWqVauGdu3aITw8HBs2bFCZFxoaii1btkAikaBnz54q86KjoxEYGKh8LQgCVq5ciaSkJAwcOBAikQgSiQQikQjp6elq/81u3rwZDx8+BIBcv6zXrVun0rfk6NGjuHLlCho0aKDSUVJbik64uW1b0blaMcq3JpfLci63fPlylU636enpmD9/PuRyucbrKg6Ojo7w9PTE3bt3sX37dpV5T548wbfffovNmzdrfTnP2Di7kTznPlVcGlL0u1F48eIFVq9erVa/uAwcOBAAsGLFCrx+/Vpl3qpVq+Dv76/sS6OI+d3xat68eYNvvvlG+Y9AQXGbmJgUy3vr3bs3xGIxtm7dquwwD2T3FfPz8wMAtG/fXutzWxPGxsbo168fEhISsGrVKpXkcOvWrYiIiNBoPZrso65du8LW1haHDx9W6/C/f/9+nD9/HrVr11bepEGGgZfMqFRauHAhhg0bBl9fX1y4cAGNGzdGdHQ0Tp48CblcjkWLFqk9V8jZ2RlLlizBhQsXUKtWLfz999+4desWGjRogM8//xxA9g9Ljx49cPjwYfTv3x+dO3cGAGUHSHt7e8TExKjdsWNtbY0rV65g4MCBaNu2LZ4+fYpTp07B1tYWy5Yt08l7dnBwwLNnz/Dll1+iWbNmGDVqlHKep6cnHBwcEBkZiWbNmqncyZOfXr164dy5c9i/fz969+6Njh07wsTEBOfPn0d4eDjat2+PMWPG6CR+bS1atAjDhg3DkiVLcOzYMTRq1AgJCQn4448/kJaWhrlz56p1vNeUg4MDgOyBKQGgT58+8Pb2xi+//IK1a9fi7t27cHZ2RlRUFE6dOgUTExOYmJgo+8QUp6ZNm2LSpEnYsGEDvL290aVLF9jZ2eHq1au4ffs2ateujWnTpgEAmjVrBhcXF5w/fx7Dhg1DkyZNkJSUhDNnzuD169ews7NDfHw8EhIS1Prkvbs/wsLCMGfOHLRs2VJtvB9t1axZE19++SW+//579O3bF127doW1tTVCQkLw/PlzTJgwQdmqos25rakpU6bg0qVL2LZtG65fv46mTZsiNDQUly9fhrOzs0Z3cmmyjywsLLB8+XJMnjwZY8eORadOnZTjEF26dAl2dnZYvXp1ri2UpD9sIaJSycnJCb/99htGjRqFmJgYBAYG4urVq+jSpQuCgoJybdVo1qwZfvzxR7x48QIBAQF49eoVxowZg4CAAJWOv4sWLcL48eMhCAKCgoLw+++/w9LSEitWrMC6desAZDfz52RlZYUdO3agYsWKCAwMxN9//42ePXvi119/zXdgxMKYMWMGXF1dcerUKeWlEgWRSKQcnqCwLTpLly7FkiVL4OTkhCNHjuDgwYOws7PDggULsHnzZmUrir4ojrWPjw9evXqFgIAAnD17Fk2bNsXWrVuVo2dro3nz5hg1ahTevHmDHTt24ObNm3B1dcUvv/yC5s2b4/Lly9ixYwfu37+PDz/8EAcPHkTz5s0RHh6uNkp2cZg6dSo2bNiA+vXr48SJE9i5cydSU1MxYcIEBAUFKS/nmpmZYevWrejVqxfCw8Ph7++PixcvwsPDAzt37lTuo4IejTNv3jzUrFkTBw8e1HlfKR8fH2zevBn169fH8ePHsXPnTpiZmWHx4sX44osvlPW0Obc1ZWFhgcDAQIwZM0a57ri4OKxfv15tcM+8aLqPOnbsiD179qB79+64ceMGAgICEBYWhhEjRuDAgQMaDWpKJctIYNd1ojLBx8cHN2/exPnz55X9R4iISDNsISIqAy5fvozLly+jT58+TIaIiLTAFiKiUuyrr77CnTt38PjxY5iamuLIkSPKfjFERKQ5thARlWJVqlRBeHg4ateujZ9++onJEBGRlthCREREROUeW4iIiIio3GNCREREROUeEyIiIiIq9zhStYYEQYBczu5WREREpYVIZKTxiOBMiDQklwuIi0vVdxhERESkoYoVLSAWa5YQ8ZIZERERlXtMiIiIiKjcY0JERERE5R4TIiIiIir3mBARERFRuceEiIiIiMo93nZfjGSyLMjlcn2HUSqJxWKIRGJ9h0FEROUEE6JikJ6eitTUJGRlZeo7lFLMCGZmFrC2rqjxoFpERETaYkKkY+npqUhMjIFEYgZb28oQi8UA+INeOALevMlASkoCTEwqwNzcUt8BERFRGWfwCdGNGzcwdOhQBAUFoXHjxgXWDwsLw6pVq/DXX38hIyMDTZo0wbRp0+Du7l4C0QKpqUmQSMxgZ1eZLRtFYGJSAVlZb5GSkgAzMwvuSyIiKlYG3ak6LCwMU6ZM0bgfTnR0NIYNG4YrV65g+PDhmDp1Kp4/f47hw4cjNDS0mKPN7jOUlZUJc3NL/oDrgKmpOeRyGfthERFRsTPYhOj06dMYNGgQXr16pfEyvr6+iI2NxbZt2/DZZ5/Bx8cHQUFBMDExwbJly4ox2myKH+7sy2RUVIpO1XK5TM+REBFRWWeQCdH06dMxYcIEVKxYEd7e3hotI5PJcOjQIbRq1Qpubm7K8ipVqsDb2xuXLl1CdHR0cYX8DrYO6QJb2YiIqKQYZEL06NEjTJkyBfv370etWrU0Wubff/9FWloaGjZsqDbPw8MDgiDg9u3bug6ViIpBVFQklixZgCVLFiAqKlLf4VAZw8+X4TCkY2GQnar37NkDiURSqGUUrT8ODg5q86pUqQIAiIws2s42Ns4/f5TL2aJRHMRiowL3PZUt/v5bcOvWDQBAQMBWzJ07X88RqTMyMoJIVDLnvFwuQBCEEtlWeVAaPl/lhSEdC4NMiAqbDAFAcnIyAMDMzExtnqIsPT1d65hEIiPY2VnkWycjQ4yYGBF/wHVELjeCSCSCjY05TE1N9R0OlaAXL/775yUqKqLAc08f5HI5RKKSOc9LclvlQWn4fJUXhnQsDDIh0oaiQ3N+/U6K8oUilwtISkrLt05m5hvI5XLIZAKysjS7MyopKRHHjx9DSMhJREZGID4+Dubm5nB2dkG7dh3Qr99AmJvr/2T97rsF+P33w1izxhctWrQqkW3KZALkcjkSE9OQns6O1eWJXC6oTMfHp+oxGnVisQjW1mbYdMYfUYnF2zfR0aYqxncciaSkdMhkvONSFwz981WeFPexsLY2g1is2W9/mUmILCyyk4aMjAy1eYqWIUvLog3wV1CSI5MVrkn76tXLWLRoPuLiYlGjhjNatWoLW1tbJCUl4urVK/jpp/XYs2cXVq9ej9q13ytK6KVaYRJMKhtyXh4SBMM9/lGJ0XgeG1Ei25LJ5Aa7H0qb0vL5Kg8M6ViUmYSoevXqAJDrnWSKW/dz61+kL3fv3sGMGVNhamqKRYuWonNnL5X5crkcv/66G+vXr8acOTOxffsuVKhQQU/REhERlW1l5qJ0rVq1YGFhkeudZIqyRo0alXRYucrKysKiRfMgk8mwePFytWQIyL68N3jwUPTq1RcREeE4ceKYHiIlIiIqH8pMC5FEIkG3bt1w6NAhPHz4EFKpFEB269CRI0fQvn17VKxYUc9RZrt69QoiIsLQqlXbAvvjDBr0ETIz38DR0UlZJpPJsG/fHhw9egjPnz+DsbEx3NzqY+jQEWjduq3K8u3aNUf79h0xduxEbNrki1u3riMrKwtubvXh4zMWzZu3VKmflpaG7du34NSpE4iNjUGNGs4YOXJ0nvG9ehWNbdt+xuXLFxEXFws7u4po3doTn3zyKSpXrqKsd/ToISxZ8i3mzJmPy5cv4vz5szA3N8fMmXPQsWPnwuw+IiIinSu1CdH169cRFhYGT09P2NvbAwA+//xznD59GqNGjcLo0aNRoUIFBAQEQCaTYebMmXqO+D8hIScBQKNEoHbt9/DNNwuVr2UyGebMmYELF87BxaU2evfuB5lMhrNnT2HGjM/x+efTMXjwUJV1hIeHYcKET+DiUgu9evXFy5cvcObMKUyfPgW//BKo7J/05s0bTJkyHg8e3Ieraz106NART58+xfz5c1Cpkr1abE+ePMbnn09AYmIC2rRpBxeXWoiMDMeRIwdw4cJZ/PjjZjg711RZZuPGH2Fubo6BAwfj8ePHcHf3KPT+I6KSExUViW3b/AAAPj6fqvxzRlSWlNqEaPfu3di3bx/8/f2VCZGjoyN27tyJFStWYOPGjRCLxWjYsCF++OEHuLq66jni/0REhAMA6tSpW+hl9+4NxoUL59C9uzdmz/4GxsbZh/DTTydi0qQx8PVdi1at2qBmTRflMs+ePcWQIcMxefL/lGW//OKHLVs2Yd++vZg+fRYAYNeuHXjw4D569eqDL7+cq7wrb//+vVi58nu1WBYvnoekpESsWLFOpWXq0qULmDlzKr7//lv89NNWlWUyMjLg778btra2hX7vRFTytm//b5wYf/8tmD17np4jIioeBp8QTZkyBVOmTFErX7p0KZYuXapWXqdOHWzcuLEkQtNaXFwsAMDa2lptXmjoPVy4cE6t3MLCAkOGDMfBg/sgFovxxRczlcmQYl0jR47BwoVf48iRg5g06XOV5UeM8FF57enZHlu2bEJkZLiy7NixoxCLxZg06XOVIQr69h2AQ4f248GD+8qy+/fv4uHDB+jc2UvtMl2bNp5o0aIVrl69gmfPnsLF5b/Rxps1a85kiKgUyfkdofhnjqgsMviEqCyysbFFeHgYkpKS1OaFht7DL7/4qZVXrlwFffoMwLNnT2BhYYFduwLV6sTHxwMAHj4MfWd7NrCxUU1CLC2tAABv374FALx5k4GwsOdwcakFa2sbtXU3atT4nYTo3v9vMw5btmxSq68Y6uDhw1CVhIjN7UREZIiYEOmBo6MT7ty5hfDw52jQwF1lXt++A9G3703QSrcAACAASURBVECVsnbtmgMAUlKyR+NOTU3NNWlSeDfRkkjUb9dXDGCpGANCMdK3hUXuYzW9myQlJ2dv48aNf3Djxj/5xJKo8rpCBY44TUREhocJkR507NgFf/75O06fPoHu3b01Xs7c3BwA4OJSCzt27NFpTIqER5F0vevdx54oRs+eOHEKhg0bpdNYiIiISlqZGYeoNGnbth0cHZ1w8eJ5XLp0Id+6ikeSANmtN46OToiICEdiYoJa3QcPQuHruy7XPkgFkUgkqFPnPUREhCv7OOV0967q+E5SaXYn9Xv37uS6vt9+24OtWzfjxYuoQsdCRERU0pgQ6YGJiQkWLvwexsbGmDfvKxw+fEAl8VF4+DAUU6dOBPDfJa5evfogKysLq1YtU/b/AbJbcFauXIKgoIA8W3kK0rt3X8hkMqxdu1Jl3adOnVC7LObh0Qg1a7rg7NkQnDlzWmXerVs38MMPqxAcvFOt7xIREZEh4iUzPXFzq4/16zfh22+/wdKli/DzzxvRvHlL2NtXRkpKCu7cuYVHjx4CABo1aoJp07Jvjf/445G4du1vnDp1HA8fPkDLlq0gEolw9mwIXr2KRufOXvDy+kCrmPr1G4QLF87h1KnjePr0MVq0aIUXL6Jw/vxZVK/ujIiIMGVdkUiEb75ZhP/9bxLmzp2Jli3b4L333kN09EucPRsCQRDw1VfzlZf5iIiIDBkTIj1yd28If/9dCAk5iZMn/8TNm9cRGxsDiUSCqlUd0L//IHTr1gPu7g2VyxgbG2PVqh+wd+9uHDt2FEeOHISJiQmqV3fGqFFj4O39IcRisVbxiMVirFixDjt3+uPo0cPYv38vqlSphhkzvkJMzGu1jtxubvWwdesOBAT8gitXLuGff67Czq4i2rRphxEjfFCvXoMi7R8iIqKSwoRIz8zMzNCjRy/06NFL42WMjY3x0UfD8NFHwwqse/7837mWOzg45jrP2NgYI0d+gpEjP1GbN2bMeLUyR0cnzJr1dYFx9OzZGz179i6wHhERkT6wDxERERGVe0yIiIiIqNxjQkRERETlHvsQEVGJEImMIBIZaVRXMcyEYtrYWPP/3eRyAXK5UOj4iKh8Y0JERMVOJDKCra05xGLNEpuciZNIZAQ7OwuNtyWTyZGQkMakiIgKhQkRERU7kcgIYrEIvkEXEPkqscD68UnpKtNz1h3VaDtOVWzw2VBPiERGTIiIqFCYEBFRiYl8lYhnkfEF1suSyVWmNVmGiKgo2KmaiIiIyj0mRERERFTuMSEiIiKico8JEREREZV77FStJ4UZk6UkcQwXIiIqj5gQ6UFhx2QpSboawyUuLhabN2/A5csXkZKSjLp1pfjkk3Fo0aK1jiIlIiLSHSZEelDYMVlKiq7GcElLS8P//jcJkZERGDz4Y1SuXAUHD+7D9OmfY+XKH9CyJZMiIiIyLEyI9EjTMVlKm717d+PJk8dYtmwNPD3bAwC6d/fG6NEfY/Xq5QgK2qvyaAYiIipYVFQktm3zAwD4+HwKR0cnPUeUu9L6mB4mRKRzx44dRfXqNZTJEACYm5vjww/74aef1uPu3Ttwd/fQY4RERKXP9u1bcOvWDQCAv/8WzJ49T88RqROJjGBrZwaxSKxx/ZzThXpMj1yGhPh0nSVFTIhIp1JSUvD8+TO8/353tXn16jUAANy7x4SIiKiwIiPDldMREeH51NQfkcgIYpEYm874IyoxusD6CWmJKtPzD67QaDuONlUxvuNInT6mhwkR6dTr168gCAKqVKmqNs/e3h4A8PJlVEmHRUREJSgqMRrPYyMKrJcll6lMa7JMcWFCRDqVmpoCADA1NVWbZ2pqBgBIT88o0ZiI8lJa+mQQUfEzvPu+qVSTy7Mfyplbp2lByG7WNMTxl6h8UvTJuHXrBvz9t+g7HCLSIyZEpFPm5tkd4jIy1FuB3rzJLrOwsCzRmIjyUhr6ZBBRyWBCRDrl4OAAAIiJea02LyYmBgBQtap6/yIiIiJ9Yh8i0ikLC0vUqOGM+/fvqc27f/8uAKB+ffeSDouIciit48QQFScmRKRzXl4f4Jdf/HD58kW0bt0WQPbo1QcP7oOLSy24udXXc4RE5VdhHx1UpHFidPQoIKKSwIRIj5yq2Og7BBW6imfo0OE4duwovvlmFj76aBgqVbLHwYO/4eXLF1i58geOUk2kR4V9dFB8UrrK9Jx1RzXajq4eBURUUpgQ6YFcLkAmk+OzoZ76DkWNTCYv8peXubkFfH398NNP67F3bzCysrLw3nt1sWaNL5o2ba6jSImoKDR9dFCWTK4yXRYfN0QEMCHSC7lcQEJCmkHefq6ra/6VK1fBvHmLdBARERFR8WNCpCfsbEhERGQ4eNs9ERERlXtMiIiIiKjcY0JERERE5R4TIiIiIir3mBARERFRuceEiIiIiMo9JkRERERU7jEhIiKDY2xqk2PaVo+REFF5wYSIiAyOVY3WkFg7QWLtBKsarfQdDhGVAxypmogMjrGpDezqfqDvMIioHGFCREREpCcikZHGz7U0MjJSmTY21vwiDx8XVTAmRHpSmJOgJPGkISIqGSKREWxtzSEWa5bY5PzNEImMYGdnofG2ZDI5EhLS+P2eDyZEepD9QTaDSCTWdyhq5HIZ4uPTdXrS3LlzG5MmjcGGDVvg7u6hs/USEZVmIpERxGIRfIMuIPJVYoH145PSVabnrDuq0Xacqtjgs6GeEImMmBDlgwmRHmS3Donx9LAf0mNf6DscJbNKDqjV61OdnjSRkRH4+usvIZfLdbI+IqKyJvJVIp5FxhdYL0smV5nWZBnSHBMiPUqPfYH06DB9h1FsLlw4hyVLFiAxseD/fIiIiPSJt91TsViwYC5mzfoCtrZ26Nq1m77DISIiyhcTIioWz549xZgx47F1ayCcnWvqOxwiIqJ88ZIZFYvNm7dBIpHoOwwiIiKNMCGiYsFkiPRJ09uYtR3XRdP1E1HpYZAJUUxMDNasWYOzZ88iOTkZbm5umDJlCjw9PQtc9vbt21i7di2uX7+OrKws1KtXDxMnTkSnTp2KP3Ai0isbK1MIcjmsrc00ql+UcV2IqGwxuIQoNTUVo0ePRlhYGEaNGoWqVasiODgYY8eOhZ+fH9q1a5fnsvfu3cPw4cNhamqKMWPGwNLSEsHBwZgwYQJWr16Nnj17luA7IaKSZmEqgZFIpPGQFm9TElSm721fqNF2bGq5w6lDf63jJCLDY3AJ0Y4dO/Dw4UNs3LgRnTt3BgD07dsXffv2xaJFi/DHH3+oNHPntHHjRmRkZCAgIAANGzYEAPTr1w/du3fHypUrmRARlROaDmkhyGQq05oOg2FasZrWsRGRYTK4C+EHDhxAzZo1lckQAFhYWGDw4MF49uwZbt68meeyz549g52dnTIZAgBra2s0a9YMkZGRSEpKKtbYiYiIqHQyqIQoOTkZT548UUloFDw8sh/5kF9CVLt2bSQmJiImJkalPCwsDObm5rC0tNRtwERERFQmGNQls+joaAiCAAcHB7V5VapUAQBERkbmufzUqVNx7do1TJ06FbNnz4aVlRUCAgIQGhqKadOmQSQyqPwPZpXU36c+GVo8REREJcWgEqLk5GQAgJmZ+h0i5ubmAID09HS1eQouLi6YMGEClixZgoEDByrLR4wYgfHjxxc5voJuyZXLNXt6ffYT5WWo1evTIseka3K5zOAe/icWa347NBkm3qZedLrahyV9LAzx2Gs73IKulcVjUZrfk0ElRIoHgObWaVoQhDznKcyfPx+7d+9GkyZNMGTIEEgkEvzxxx8ICAjAmzdvsGjRIq1j0+SW3IwMMWJiRBr9gCclvVG55ddQyOXC/z98VnexjR8/EePHT9QiFiOIRCLY2JjD1NRUZ/EQlUaaDiVgaAwx7vI63IIhHoui0uV7MqiEyMIi+0OZkZGhNk/RMmRlZZXrsk+fPkVwcDA8PDywY8cOGBtnv7WePXtiwYIFCAoKQteuXbUej0guF5CUlJZvnczMN5DL5ZDJBGRl8enuRSWTCZDL5UhMTEN6uqzgBchgicWiMvllXJKSktIhkxX9e6Wwx8LY1AaZmSn/P21b6O3pKm5dytkKLpcLiI9P1UscJX1elMSxMLT3ZG1tpnErkkElRNWrVweQ3ZfoXa9evQKAXPsXAcCDBw8gCAL69u2rTIYUhgwZgqCgIFy6dKlIAzQWlOTIZIZ1qamsYIJJBMhkcr2cB1Y1WiM5/PL/T7cq9PL6ijs/iisOimlDi6+4GOKxKCpdvieDSogsLS3h4uKC27dvq81TlOV2Bxrw36MiZDL1lgTFpbjc5hERUd6MTW1gV/cDfYdBJSwqKhLbtvkBAHx8PoWjo5OeIyp+BtfbrVevXnj06BHOnj2rLEtNTUVwcDDq1KmjvP3+Xc2bN4e5uTn27Nmj1vE6MDAQAPId5ZqIiIiybd++Bbdu3cCtWzfg779F3+GUCINqIQKA0aNH48CBA5g6dSp8fHxQuXJlBAcHIyoqCn5+fspO1devX0dYWBg8PT1hb28Pa2trzJkzB9988w369euHgQMHwtTUFKdPn8b58+fRo0cPPs+MiIhIA5GR4crpiIjwfGqWHQaXEFlaWiIwMBArVqxAYGAg3r59Czc3N2zZsgWtW7dW1tu9ezf27dsHf39/2NvbAwAGDRoER0dHbN68Gb6+vsjKyoKLiwu++uorjBw5Ul9viYiIiAycwSVEAFC1alWsXLky3zpLly7F0qVL1co9PT3h6elZXKERERFRGWRwfYiIiIiIShoTIiIiIir3mBARERFRuceEiIiIqBQwNrXJMV34UcMpfwbZqbo80PXzwnQl+8GzHHGbiMjQFHXUcMofEyI9EImMYGtnBrFIrO9Q1MjkMiTEpxc5KXr8+BG2bt2EGzf+QWpqKqpWrQYvrw8watQY5ajiRESkOY4aXryYEOmBSGQEsUiMTWf8EZWo/tw2fXG0qYrxHUdCJDIqUkIUGRmBiRPHwNjYGP37D4K9vT2uXfsb27dvwb17d7B69Y/KATaJiIgMARMiPYpKjMbz2Ah9h6FzP/ywCm/fZuLnn7fD2dkFANC370CsX78Gu3cH4ty5M+jQoZNeYyQiIsqJnapJp2QyGa5f/wcNGzZRJkMK3bv3BADcunVDD5ERERHljS1EpFMikQjbtu2EIKhfcktIiAcAiMWG13eKiIjKNyZEpFNGRkZwdHTKdV5wcBAAoGnT5iUZEhERUYGYEFGJ2LVrBy5duoCGDRujVas2+g6HiKjcEYs17yWT88YXIyMjGBtrtmxhtmFomBBRsduzZxd8fdehUiV7zJ+/WN/hEClVsTRBfEaWcpqoLLKxMoUgl8Pa2kzjZXKOkycSGcHOzqI4QjMoWiVEgiAgIiICSUlJePPmDczNzWFlZQVHR0feTk1KgiDgp5/WY+dOf1SqVAlr125A1arV9B0WkVJvt4oQ7scpp4nKIgtTCYxEIjw97If02BcaLfM2JUFl+t72hRotZ1PLHU4d+msVp74VKiE6ceIEgoKC8PfffyMzM1NtvpmZGZo0aYJhw4ahS5cuOguSSp+3b9/iu+8W4MSJY3Byqo7Vq3+Ek1N1fYdFpKKKhQRjmzNJp/IhPfYF0qPDNKoryGQq05ouZ1qx9J5PGiVEMpkM06ZNw59//glBEODs7IwaNWrA2toaEokEmZmZSEpKQnh4OC5cuICLFy+iZ8+eWLZsGYyNeVWuvJHJZJg37yucOxeCevXqY/nydbCzs9N3WERERHnSKFv55ZdfcOzYMXTr1g2zZs2Ck1PudxEBQEREBJYtW4ajR4/C3d0do0eP1lmwVDps3boZ586FwMOjEVatWg9zc3N9h0RERJQvjRKivXv3on79+li3bl2BfYSqV6+OdevWYeDAgdi7dy8Tonw42lTVdwgqdBFPbGwMgoICYGRkhHbtOuDcuRC1OjVqOKN+ffcib4uIyo6oqEhs2+YHAPDx+TTP4TuobDGxqQBZ6lvltD5plBBFRUVh1KhRGneYFolE8PT0REBAQJGCK6vkcgEyuQzjO47UdyhqZHJZkZ5jduPGdWX/sp9+Wp9rnT59+jMhIiIV27dvUY5i7++/BbNnz9NzRFQSbJs5IEF4oZzWJ40SInt7e4SFadahSuHRo0ewtLTUKqiyTi4XkBCfrnJbo6GQy4UiJURdu76Prl3f12FERFQeREaGK6cjIsLzqUlliYlNBVTu6qLvMABo+CyzTp064c8//8Tu3bs1Wqm/vz9CQkLQuXPnIgVXlsnlArKy5Ab3V5RkiIiIqLTSqIXos88+w6VLl7BgwQJs2rQJrVq1Qo0aNWBjYwOJRIK3b98iOTkZYWFh+OuvvxAREQFHR0dMnTq1uOMnIiIiKjKNEqKKFSti165dWL9+PX799Vfs27cPgOrQ3oqHeVpYWGDw4MH43//+x1utiYiIqFTQeJAga2trzJ07F19++SXu3buHx48fIykpCWlpaahQoQJsbGxQp04dNGjQABKJpDhjJiIiItKpQo+aaGJigkaNGqFRo0bFEQ8RERFRiSt0QvTq1StcuXIFT548QXJyssqzzOrUqYOmTZuialXDGl+HiIiIKD8aJ0SRkZH47rvvEBISAkEQlH2GcjIyMoKRkRG6du2KWbNmoXr18vrsKt6ppQu5fcaIiIiKg8YDMw4aNAhxcXFo2bIl2rRpA2dnZ1hZWSmfZaa4y+zixYs4fvw4bty4gaCgoHKVFIlE2aMYyGQymJjoOZgyQC7PfrigSCTWcyRERFTWaZQQrVmzBomJifjxxx/h5eWVb92JEyfixIkTmDp1KtavX49ly5bpJNDSQCw2hrGxBGlpKahQwUzjkb0pdxkZaRCJxMpEk4iISkYVSxPEZ2Qpp8sDjRKiCxcuoHv37gUmQwpeXl7o3r07Ll++XKTgSiMLC2skJsYgPv41zM0tIBYbA2BiVBiCICAzMwMZGamwtq7ExJKIqIT1dqsI4X6ccro80CghSk9Ph6OjY6FWXK1aNSQkJGgVVGlmZmYBAEhNTUJCQoyeoynNjGBmZqncn0REVHKqWEgwtnk1fYdRojRKiGrVqoWQkBBMnToVxsYFL/LmzRucOHECNWvWLHKApZGZmQXMzCwgk2VBLpfrO5xSSSwWs+8QERGVGI0SomHDhmHu3LkYPXo0PvvsMzRv3jzXxEgmk+Gff/7B6tWrERYWhq+//lrnAZcmYrExxPxNJyIiMngaJUQDBgzA06dP8fPPP2P06NEQi8VwcHBQeZZZUlISXrx4gbdv30IQBAwbNgzDhg0r7viJiIiIikzjcYhmzJiBXr16YceOHbh27RqePXuG8PBw5XyRSIQaNWqgZcuWGDBgABo3blwsARMRERHpWqFGqnZzc8PixYsBAHK5HCkpKUhLS4NEIoGVlRVMOPgOERERlUKFfnSHgkgkgrW1NaytrXUZDxEREVGJ44h3REREVO5p3UJERERkKEQiI4hEmg3imnOwVyMjIxgba942IJcLkMv5nMWySKOE6NKlS1pvoE2bNlovS0REVBCRyAi2dmYQazh2Wc7ESSQygp2d5gPAyuQyJMSnMykqgzRKiEaPHq314xPu37+v1XJERESaEImMIBaJsemMP6ISowusn5CWqDI9/+AKjbbjaFMV4zuOhEhkxISoDNIoIdq8eTNmzpyJpKQkNGjQAHXr1i3uuIiIiAolKjEaz2MjCqyXJZepTGuyDJV9GiVEHTp0wPbt2zFy5Ei8fPkSfn5+sLOzK+7YiIiIiEqExj3J3Nzc8N133yEmJgbLli0rzpiIiIiISlShbrt///330blzZxw8eBCPHz8urpiIiIiISlShb7v/9ttvcevWLUgkkuKIh4iIiKjEFTohqlKlCry8vIojFiIiKmPEYs0uRBRlbCBNt0GUHw7MSEREOmdjZQpBLoe1tZlG9YsyNhCRLjAhIiIinbMwlcBIJMLTw35Ij31RYP23KQkq0/e2L9R4Wza13OHUob9WcRIpMCEiIqJikx77AunRYQXWE2QylWlNllEwrVhNq9iIcuKFVyIiIir3mBARERFRuceEiIiIiMo9rRKizMxMjeqFhoZqs3oiIiKiEqVVQtS/f3/8+++/ec4XBAEbN27EoEGDtA6MiIiIqKRolRA9evQIAwcORGBgoNq88PBwDB06FGvXrkWFChWKHCARERFRcdMqIfL19YW5uTkWL16MiRMnIj4+HgAQFBSEDz/8EDdu3EDHjh1x+PBhrYKKiYnB3Llz0b59ezRu3BhDhgzBhQsXNFo2NTUVK1euRJcuXdCwYUP06NEDW7ZsQVZWllaxEBERUdmn1ThEXbt2RePGjfHVV1/h9OnT6NOnD2rXro0rV67A1tYWCxcuRO/evbUKKDU1FaNHj0ZYWBhGjRqFqlWrIjg4GGPHjoWfnx/atWuX57KZmZkYPXo07ty5gyFDhqBu3bo4c+YMli9fjsjISMybN0+rmIiIiKhs03pgxkqVKmHz5s1YuHAhdu7cidevX8PW1ha//fYbHBwctA5ox44dePjwITZu3IjOnTsDAPr27Yu+ffti0aJF+OOPP1SeeZPTtm3bcPPmTSxevFjZf2no0KGYOHEiAgMDMX78eFStWlXr2IiIiKhs0vq2+9TUVCxatAi7d++GsbExXFxcEB8fDx8fH1y9elXrgA4cOICaNWsqkyEAsLCwwODBg/Hs2TPcvHkzz2WDg4MhlUrVOnNPnDgRn332GTIyMrSOi4iIiMourRKikJAQeHt7IzAwEM7Ozti5cycOHz6MyZMnIzIyEqNGjcKCBQuQmppaqPUmJyfjyZMnaNiwodo8Dw8PAMgzIXrx4gXCw8PRvn17ZVlqairkcjkaNmyIzz//HDVr1ixUPERERFQ+aHXJbMKECTAyMsLw4cMxc+ZM5d1kkydPRseOHTFr1izs2rULZ86cwenTpzVeb3R0NARByPWSW5UqVQAAkZGRuS775MkTAICTkxN++eUXbNu2DS9fvoSFhQX69++vEqe2jI05jiWRNsRinjtFpat9yGNRdDwWhkOX+1CrhKhatWr4/vvv0aZNG7V5Hh4e2L9/P1asWIEdO3YUar3JyckAADMzM7V55ubmAID09PRcl01MTAQABAQEICkpCePGjYODgwNOnDiBgIAAhIeHY9OmTYWKJyeRyAh2dhZaL09EVBTW1urfi6QfPBaGQ5fHQquE6NChQ7CysspzvkQiwdy5c+Hl5VWo9crlcgDItdO0IAh5zgOAt2/fAgAiIiJw4MAB1KlTBwDwwQcfwMTEBHv37sX58+fzvUst/9gEJCWlabUsUXknFov4I1JESUnpkMnkRV4Pj0XR8VgYjoKOhbW1mcatSFolRPklQzm1atWqUOu1sMhugcmt87OiZSivbStakFq3bq1MhhQGDx6MvXv34uLFi1onRACQlVX0E4CISBsymZzfQQaCx8Jw6PJYGNQFzOrVqwPI7kv0rlevXgFAnrf0K26nt7e3V5tXqVIlAEBKSopO4iQiIqKyxaASIktLS7i4uOD27dtq8xRlud2BBgBSqRSmpqZ4+PCh2rywsDAA/yVcRERERDkZVEIEAL169cKjR49w9uxZZVlqaiqCg4NRp04d5e337zI1NUX37t1x9+5dlTvb5HI5tm7dCrFYjA8++KDY4yciIqLSR+uRqovL6NGjceDAAUydOhU+Pj6oXLkygoODERUVBT8/P2Wn6uvXryMsLAyenp7Ky2QzZszA1atXMXXqVHz88ceoUaMGjh07hitXrmDSpEkch4iIiIhypVVC9PjxY7WOy7piaWmJwMBArFixAoGBgXj79i3c3NywZcsWtG7dWllv9+7d2LdvH/z9/ZUJkSJ5+uGHH3D48GEkJSXBxcUF3333HQYOHFgs8RIREVHpp1VC5O3tjUaNGqF///7w9vaGpaWlToOqWrUqVq5cmW+dpUuXYunSpWrl9vb2WLhwIRYuXKjTmIiIiKjs0qoPUY8ePRAaGor58+ejXbt2mDFjBi5duqTr2IiIiIhKhFYtRGvWrEFKSgoOHz6M/fv34/Dhwzhy5AiqVauGfv36oV+/fqhRo4auYyUiIiIqFlrfZWZpaYkhQ4Zg165d+OOPPzBu3DiIRCJs2LAB3bp1w/Dhw7Fv3748H7VBREREZCh0ctu9i4sLvvjiC5w8eRKbNm2Co6Mjrl27hjlz5qBdu3ZYtGhRroMtEhERERkCndx2Hxsbi0OHDuHIkSO4c+eO8on1PXr0wL1797Bz504cPHgQP/30E5o3b66LTRIRERHpjNYJUWZmJk6cOIH9+/fj4sWLyMrKgkQiQffu3TFgwAB4enoqxwy6fPkyxowZg4ULF+LgwYM6C56IiIhIF7RKiObOnYtjx44hNTUVgiCgXr16GDBgAHr37g0bGxu1+q1bt0bt2rURHh5e5ICJiIiIdE2rhGjv3r2wsbHBsGHDMGDAANSrV6/AZdzd3dGlSxdtNkdERGVcFUsTxGdkKaeJSppWCdHq1avh5eUFiUSi8TLff/+9NpsiIqJyoLdbRQj345TTRCVNq7vMdu3ahaNHj+Zbx9/fnw9TJSIijVSxkGBs82oY27waqlho/s82ka5olBAJggC5XA65XA6ZTIa//voLERERyrJ3/zIzM/H333/jxYsXxR0/ERERUZFpdMns559/xurVq1XKfH194evrm+9yrq6u2kdGREREVEI0Soh8fHxw/PhxxMTEAABevHgBS0tLWFlZqdU1MjKCsbExHB0dMWPGDN1GS0RERFQMNEqITExMEBwcrHzt5uaGUaNGYfLkycUWGBEREVFJ0eouM39/fzg5Oek6FiIiIiK90CghksvlEIn+63+tePyGXC4vcNmcyxEREREZIo0SogYNGmDy5Mn47LPPlK81YWRkhHv37mkfHREREVEJ0CghcnBwUOlA7eDgUGwBVSPjvQAAIABJREFUEREREZU0jRKiU6dO5fuaiIiIqDRjBx8iIiIq9zRqIbp06ZLWG2jTpo3WyxIRERGVBI0SotGjR8PIyEirDdy/f1+r5YiIiIhKikYJUd++fbVOiIiIiIgMnUYJ0dKlS4s7DiIiIiK9YadqIiIiKvc0aiH68ssv0a1bN3h5eSlfa8LIyAjLli3TPjoiIiKiEqBRQnTw4EE4OzsrE6KDBw9qtHImRERERFQaaJQQvfswV39//2ILiIiIiKikaZQQtWzZMt/XRERERKWZRglRfv755x/cu3cPaWlpsLGxgYeHB+rXr6+L2IiIiIhKhNYJ0ZUrV/DNN98gPDwcACAIgnKsInd3dyxduhR16tTRTZRERERExUirhOjWrVsYO3Ys5HI53n//fTRp0gQWFhaIjo7G1atX8ddff2HEiBEIDg5G9erVdR0zUbGIiorEtm1+AAAfn0/h6OhUwBJERFRWaJUQ+fr6QhAE+Pn5oW3btmrzjx49iunTp2Pt2rVYuXJlkYMkKgnbt2/BrVs3AAD+/lswe/Y8PUdEREQlRauBGa9du4b3338/12QIAHr27InOnTvj3LlzRQqOqCRFRoYrpyMiwvOpSUREZY1WCZFcLoejo2O+dWrXro3MzEytgiIiIiIqSVolRG3btsXJkyfzTHjkcjkuXryIZs2aFSk4IiIiopKgUUIkl8tV/mbOnInU1FSMGTMGd+7cUan7/PlzzJgxA9HR0ZgzZ06xBE1ERESkSxp1qm7QoEGu5TExMRg0aBAkEgkqVaqE5ORkpKSkAACsra0xbtw4nDhxQnfREhERERUDjRIiBwcHjVZmZWUFKysr5Wu5XK5dVEREREQlSKOE6NSpU8UdBxEREZHeaNWpmoiIiKgsKdKzzB4/foy4uDjIZDIIgqAsf/v2LRISEhASEoLVq1cXOUgiIiKi4qRVQpSQkICxY8fi7t27BdZlQkRERESGTqtLZr6+vrhz5w6cnJzQs2dPmJqawtXVFT169MB7770HQRBQqVIlBAYG6jpeIiIiIp3TqoXozJkzcHBwwNGjRyGRSDBhwgSIRCJla9DmzZuxZs0avHjxQqfBEhERERUHrVqIXr58iU6dOkEikQAA6tevj5s3byrnjxs3DvXq1UNwcLBuoiQiIiIqRlolRGKxWGW8IWdnZ8TFxSEuLk5Z1rJlSzx//rzoERIREREVM60SIkdHRzx79kz52tnZGQDw6NEjlXoJCQnaR0ZERERUQrRKiNq3b49Tp07h4MGDAABXV1dUqFABu3fvBgCkpqbi9OnTqFq1qu4iJSIiIiomWiVEY8aMga2tLWbNmoXg4GBYWFigT58+OHLkCLp27Ypu3bohLCwM3bt313W8RERERDqn1V1mlStXxt69e+Hn5wepVAoAmDlzJl6/fo3Tp09DJBLB29sbEydO1GmwRERERMVB65Gqq1atiq+//lr52tLSEhs2bEBycjIkEgkqVKigkwCJiIiIiluRHt0BAFlZWXjy5AnS0tJgY2ODWrVq6SIuIiIiohKjdUIUExOD1atX4/fff0dGRoay3Mrq/9q7+7ga7/8P4K9zKqTclJsQm5vtpFapqEZuVu6GRmFCWA1fCTXM/d3G3NtsCyMyCpGNZTGN3ZUs92IxNnQjFBW6ozrn+v3RzvVznMrpPs7r+Xj0eJyu6/O5rvd1fc51nff5XJ/rOg0wfPhw+Pn5oV69epUSJBEREVFVKldClJaWBg8PD9y9exdNmzaFo6MjDAwMkJaWhmvXrmH79u04c+YMgoODoa+vX9kxExEREVWqciVEX3/9Ne7evYvJkydj6tSp0NHREedlZ2dj3bp12Lt3LzZt2oSZM2eWefkPHjzA+vXrERUVhaysLHTs2BHTpk2Dk5NTmZaTnp4OV1dXvPHGGwgJCSlzHERERKQdynXb/e+//w57e3v4+/urJENA0eDqTz75BFZWVoiIiCjzsnNycuDt7Y2IiAi4u7tj1qxZyMvLw4QJE3DixIkyLWvBggUqT88mIiIiKk65EqKsrCx06tSp1DL29vZIT08v87J37dqF69ev48svv8SMGTPg6emJPXv2oHXr1li2bBkEQdBoOfv27UN0dDSk0nJtIhEREWmRcmULZmZmuHTpUqllbt68iQ4dOpR52eHh4Xj99dfh7OwsTjMwMMCIESOQkJCg8iOyJUlMTMSqVaswefJk6OpW+EY6IiIiesWVKyGaOXMmzp8/j3Xr1qncYaa0a9cuREdHw8/Pr0zLzcrKws2bN2Ftba02z8rKCgBemBDJ5XLMnj0bHTp0gI+PT5nWT0RERNpJo+4TT09PtWmGhoYICgrCgQMHYGFhgWbNmuHx48eIj49HamoqXnvtNRw7dkylp+dFUlNTIQgCWrZsqTavefPmAICUlJRSl/HNN9/g77//xsGDByu9d0hXl5ffXmUSiUTlNdu78ujocF9WVGXtQ7ZFxbEtao/K3IcaZQznzp0rcV5GRkaxg50TExORlJSEFStWaBxMVlYWABR7q379+vUBAHl5eSXWv3z5Mr755hvMmTMH7du313i9mpBKJTAyMqjUZVLtIpVKVF6zvak2adiQjzCpLdgWtUdltoVGCdEvv/xSaSssjUKhAKD6TV1JOZi6uHkA8OTJE8yaNQv29vYYO3ZsFcQm4PHj3EpfLtUeCoWg8jozM6cGo3m16OhI+SFSQY8f50EuV1R4OWyLimNb1B4vaouGDfU17kXSKCEyNTXVLLIKMjAo+kZe3LgkZc9QgwYNiq27Zs0a3Lt3D1988QUyMzNV5hUUFCAjIwN169YV11EehYUVPwCo9nr2DkZBENjeVKvI5Qq+J2sJtkXtUZltUaFBNqmpqThw4ACuXr2K3NxcNG7cGDKZDIMGDSpXEtW6dWtxuc9LS0sDgGLHFwFFz0bKy8uDu7u72rwLFy6ga9eucHd3x6pVq8ocFxEREb3ayp0QHTp0CIsWLUJ+fr7as4E2btyITz/9FG5ubmVapqGhIdq2bYvLly+rzVNOK+4ONABYu3Ytnj59qjb9f//7H9q3b4+5c+eKA7OJiIiInlWuhCguLg7z5s1D3bp1MWXKFNjb28PExASPHz9GbGwsgoKCsHDhQnTo0EG8XV5Trq6u2LBhA6KiotCzZ08ARU+vDgsLK3V5nTt3Lna6RCJBo0aN0K1bt7JtJBEREWmNciVEW7ZsgY6ODnbv3g1zc3OVedbW1ujZsydGjBiBb7/9Fl988UWZlu3t7Y3w8HD4+/vDy8sLzZo1Q1hYGO7cuYOtW7eKg6ovXLiApKQkODk5oWnTpuXZDCIiIiIA5Xww4/nz59G7d2+1ZEipY8eO6N27N06fPl3mZRsaGmL37t3o3bs3du/ejbVr10JfXx9BQUEqvTz79u3D7NmzcePGjfJsAhEREZGoXD1E2dnZaNGiRallTExM8OjRo3IFZWJignXr1pVaZtWqVRoNkC5uPBIRERHRs8rVQ9SyZUtcuHCh1DIXL158YdJEREREVBuUKyHq06cP4uLisGXLFrV5CoUCAQEBiIuLQ+/evSscIBEREVFVK9clMx8fHxw9ehRffvklDh06BHt7ezRo0ACpqam4ePEikpOT0bJlS0yaNKmy4yUiIiKqdOVKiBo1aoQ9e/Zg0aJFOHHihNrAZicnJyxbtgxGRkaVEiQRERFRVSpXQvT06VO0bNkS27ZtQ1paGq5cuYKsrCwYGhrCwsICJiYmlR0nERERUZUpV0I0fPhw2NvbY/HixWjevDmfAE1EREQvtXINqk5MTETdunUrOxYiIiKiGlGuhMjU1BRJSUmVHQsRERFRjSjXJbOVK1di0qRJmDVrFt599120adMG+vr6xZZt06ZNhQIkIiIiqmrlSoi8vb1RWFiIiIgIRERElFhOIpHgypUr5Q6OiIiIqDqUKyGytLSs7DiIiIiIaky5EqKQkJDKjoOIiIioxpRrUDURERHRq0TjHqL09HQEBATgt99+Q2ZmJlq0aIEBAwZg0qRJqF+/flXGSERERFSlNEqI0tPT8f777+Pu3bsQBAEAkJSUhMDAQPz2228IDQ2FgYFBlQZKREREVFU0umQWGBiIO3fuYPDgwfjpp58QFxeHH374Ab169cI///yD4ODgqo6TiIiIqMpolBBFR0fD1tYWq1evRrt27VC3bl107NgRGzduxGuvvYZff/21quMkIiIiqjIaJUR3796FnZ2d2nQdHR04OTkhMTGx0gMjIiIiqi4aJURPnz4t8UnURkZGyMnJqdSgiIiIiKqTRgmRQqEocZ5EIil1PhEREVFtx+cQERERkdZjQkRERERaT+MHM/7yyy9ISUlRm/73338DAObNm6c2TyKRYMWKFRUIj4iIiKjqaZwQXb16FVevXi1x/sGDB9WmMSEiIiKil4FGCdHKlSurOg4iIiKiGqNRQuTu7l7VcRARERHVGA6qJiIiIq3HhIiIiIi0HhMiIiIi0npMiIiIiEjrMSEiIiIirceEiIiIiLQeEyIiIiLSeho/qZroZSOVSiCVSjQuL5FIVF7r6mr+fUGhEKBQCGWKj4iIag8mRPRKkkolaNy4PnR0NE9qnk2epFIJjIwMNK4rlyvw8GEukyIiopcUEyJ6JUmlEujoSLExNAYpaY80qpP5OE/l9fyvjmhUz7R5I0wZ5QSpVMKEiIjoJcWEiF5pKWmPkJCSqVHZQrlC5bWm9YiI6OXHQdVERESk9ZgQERERkdZjQkRERERajwkRERERaT0mRERERKT1mBARERGR1mNCRERERFqPCRERERFpPSZEREREpPWYEBEREZHWY0JEREREWo8JEREREWk9JkRERESk9ZgQERERkdZjQkRERERajwkRERERaT0mRERERKT1mBARERGR1mNCRERERFqvViZEDx48wIIFC9CjRw/Y2Nhg5MiRiImJ0aju2bNnMX78eHTp0gWWlpYYNGgQduzYAYVCUcVRExER0cuq1iVEOTk58Pb2RkREBNzd3TFr1izk5eVhwoQJOHHiRKl1z58/j3HjxuHmzZuYMGEC5s2bBxMTE6xcuRKLFi2qpi0gIiKil41uTQfwvF27duH69evYvHkznJ2dAQBubm5wc3PDsmXLcPToUUgkkmLrLlmyBA0aNMD3338PY2NjAICnpyf8/Pzw3XffYcyYMTA3N6+2bSEiIqKXQ63rIQoPD8frr78uJkMAYGBggBEjRiAhIQFxcXHF1ktPT8f169fRp08fMRlSGjx4MADg3LlzVRc4ERERvbRqVQ9RVlYWbt68CVdXV7V5VlZWAIC4uDjY2NiozW/UqBEiIyNRt25dtXkZGRkAAB0dnUqOmIiIiF4FtSohSk1NhSAIaNmypdq85s2bAwBSUlKKraurq4u2bduqTZfL5QgJCYFEIoGDg0OF4tPVrXUdalQCHZ3qb6uaWOfLgvum4iprH7ItKo5tUXtU5j6sVQlRVlYWAEBfX19tXv369QEAeXl5ZVrmypUrcf36dbz33nvo0KFDuWOTSiUwMjIod3169TVsqP6+JaosfH/VHmyL2qMy26JWJUTKW+OLGzQtCEKJ80qyevVqhISE4I033sAnn3xSwdgEPH6cW6FlUPXR0ZFW+0nr8eM8yOV8vENxaqI9XjWV9f5iW1Qc26L2eFFbNGyor3EvUq1KiAwMinpgnjx5ojZP2TPUoEGDFy4nPz8f8+fPx48//oj27dvj22+/haGhYYXjKyzkhx2VTC5X8D1CVYbvr9qDbVF7VGZb1KqEqHXr1gCKxhI9Ly0tDQCKHV/0rOzsbPj6+uLUqVOwsrJCYGCg2l1nRERERM+qVSO6DA0N0bZtW1y+fFltnnKatbV1ifVzc3Mxfvx4nDp1Cr169UJwcDCTISIiInqhWpUQAYCrqyv+/fdfREVFidNycnIQFhaGDh06iLffF2fJkiW4ePEi+vfvj02bNokDsYmIiIhKU6sumQGAt7c3wsPD4e/vDy8vLzRr1gxhYWG4c+cOtm7dKg6qvnDhApKSkuDk5ISmTZsiPj4ehw4dQp06ddCtWzccPnxYbdkWFhZ48803q3uTiIiIqJardQmRoaEhdu/ejbVr12L37t0oKChAx44dERQUhLffflsst2/fPhw8eBDBwcFo2rQpTp48CaBoQPWSJUuKXfbMmTOZEBEREZGaWpcQAYCJiQnWrVtXaplVq1Zh1apV4v8TJ07ExIkTqzo0ogq7cycFO3ZsBQB4eU1Eq1amNRwRERHVujFERK+6nTuDcOnSRVy6dBHBwUE1HQ4REYEJEVG1S0lJFl/fvp1cSkkiIqouTIiIiIhI6zEhIiIiIq3HhIiIiIi0HhMiIiIi0npMiIiIiEjrMSEiIiIirceEiIiIiLQeEyIiIiLSekyIiIiISOsxISIiIiKtx4SIiIiItB4TIiIiItJ6TIiIiIhI6zEhIiIiIq3HhIiIiIi0nm5NB0D0qtDR0ez7hUQiUXmtq6v59xKFQoBCIZQ5NiIiKh0TIqIKatSgHgSFAg0b6mtUXiqVqLw2MjLQeF0KhRyZmXlMioiIKhkTIqL/6NZrhPz87P9eN9a4nkG9OpBIpbgVsRV56XdfWL4g+6HK6ys7l2q0Hv0mLdHOdSKkUgkTIiKiSsaEiOg/Ddq8jazk2P9eO5a5fl76XeSlJr2wnCCXq7zWpA4REVUtJkRE/9Gt1whGb/av6TCIiKgG8C4zIiIi0npMiIiIiEjrMSEiIiIirceEiIiIiLQeEyIiIiLSekyIiIiISOsxISIiIiKtx4SIiIiItB4fzFiD7txJwY4dWwEAXl4T0aqVaQ1HREREpJ3YQ1SDdu4MwqVLF3Hp0kUEBwfVdDhERERaiwlRDUpJSRZf376dXEpJIiIiqkpMiIiqWXNDvWJfExFRzeEYIqJq9l5HYwhXM8TXRERU85gQEVWz5gZ1MKFLi5oOg4iInsFLZkRERKT1mBARERGR1mNCRERERFqPCRERERFpPSZEREREpPWYEBEREZHWY0JEREREWo8JEREREWk9JkRERESk9ZgQERERkdZjQkRERERajwkRERERaT3+uKuWuHMnBTt2bAUAeHlNRKtWpjUcERERUe3BHiItsXNnEC5duohLly4iODiopsMhIiKqVdhDVMmkUgmkUolGZSUSicprXd2y5acKhQCFQtCobEpKsvj69u3kUkoSERFpHyZElUgqlaBx4/rQ0dEssXk2cZJKJTAyMijT+uRyBR4+zNU4KSIiIqLiMSGqRFKpBDo6UmwMjUFK2qMXls98nKfyev5XRzRel2nzRpgyyglSqYQJERERUQUxIaoCKWmPkJCS+cJyhXKFymtN6hAREVHl46BqIiIi0nq1MiF68OABFixYgB49esDGxgYjR45ETEyMRnWTkpLg7++Prl27wtbWFh9++CH++uuvKo6YiIiIXma17pJZTk4OvL29kZSUhA8++AAmJiYICwvDhAkTsHXrVnTv3r3EuqmpqfD09ERBQQHGjh0LAwMDhISEYMyYMdi7dy86duxYjVtSPTQdwF2RO9rKcjcbERHRy6jWJUS7du3C9evXsXnzZjg7OwMA3Nzc4ObmhmXLluHo0aMqH+7P2rhxI9LT03HgwAEx+Rk4cCAGDRqE1atX49tvv6227ahqjRrUg6BQoGFDfY3KV+SONoVCjszMPCZFRET0yqp1CVF4eDhef/11MRkCAAMDA4wYMQLr1q1DXFwcbGxs1OrJ5XL8+OOPcHR0VOkJat68OQYNGoS9e/ciNTUVJiYm1bIdVc2gXh1IpFLcitiKvPS7LyxfkP1Q5fWVnUs1Wo9+k5Zo5zqRd7MREdErrVYlRFlZWbh58yZcXV3V5llZWQFAiQnRP//8g9zcXFhbWxdbNzQ0FJcvX35lEiKlvPS7yEtNemE5QS5Xea1JHSIiIm1RqxKi1NRUCIKAli1bqs1r3rw5ACAlJaXEugDKVVcTUqkExsalX2ZSXsmbM94F8mduqS/J07zeEBRF5SRSKerqN9Q4njp6OgCAN4d/BEEhf0FpYOO4J5D/18OjI5XAyKCeRuuRSIvW06iRZpfmKkqopE6osrZFRZS1LcrrZW0LoPrao7raQqpbBwAws68PCqtwPQCg+0y7V0abvGptAZS9PZ4OeKJ67m2g2fmQbfFi1XVsaNoWmv5yBFDLEqKsrCwAgL6++gm/fv36AIC8vDy1eS+qq5xWUl1NSCQS6OhotmMbGWp2cKFR/XLHo6RnoFkSZdKgYuuRSmvlDYkvpHFbVAJN26KiXta2AKqvPaqrLRrqV/DAKoPKbvdXrS2AMrRH2X4UQA3b4sWq69iozLaoVWdWhTJjL2bQtPBfCljSgOrS6iq9zB8kREREVHVqVYZgYFCUtj958kRtnrJ3p0GD4rNOTeoaGhpWSpxERET0aqlVCVHr1q0B/P94oGelpaUBKH6MUEXrEhERkXarVQmRoaEh2rZti8uXL6vNU04r7i4yAGjXrh0MDAxKrdupU6dKjJaIiIheFbUqIQIAV1dX/Pvvv4iKihKn5eTkICwsDB06dBBvv39enTp10K9fP8TExOD69evi9LS0NBw+fBg9evSAsbFxlcdPRERELx+JIFTmzbUVl52dDTc3N6Snp8PLywvNmjVDWFgY/vnnH2zduhXdunUDAFy4cAFJSUlwcnJC06ZNAQB37tyBu7s7pFIpvL29UbduXYSEhCAjIwOhoaEwMzOryU0jIiKiWqrWJURA0TigtWvXIioqCgUFBejYsSP8/f3x9ttvi2Xmzp2LgwcPIjg4GI6OjuL0GzduYO3atTh9+jR0dHRgbW2NmTNnwsLCoiY2hYiIiF4CtTIhIiIiIqpOtW4MEREREVF1Y0JEREREWo8JEREREWk9JkRERESk9ZgQERERkdZjQlROAQEBMDMzU/kzNzeHnZ0d3N3dERgYiPz8/CqP4/bt2zAzM8PYsWNVpicmJr6wrnIbLl68WFXhvdSU+8fPz6/EMoGBgTAzM8OpU6eqMTICin7w+ccff8SECRPQtWtXWFlZoXfv3vD398eff/5ZbJ0NGzage/fusLKyUmnXpKSk6gr7pVXcOc/MzAwdO3ZEly5dMHToUOzYsQNyubxG4jt16hTMzMwQGBhYI+vXRGFhIXbv3o2RI0fC3t4eVlZWcHFxwbx581QeKFybPXnyROUnsg4cOAAzMzMcPny4BqOqHLo1HcDLzsfHB+3btwdQ9GbPyMhAdHQ0Pv/8cxw9ehTBwcHV/qOyW7ZswZYtW3D+/PlqXe+rKjIyEpGRkejfv39Nh0L/efToEfz8/BAbG4u33noLXl5eMDY2RkpKCiIiIuDl5YXhw4djyZIlqFOnDgAgKioKAQEBsLGxgb+/P0xNTZGdnY0JEyZAJpNh6dKlNbxVL4dnz3kAoFAocPv2bezfvx8rV67EvXv3MHfu3BqMsHaSy+WYMmUKoqKi0LdvX7z77ruoX78+EhIS8P333yM8PBzr16+v1eeZ+Ph4TJkyBbNmzcKgQYMAAPb29lizZg1sbGxqOLqKY0JUQd26dVN5MCQATJw4Ed988w2+/PJLLFmyBJ9//nmVrb9evXoAgLp164rTTpw4gYKCgipbpzZaunQpHB0d0bhx45oORespFAoxGVqwYAHGjRunMn/atGlYtmwZQkNDoauri08//RQAcPXqVXF+9+7dART1sF64cAEymax6N+IlVtw5DwDGjBmDgQMHIiQkBOPHj0ezZs1qILraKzIyEr///jvmz5+PDz74QGXeBx98ADc3NyxevBg9evRA/fr1ayjK0l27dg13795VmdamTRu0adOmhiKqXLxkVkV8fHxgZ2eHI0eO4NatW1W2nqZNm8LQ0FDlGxtVrn79+uHBgwdYsWJFTYdCACIiIhAbG4sxY8aoJUMAoKOjgyVLlqBz587Yu3cv4uLiAEC8hF3dPbbawsjICH379kVhYSEuXbpU0+HUOufOnQMA9OrVS22eiYkJBg8ejMePH+Off/6p7tDoP0yIqohEIoG7uzsUCgV+//13lXnHjh3DqFGjYGtrCxsbG4wcORLHjh1TKaO8Lnv+/Hl89tln4riHwYMH49ChQyplO3TogDfeeAMAYGZmhtOnTyM/Px9mZmZl7rr+5ZdfYGlpiWHDhuHRo0cAABcXF/j5+SE6OhoeHh7o1KkTHB0dMXv2bNy/f1+lfmFhIbZt24aBAwfC0tISjo6OmDJlCv7++2+xjL+/PywsLMTlK+vZ2dnB0tISeXl54vS8vDxYW1tj4cKFZdqOyuTl5QUrKyuEh4fjjz/+eGH5a9euYdq0aXB0dISVlRVcXV2xc+dOKBQKAEBGRgYsLS3h6+urVjctLQ0WFhaYNWuWOO327duYM2cOnJycYGlpiX79+iEgIEBljJpyLNnmzZsxefJkWFpaokePHrhz504l7IHa5bvvvgMAeHt7l1hGIpHgf//7HwDg4MGDMDMzw4YNGwAAHh4eMDMzw4EDB9C7d28AwL59+9TGgh0/fhyjR4+Gra0tbG1t4enpqdb+ynE1iYmJmDNnDhwdHWFtbQ0PDw9ER0dX6na/DAwMDAAU7X+gqDdv9+7d8PDwQOfOnWFpaYlevXph0aJFyMjIEOspx//s3bsXnp6e4vtceS540TFVnDlz5sDMzAzXrl1Tm7dw4UJYWlqqxFDVlIn4rl27ih1n9fHHH+PKlSvo1KmTOK0snxXnzp3DJ598gq5du8LGxgZjx47Fv//+iwcPHuDjjz+Gvb09HB0d4e/vX+J529XVFVZWVnB0dISfnx9u3Lghlpk7dy7mzZsHAJgxY4b426DPjyFSnouCg4Oxfft29O3bV2yzY8eOoaCgAF999RV69eoFW1tbjBw5stgEWpPjDwB27NiB9957DzY2NujcuTPGjh2L48ePa9Qmz2NCVIWUb5grV66I0zZv3oypU6ciJycHvr5uWJjSAAAeMElEQVS+mDJlCnJycjB16lRs2bJFbRkff/wxzp8/jwkTJmD69Ol49OgRZs2ahdOnT4tlwsLCMGLECADAmjVr0L59e+jp6WHNmjXw8PDQON7ff/8d/v7+eOutt7Bjxw40atRInHfp0iVMmzYNVlZWWLBgAXr06IHw8HDMmDFDLCOXyzF58mSsXbsWbdq0wdy5czFq1CicPXsWI0aMQGxsLICiBEsul+PkyZNi3bi4OOTk5KCgoED8JgUAf/75J54+fSp+cNUEHR0drFixAnp6eliyZAmys7NLLKvc1vj4eHh5eWHu3Llo06YNVqxYgTlz5gAAjI2N0bNnT0RFReHhw4cq9Q8fPgy5XI6hQ4cCAG7duoVhw4YhKioKI0aMwPz582FjY4ONGzdiwoQJKCwsVKm/ZcsW5ObmYtGiRRg6dChatWpVyXujZikUCly8eBEmJiZo3bp1qWW7du0KiUSC06dPY82aNejbty+Aoktma9asgZWVlXiCf/vtt7FmzRp06NABABAUFIQpU6ZAIpHgo48+gq+vL3JycjBp0iTs379fbV3e3t64d+8e/Pz84OPjg5s3b2LSpElaNVhbLpcjKioKOjo6MDc3BwAsW7YMS5cuRevWrTFr1izMmTMHMpkMYWFhmD9/vtoyVq9ejSZNmmDRokV4//33oa+vr9ExVRx3d3cART2Kz8rPz0dkZCR69uwJY2PjStwDpXNzc4O+vj5CQkLwzjvvYMmSJThy5IiYnOjp6YmJJFD2z4qZM2fin3/+gZ+fH0aNGoVz587B19cXY8aMQV5eHmbOnIm+ffvi6NGjWLx4sVhPEARMmzYN69atQ8eOHTF//nyMHj0aZ86cwfvvvy9eavbw8BA/Tzw9PbFmzZpSt3f79u3YtWsXRo0ahY8++gj379/H9OnT4ePjg99//x3jx4/H+PHjcfXqVfj6+iI3N1esq+nxFxgYiJUrV0Imk2HevHmYNm0aMjIyMGXKFI2+vKoRqFy+/vprQSaTCbGxsSWWSUhIEGQymTB+/Hjxf3Nzc2HYsGHC06dPxXJPnjwR3N3dBXNzc+HWrVuCIAjC999/L8hkMuH9998XCgsLxbJnz54VZDKZMG/evBLXO2bMGMHS0lLjbbhw4YIQFRUlWFpaCqNHjxaysrJUyjk7OwsymUz49ddfVaZ7eXkJMplMSElJUYl52bJlKuWSkpIEGxsbwcXFRSgsLBQyMzMFc3NzYcGCBSqxODo6ClZWVsK6devE6YsWLRI6deokPHny5IXbU9me3T+CIAgBAQGCTCYTFi1aJJbZsmWL+D5QKBRCv379hD59+qjtw7Vr1woymUyIiooSBEEQjh07JshkMmHv3r0q5dzc3IR33nlHkMvlgiAU7WMHBwfhzp07KuX27NkjyGQyITQ0VBAEQUhOThZkMpng4OBQI/uquqSnpwsymUwYNmyYRuUdHBwEOzs7QRDU21MQ/n+/Pdumt2/fFiwsLAQ/Pz+VZeXn5wujR48WbGxshIyMDJVlTps2TaVseHi4IJPJhA0bNpRrO2sj5bYeO3ZMSE9PF//u3bsnnD17VvD19RVkMpmwfPlyQRCK2src3FyYMWOG2rKGDx8uyGQyIScnRxAEQYiNjRVkMpkwaNAgQaFQiOXKckwpl7FlyxaxrrOzs+Ds7KyyzJ9++kmQyWTCzz//XLk7SAOnTp0SXFxcBJlMpvI3ZMgQITQ0VDzXl+ezYtiwYSqfFVOnThVkMpkwffp0lRjef/994a233hLPMcr36q5du1TK3bt3T7C3txdGjBghTlOuKyIiosRpymPKxsZGSE1NFcsFBwcLMplMcHZ2VjlHKdvxzJkzgiCU7fgbOHCgMHDgQJVyaWlpQt++fYVNmzaV2A4lYQ9RFVJ+e1dm/cePH4dcLsf//vc/8c4XoGhAtI+PD+RyOX7++WeVZQwcOBA6Ojri/1ZWVgCABw8eVFqcf/75J6ZMmYJ27dph69atxY6xaNCgAd555x2VaZaWliqxREZGAgCmTJmiUq5NmzYYNmwYbt++jb/++guNGzeGnZ2dSg9RTEyMeOu0sicJAP744w90795dZdB4TZk0aRLMzMwQFhamEqPS1atXkZCQAGdnZ+Tn5yMjI0P8e/fddwFA7O5+55130KRJE/z4449i/Rs3buDKlSsYMmQIpFIpHj58iD///BMODg6oW7euyvJcXFygp6en1n1ua2tbK/ZVVRH++y1qXV3N7gfR1dUV62jq2LFjKCwsxIABA1T2eVZWFvr374/c3FzExMSo1HnvvfdU/n/+2HiVTJkyBV27dhX/evbsidGjRyMuLg7Tp09X6Qk9d+6cOKhdKT09HQ0bNgQAlcvjQFFP3bO9JGU5pp4nkUjg5uaGlJQUlV7n8PBwNG7cuNixPFXNwcEBkZGRCAoKwtixYyGTySCRSHD16lUsWbIE48ePR35+frk+K959912VzwrluNIBAwaolHvttddQUFCAzMxMAMBPP/0EqVSK3r17q+xfPT09dOvWDRcvXkRaWlqZt9Xe3h7NmzcX/1f2vrq4uKico15//XUAENdRluOvRYsWuHXrFtavXy9e3mvWrBl+/vlnTJ48ucwx8y6zKqS8Pq3slk1OTgbw/2+MZynHAN2+fVtlepMmTVT+Vx4clfmsjy+//BJSqRSJiYm4f/+++AZ9Po5nT1TPxqK8jp+cnIymTZvCyMhIrf6z29epUye4uLhg9erVuHnzJpo3b47Lly/D3d0dd+/eRWBgILKzs5GcnIx79+7ho48+qrRtrQg9PT0sX74cHh4eWLhwoUoyAwAJCQkAgJ07d2Lnzp3FLiMlJQVA0Qe1q6srgoODcefOHbRq1Qrh4eEA/r+rPykpCYIg4Oeff1Y7+T2/PKWmTZuWe/teBsbGxqhTp45GicbTp0/x8OHDYt/PpVG2o7+/f4llnh+bVR3HaW0xZ84cdOzYEYIgIDExEUFBQcjNzcXy5cvVkow6derg2LFj+P3335GQkIDk5GQ8ePBAZYzRs57fj2U5porj7u6OTZs24ccff0SXLl2QmZkpjoV8NtGoTrq6uujevbt4p2NGRgaOHj2KgIAA/PnnnwgLCyvXZ8Xzx77yS0NJ05X7PjExEQqFotQE8c6dOyrJjSaeX68yWXv+7kPldOUXl7Icf/PmzYOvry82b96MzZs3o2XLlujZsydcXV3h4OBQpngBJkRVKj4+HgBgYWEBQP3gf5Zy3vMHqVRa9Z143bp1w6RJk+Dt7Y358+dj165dasnP8/8Xp7TtU34wKLdPmRDFxMSgZcuWKCwsRNeuXXH37l188803OHPmDP7++2/o6Oio9UzVJCsrK3h7e2Pbtm1Yv369ykGvPKC9vLxKPLkovxkDwNChQ7Fz505ERERg4sSJiIiIQOfOncUPcOX+dHV1xbBhw4pd3vO9QdXxfqlJEokEDg4OOHHiBFJSUmBqalpi2XPnzqGwsBBdunQp0zqU+33VqlUwMTEptszztxm/6vv9WW+99ZZ4272TkxP69+8PDw8PTJ48GV999ZU4VqugoACTJ09GdHQ0bG1tYWFhgSFDhsDa2ho7duxQuzkEgEoPB1D2Y+p5bdq0QZcuXXD06FEsXLgQR44cQUFBAdzc3Mq17eWVm5uLLVu24PXXXxfHByoZGxtj9OjRMDc3x8iRI3HmzBmV8ZvPK+mzQk9Pr9jyLzp3KxQKNG7cGOvXry+xTLt27UpdRnFK6sXVJB5As+PvjTfewE8//YTTp08jKioKsbGxCAsLw759+zB+/HjMnj27bDGXqTSVyaFDhyCVStGnTx8A/9+IN27cUMv8//33XwCokUGw/v7+sLGxwZgxYxAcHIyQkJBib2d+kTZt2iAqKgqZmZlqvUTK7syWLVsCANq2bYt27dohJiYGrVu3hqmpKV577TW0aNEC9erVQ2xsLOLi4tC5c+die5xqkp+fH44fPy4OjlRSfjhLpVJ069ZNpc7jx49x4sQJtGjRQpzWsWNHWFhY4OjRo7Czs0NKSopKN69yeQUFBWrLKywsRGRkpFY+bmHYsGE4ceIEtmzZUuLDFAVBEJ9YXFIyWRLlYG0jIyO1/X7jxg0kJCTU2ufE1IQmTZrg66+/xogRIzB79mwcPHgQbdu2xZEjRxAdHY1p06Zh6tSpKnXS09M1WnZZj6niuLu7Y/78+Thz5gwiIyPxxhtviEMPqkvdunWxfft2tGrVCu7u7sUmBcqbcPT19av1s8LU1BSJiYmwtrZWGy6hvGNZ+by76qDp8SeXy3H9+nXo6OiIl2+Boh5Db29v7NixA/7+/mUaQqA9X2uq2bZt2xAfHw93d3fxoO7Tpw+kUqnaz3rk5+cjMDBQvI5bUVKptMzjJgBg+vTpMDU1xRdffCF22ZZFv379AAAbN25UmZ6SkoKDBw/C1NQUb731ljjdxcUFp0+fxsmTJ8VvnHXq1IGdnR2OHz+OS5cu1ejdZSWpW7culi9fDkEQ8Ouvv4rTLS0t0apVK+zfvx/37t1TqbNp0yZMnz5d5e5AoKiXKD4+Htu3b4e+vr7K9f5mzZrB1tYWv/zyi8qdigAQGhqKGTNm4MiRI1WwhbXbwIED4ezsjH379mHHjh1q8+VyOVasWIE///wTo0aNUrmN+XnPd9cDRcepRCLB5s2b1Y7T+fPnY8qUKWp3B2o7CwsL+Pn5ITc3F3PmzIFcLhfHqDz/0MtLly6Jx8GLLimW55h6nvKJ0N9//z3OnTtX7b1DQNH7bPDgwUhISMDGjRuLPT/v3r0bQNF5tLo+KwCgf//+UCgU4mMplO7evQtfX18sWLBAPE6UPaGlXQ2oKE2PP4VCgQ8++ACzZ89WudvW1NQUJiYmkEqlGl3ZeBZ7iCro5MmT4oEql8uRnp6OEydOIDY2Fp06dcKCBQvEsu3atcOUKVMQEBCA4cOHY8iQIRAEAeHh4bh+/Tr8/PzKPN6hOE2bNkVBQQE2bNiAzp07i5nzi9SvXx+ffvopJkyYgPnz5yM4OLhMbyh3d3ccOXIEISEhSE5ORs+ePfHgwQOEhoaisLAQn332mcryXFxcEBQUhBs3bsDHx0ec3rVrV3HAdW1MiACgS5cu8PT0xK5du8Rpyqci+/r6ws3NDSNHjkTLli0RGxuLI0eOiL9z9yxXV1esXr0av/zyCwYPHqz2DW3JkiXw9PTE6NGjMWrUKLRt2xbx8fH47rvv0LZtW3z44YfVsr21zbp16zB79mysXLkSERER6NevH5o0aYK7d+/i8OHDuHnzJoYOHSreVl8SIyMj6Ojo4OTJkwgLC0P37t3Rvn17+Pj44JtvvsGwYcMwePBg6Ovr49ChQ4iLi8OHH35Y7NgObTd+/HgcP34cFy9exLZt29CnTx+sW7cOS5cuxa1bt2BsbIz4+HgcOHBA/GDNysoqtYenPMfU8wwMDNCvXz/88MMPkEqlGDx4cKVut6bmzp2Lq1evIiAgAL/++iv69OkDExMTPH78GNHR0YiJiYGHhwdcXFwAoFo+K4CiL2URERH49ttvcevWLfTs2RNZWVkIDQ1Fbm4uVq1apTYe6eDBg3jy5MkL9315lOX4mzhxItatW4exY8diwIABqFOnDmJiYnD69Gl88MEHZR4nxoSogjZv3iy+lkqlMDQ0RIcOHTB//nyMGjVKrUGmTp2K9u3bY+fOnQgICICOjg4sLCywceNG8dJaRU2cOBHXr1/H5s2b4eDgoHFCBAA9evTAkCFDEB4ejj179sDT01Pjurq6utiyZQuCgoIQHh6OlStXomHDhnB0dMTkyZPRsWNHlfK2trYwMjJCZmYm3n77bXG68rVMJqvVj4SfMWMGfvvtN5VBnT179sSePXuwefNmhIaGIi8vD61atcLkyZMxYcIEte5bIyMjuLi4IDIyUm1sAQCYm5vj+++/x4YNG3Do0CE8evQIJiYmGD16NHx8fGrd5cTqYmhoiI0bN+LXX39FWFgY9uzZg/T0dDRr1gydOnXC4sWLNXrf16tXDx9//DECAwOxbNkyfPrppxg6dCg++ugjvPnmmwgJCcGmTZsgkUjQtm1bLF++vMyX4LSFjo4OVq1aBXd3dwQEBKBXr17YsmULvv76a2zevBm6urpo1aoVpk2bhg4dOmDy5MmIiYnBm2++Wepyy3pMFWfo0KH44Ycf0K1btxLHpVS1Bg0aYN++fdi3bx9+/vlnhISEICsrCwYGBrC0tMTXX3+t8jtm1fFZARSdt7dt24agoCD8+OOPWLVqFQwNDWFhYYG1a9eqDE5+++238d577+H48eO4cOEC7O3tKy2OZ2l6/E2cOBHGxsYIDQ0VH1bbrl07LFy4sEyfXUoSoTzXVoiIiF4SZ8+ehaenJ9avX4+BAwfWdDhUS3EMERERvdKCg4NhZGRUqT0r9OrhJTMiInrlZGVlYeHChbh37x4uXryI2bNn19izh+jlwISIiIheOYaGhoiPj0dGRgbGjRsHLy+vmg6JajmOISIiIiKtxzFEREREpPWYEBEREZHWY0JEREREWo8JEREREWk9JkRERESk9ZgQEWm5efPmwczMDPv37y92flBQEMzMzGBmZoa//vqr2DJ+fn4wMzPDb7/9VqmxjR07FmZmZkhMTCxX/YCAgFK3TRPZ2dnYvn17ueu/SGFhIVavXg0nJydYWlryScpENYQJEZGWU/7m1/nz54udHx0dLf4YZ1RUVLFlzp49Cz09PZXfPaoNHBwcMHXqVFhYWJR7Gf3798eOHTsqL6jn7N+/H9u3b0fdunXh5eWF4cOHV9m6iKhkfDAjkZbr1q0bgOITotzcXJw7dw7vvPMOTp48iejoaPj6+qqUuXHjBtLT02Fvbw8DA4NqiVlTjo6OcHR0rNAyHjx4UKU/CHr16lUAwOzZs/Huu+9W2XqIqHTsISLSck2bNoVMJkNCQgLS09NV5p06dQr5+fno1asXunTpgri4ODx+/FilzNmzZwEATk5O1RbzqyQ/Px8AYGRkVMOREGk3JkREhLfffhsAcOHCBZXp0dHRAIqSne7du0Mul+PkyZMqZc6cOSOWeVZ4eDhGjhwJW1tbdOrUCe7u7ggJCYFcLlcpN3bsWNja2uLChQsYMGAArKysMGjQIOTl5RUba3JyMnr16gULCwtERESUul3FjSFycXHBkCFDkJKSgpkzZ8LR0RHW1tYYNmwYjhw5IpY7cOAAzMzMAACpqakwMzPD3LlzxflPnjzBpk2bMGjQIFhZWcHBwQE+Pj6Ii4tTieH27dswMzPD0qVLsWHDBnTp0gV2dnYYMWIEzMzMcPDgQQDAuHHjYGZmhlOnTol1//jjD3h5eaFLly6wtrbGkCFDEBISAoVCUaZ9+PDhQ6xevRp9+vSBpaUlunXrhhkzZuDGjRul7j8ibcJLZkSEbt26ITg4GOfOnVP5RfDo6Gi0bdsWbdq0EROe6OholUs7Z8+eRePGjWFpaQkAEAQBCxYswPfff49mzZphwIAB0NPTQ3R0ND777DNER0dj06ZN0NX9/9NPQUEBfHx8YGdnh169euHJkyfQ19dXi/PevXvw8vLCgwcPsG7dunIPQH748CE8PDzQqFEjDBkyBI8ePcLhw4cxffp0GBoaomfPnjA3N8fUqVOxYcMGGBgYwNvbG+bm5gCKLiWOGzcOly9fhpWVFTw9PZGVlYXIyEiMHj0aX3zxBfr376+yzsjISDx9+hRubm54+PAhrKys0KNHDxw/fhx///033N3dYWpqClNTUwDA1q1bsW7dOhgbG6N///5o2LAhTpw4gc8++wxnzpzBV199BYlE8sJ9mJaWhtGjRyM5ORmOjo7o168f7t+/j6NHj+K3337Dtm3b0Llz53LtR6JXikBEWi87O1uwsLAQPDw8xGmJiYmCTCYTPv30U3Fa9+7dhR49eoj/JyUlCTKZTPD39xenHT58WJDJZMLw4cOF9PR0cXpOTo7w4YcfCjKZTAgMDBSnjxkzRpDJZMKMGTPU4lLOS0hIEFJTU4V+/foJb731lnD06FGNtuvrr78WZDKZEBYWJk5zdnYWZDKZ8NFHHwkFBQXi9IMHDwoymUyYOHGiyjJkMpnKNguCICxfvlyQyWTCF198oTI9JSVF6Nq1q2BraytkZmYKgiAIycnJgkwmE2QymRAdHa0W45w5cwSZTCbExsaK0+Lj44WOHTsKrq6uQkZGhjhdLpcLM2bMEGQymbBv3z61/VTcPvT19VUrLwiCcOXKFcHKykpwdnZW2Q9E2oqXzIgIBgYGsLa2xl9//YWnT58C+P87yrp37y6Wc3JyQmpqKq5fvw6g+PFD3333HQBg4cKFMDY2FqfXr18fn3zyCaRSKfbt26cWw4ABA0qMLyMjA15eXkhJScGXX36p1vtSHhMmTFDppXJ2dgaAF97iL5fLxd4vPz8/lXmtWrXCuHHjkJOTo3L5DQAaNmyo8Tir/fv3Q6FQ4OOPP1YZWySVSjF79myxzPOe34cPHjzAL7/8AisrK4wYMUJlnrm5uXjpMCYmRqO4iF5lvGRGRACKbr8/f/48Ll++jC5duiA6Ohp6enoqd2l1794dBw8eRGxsLGQyWbHjh+Lj41GvXj1YWVmpraNNmzZo0aIFkpOTkZ2dDUNDQ3Fe69atS4zN398fqampaNKkCbp06VIZm4u2bduq/N+wYUMARZeeSnPr1i1kZ2ejYcOG2LRpk9r8hIQEAMCVK1dUprdu3VrlEldpLl++DKDo8uSlS5fU5terVw9Xr16FIAgqy3x+H8bHx0MQBOTn5yMgIEBtOffu3RNj7dWrl0axEb2qmBAREYCicUQbN27E+fPnYW1tjdOnT8PW1lblVvpu3bpBIpHg1KlTGDduHM6ePYt27dqhVatWYpns7Gw0atRIfHbR80xMTHDnzh3k5uaqJETFjRlSysjIgLOzM3777TcsX74ca9eurfD21q1bV+V/TZOVR48eAQDu3LmDDRs2vLCcUr169TSOTXknX0hISKnlcnJySt2HyhiuXbuGa9euaRwrkTZiQkREAIBOnTqhfv36uHTpEi5evIjc3FyVy2UAYGxsDAsLC5w9exb3799HYmIixo4dq1LG0NAQmZmZyM/PR506ddTWo/zwbdy4scaxrVq1Cv369YObmxsOHTqEQYMG4Z133in7RlYCZYLYs2dPbN26tUrXcfLkSTRp0qTCyxk1ahQ++eSTygiN6JXFMUREBADQ09ODvb09/vrrL/FS2PMJkXLaw4cPxTEyz4+LsbCwgEKhwLlz59TqpqamIiEhAW3bti02WSqJlZUV6tSpg6VLl0IikWDJkiXIzs4uy+ZVmvbt24uXrJTPEHpWTEwMPv/8c3F8VXko72Z7/hZ+oKgHbvny5di1a5fGyynushsAHD58GF9++SX+/vvvcsdK9KpgQkREoq5du+Lu3buIjIwUe4Oep0yAwsLCiv25jmHDhgEA1qxZg8zMTHF6Xl4elixZAoVCgaFDh5Yrvi5dusDDwwP37t3DqlWryrWMstLT00NhYaH4f506dTB48GDcv38fX3zxhcozgR48eIDFixcjMDCwQutU/nzH2rVrcf/+fZV5n3/+OYKDg8UnXJemVatWcHJyQnx8PHbu3Kky7+bNm/j0008RGBioctmNSFvxkhkRiZS/a3bt2jW4uroWO67Gzs4O9evXx7///gsHBwe1n+twdXVFdHQ0fvjhB7z33nvo1asX9PT0cOLECSQnJ6NHjx4YP358uWP8+OOP8euvv2L//v0YOHCg+NMjVaVly5ZISkrC/Pnz4eDgADc3N8yePRsXL17Et99+i9jYWNjb2+Pp06f4+eefkZmZCW9v7woN/razs4Ovr6/44EcXFxcYGRnhzJkzuHz5Mtq3b48ZM2ZotKxly5bB09MTK1asQGRkJDp16oSHDx/i6NGjyM3NxYIFC0od0E6kLdhDREQiMzMzNG3aFEDxl8sAqNx5VtJt5KtWrcKKFStgamqKw4cP49ChQzAyMsInn3yCwMBAldvdy6pBgwZYvHgxgKJb+3Nycsq9LE0sXrwYr7/+Og4dOiQ+VbpBgwbYu3cvpk6divz8fOzduxeRkZHo0KED1q9fr/JE6/Ly9/fHpk2bYGFhgePHj2PPnj3IycmBj48PQkNDNR5bZGpqigMHDsDLywtpaWkICQlBVFQU7OzssH37dowbN67CsRK9CiSCIAg1HQQRERFRTWIPEREREWk9JkRERESk9ZgQERERkdZjQkRERERajwkRERERaT0mRERERKT1mBARERGR1mNCRERERFqPCRERERFpPSZEREREpPWYEBEREZHWY0JEREREWu//AE7fjvgl4SwXAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["o = labelDict['label_work_interfere']\n","g = sns.barplot(x=\"work_interfere\", y=\"treatment\", hue=\"Gender\", data=train_df)\n","g.set_xticklabels(o)\n","plt.title('Probability of mental health condition')\n","plt.ylabel('Probability x 100')\n","plt.xlabel('Work interfere')\n","\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"4ea1fe2d-e6bd-434f-807c-9936f17be784","_uuid":"ebb8c1dc1fdd5dcfa5f9d1b05db3d23323b21adc"},"source":["\n","## **6. Scaling and fitting** ##\n","\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"a95cf3ba-36d4-4df5-9797-2ccf1f018f5a","_uuid":"5bdd6122fff56b5957a59210160269e7a32af869"},"source":["Features Scaling\n","We're going to scale age, because is extremely different from the othere ones."]},{"cell_type":"code","execution_count":109,"metadata":{"_cell_guid":"6ae3cc24-d8cf-4ab2-915d-091007ff2457","_uuid":"d8dcf5e62e990fb6747f5695cbce9919f5cdec4b","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/html":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# Build a forest and compute the feature importances\n","forest = ExtraTreesClassifier(n_estimators=250,\n"," random_state=0)\n","\n","forest.fit(X, y)\n","importances = forest.feature_importances_\n","std = np.std([tree.feature_importances_ for tree in forest.estimators_],\n"," axis=0)\n","indices = np.argsort(importances)[::-1]\n","\n","labels = []\n","for f in range(X.shape[1]):\n"," labels.append(feature_cols[f]) \n"," \n","# Plot the feature importances of the forest\n","plt.figure(figsize=(12,8))\n","plt.title(\"Feature importances\")\n","plt.bar(range(X.shape[1]), importances[indices],\n"," color=\"r\", yerr=std[indices], align=\"center\")\n","plt.xticks(range(X.shape[1]), labels, rotation='vertical')\n","plt.xlim([-1, X.shape[1]])\n","plt.show()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"b07c9bf0-3323-4cb3-9589-fe64b1fd854a","_uuid":"a5a4b72ee4b193749ff0f59acb689c5900d98ec1"},"source":["\n","## **7. Tuning** \n","### **Evaluating a Classification Model.** \n","This function will evalue: \n","* **Classification accuracy: **percentage of correct predictions\n","* **Null accuracy:** accuracy that could be achieved by always predicting the most frequent class\n","* **Percentage of ones** \n","* **Percentage of zero**s \n","* **Confusion matrix: **Table that describes the performance of a classification model\n"," True Positives (TP): we correctly predicted that they do have diabetes\n"," True Negatives (TN): we correctly predicted that they don't have diabetes\n"," False Positives (FP): we incorrectly predicted that they do have diabetes (a \"Type I error\")\n"," Falsely predict positive\n"," False Negatives (FN): we incorrectly predicted that they don't have diabetes (a \"Type II error\")\n"," Falsely predict negative\n","\n","* **False Positive Rate** \n","* **Precision of Positive value** \n","* **AUC:** is the percentage of the ROC plot that is underneath the curve\n"," .90-1 = excellent (A)\n"," .80-.90 = good (B)\n"," .70-.80 = fair (C)\n"," .60-.70 = poor (D)\n"," .50-.60 = fail (F)\n","And some others values for tuning processes.\n","More information: [http://www.ritchieng.com/machine-learning-evaluate-classification-model/]: \n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"ae969199-93b6-4566-a677-69560ab1760f","_uuid":"8f672b391aa354c77032b1f0c174a59aaa75cea9"},"source":[]},{"cell_type":"code","execution_count":112,"metadata":{"_cell_guid":"0c78481e-0e93-4369-932f-d2b21f1dea0c","_uuid":"dec481c2407ad73187e7b678fbdb9812f6a636a8","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def evalClassModel(model, y_test, y_pred_class, plot=False):\n"," #Classification accuracy: percentage of correct predictions\n"," # calculate accuracy\n"," print('Accuracy:', metrics.accuracy_score(y_test, y_pred_class))\n"," \n"," #Null accuracy: accuracy that could be achieved by always predicting the most frequent class\n"," # examine the class distribution of the testing set (using a Pandas Series method)\n"," print('Null accuracy:\\n', y_test.value_counts())\n"," \n"," # calculate the percentage of ones\n"," print('Percentage of ones:', y_test.mean())\n"," \n"," # calculate the percentage of zeros\n"," print('Percentage of zeros:',1 - y_test.mean())\n"," \n"," #Comparing the true and predicted response values\n"," print('True:', y_test.values[0:25])\n"," print('Pred:', y_pred_class[0:25])\n"," \n"," #Conclusion:\n"," #Classification accuracy is the easiest classification metric to understand\n"," #But, it does not tell you the underlying distribution of response values\n"," #And, it does not tell you what \"types\" of errors your classifier is making\n"," \n"," #Confusion matrix\n"," # save confusion matrix and slice into four pieces\n"," confusion = metrics.confusion_matrix(y_test, y_pred_class)\n"," #[row, column]\n"," TP = confusion[1, 1]\n"," TN = confusion[0, 0]\n"," FP = confusion[0, 1]\n"," FN = confusion[1, 0]\n"," \n"," # visualize Confusion Matrix\n"," sns.heatmap(confusion,annot=True,fmt=\"d\") \n"," plt.title('Confusion Matrix')\n"," plt.xlabel('Predicted')\n"," plt.ylabel('Actual')\n"," plt.show()\n"," \n"," #Metrics computed from a confusion matrix\n"," #Classification Accuracy: Overall, how often is the classifier correct?\n"," accuracy = metrics.accuracy_score(y_test, y_pred_class)\n"," print('Classification Accuracy:', accuracy)\n"," \n"," #Classification Error: Overall, how often is the classifier incorrect?\n"," print('Classification Error:', 1 - metrics.accuracy_score(y_test, y_pred_class))\n"," \n"," #False Positive Rate: When the actual value is negative, how often is the prediction incorrect?\n"," false_positive_rate = FP / float(TN + FP)\n"," print('False Positive Rate:', false_positive_rate)\n"," \n"," #Precision: When a positive value is predicted, how often is the prediction correct?\n"," print('Precision:', metrics.precision_score(y_test, y_pred_class))\n"," \n"," \n"," # IMPORTANT: first argument is true values, second argument is predicted probabilities\n"," print('AUC Score:', metrics.roc_auc_score(y_test, y_pred_class))\n"," \n"," # calculate cross-validated AUC\n"," print('Cross-validated AUC:', cross_val_score(model, X, y, cv=10, scoring='roc_auc').mean())\n"," \n"," ##########################################\n"," #Adjusting the classification threshold\n"," ##########################################\n"," # print the first 10 predicted responses\n"," # 1D array (vector) of binary values (0, 1)\n"," print('First 10 predicted responses:\\n', model.predict(X_test)[0:10])\n","\n"," # print the first 10 predicted probabilities of class membership\n"," print('First 10 predicted probabilities of class members:\\n', model.predict_proba(X_test)[0:10])\n","\n"," # print the first 10 predicted probabilities for class 1\n"," model.predict_proba(X_test)[0:10, 1]\n"," \n"," # store the predicted probabilities for class 1\n"," y_pred_prob = model.predict_proba(X_test)[:, 1]\n"," \n"," if plot == True:\n"," # histogram of predicted probabilities\n"," # adjust the font size \n"," plt.rcParams['font.size'] = 12\n"," # 8 bins\n"," plt.hist(y_pred_prob, bins=8)\n"," \n"," # x-axis limit from 0 to 1\n"," plt.xlim(0,1)\n"," plt.title('Histogram of predicted probabilities')\n"," plt.xlabel('Predicted probability of treatment')\n"," plt.ylabel('Frequency')\n"," \n"," \n"," # predict treatment if the predicted probability is greater than 0.3\n"," # it will return 1 for all values above 0.3 and 0 otherwise\n"," # results are 2D so we slice out the first column\n"," y_pred_prob = y_pred_prob.reshape(-1,1) \n"," y_pred_class = binarize(y_pred_prob)[0]\n"," \n"," # print the first 10 predicted probabilities\n"," print('First 10 predicted probabilities:\\n', y_pred_prob[0:10])\n"," \n"," ##########################################\n"," #ROC Curves and Area Under the Curve (AUC)\n"," ##########################################\n"," \n"," #Question: Wouldn't it be nice if we could see how sensitivity and specificity are affected by various thresholds, without actually changing the threshold?\n"," #Answer: Plot the ROC curve!\n"," \n"," \n"," #AUC is the percentage of the ROC plot that is underneath the curve\n"," #Higher value = better classifier\n"," roc_auc = metrics.roc_auc_score(y_test, y_pred_prob)\n"," \n"," \n","\n"," # IMPORTANT: first argument is true values, second argument is predicted probabilities\n"," # we pass y_test and y_pred_prob\n"," # we do not use y_pred_class, because it will give incorrect results without generating an error\n"," # roc_curve returns 3 objects fpr, tpr, thresholds\n"," # fpr: false positive rate\n"," # tpr: true positive rate\n"," fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_prob)\n"," if plot == True:\n"," plt.figure()\n"," \n"," plt.plot(fpr, tpr, color='darkorange', label='ROC curve (area = %0.2f)' % roc_auc)\n"," plt.plot([0, 1], [0, 1], color='navy', linestyle='--')\n"," plt.xlim([0.0, 1.0])\n"," plt.ylim([0.0, 1.0])\n"," plt.rcParams['font.size'] = 12\n"," plt.title('ROC curve for treatment classifier')\n"," plt.xlabel('False Positive Rate (1 - Specificity)')\n"," plt.ylabel('True Positive Rate (Sensitivity)')\n"," plt.legend(loc=\"lower right\")\n"," plt.show()\n"," \n"," # define a function that accepts a threshold and prints sensitivity and specificity\n"," def evaluate_threshold(threshold):\n"," #Sensitivity: When the actual value is positive, how often is the prediction correct?\n"," #Specificity: When the actual value is negative, how often is the prediction correct?print('Sensitivity for ' + str(threshold) + ' :', tpr[thresholds > threshold][-1])\n"," print('Specificity for ' + str(threshold) + ' :', 1 - fpr[thresholds > threshold][-1])\n","\n"," # One way of setting threshold\n"," predict_mine = np.where(y_pred_prob > 0.50, 1, 0)\n"," confusion = metrics.confusion_matrix(y_test, predict_mine)\n"," print(confusion)\n"," \n"," \n"," \n"," return accuracy"]},{"cell_type":"markdown","metadata":{"_cell_guid":"3e4552da-c5cc-45af-81ca-05a090922bb0","_uuid":"4e5d57cfad5eee9dd3a34ed9da5fdccce8dc7c3a"},"source":["### **Tuning with cross validation score**"]},{"cell_type":"code","execution_count":113,"metadata":{"_cell_guid":"ff07e090-5af7-4a06-b553-c86a7a75cd64","_uuid":"8ac94690bafb3277fec2d35bd196c317a33c9555","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["##########################################\n","# Tuning with cross validation score\n","##########################################\n","def tuningCV(knn):\n"," \n"," # search for an optimal value of K for KNN\n"," k_range = list(range(1, 31))\n"," k_scores = []\n"," for k in k_range:\n"," knn = KNeighborsClassifier(n_neighbors=k)\n"," scores = cross_val_score(knn, X, y, cv=10, scoring='accuracy')\n"," k_scores.append(scores.mean())\n"," print(k_scores)\n"," # plot the value of K for KNN (x-axis) versus the cross-validated accuracy (y-axis)\n"," plt.plot(k_range, k_scores)\n"," plt.xlabel('Value of K for KNN')\n"," plt.ylabel('Cross-Validated Accuracy')\n"," plt.show()\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"55a2a701-b435-4143-bc7b-c56b4a24491f","_uuid":"1cae2be4f65fc14d55eb1331110f69f016df2dbc"},"source":["### **Tuning with GridSearchCV** ###"]},{"cell_type":"code","execution_count":114,"metadata":{"_cell_guid":"736e766c-b1c8-4d7e-b1b0-1bdab402ee4f","_uuid":"3f64ad65f27cd4a92e5593ed6359245f34ba0e8e","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def tuningGridSerach(knn):\n"," #More efficient parameter tuning using GridSearchCV\n"," # define the parameter values that should be searched\n"," k_range = list(range(1, 31))\n"," print(k_range)\n"," \n"," # create a parameter grid: map the parameter names to the values that should be searched\n"," param_grid = dict(n_neighbors=k_range)\n"," print(param_grid)\n"," \n"," # instantiate the grid\n"," grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy')\n","\n"," # fit the grid with data\n"," grid.fit(X, y)\n"," \n"," # view the complete results (list of named tuples)\n"," grid.cv_results_\n"," \n"," # examine the first tuple\n"," print(grid.cv_results_[0].parameters)\n"," print(grid.cv_results_[0].cv_validation_scores)\n"," print(grid.cv_results_[0].mean_validation_score)\n"," \n"," # create a list of the mean scores only\n"," grid_mean_scores = [result.mean_validation_score for result in grid.cv_results_]\n"," print(grid_mean_scores)\n"," \n"," # plot the results\n"," plt.plot(k_range, grid_mean_scores)\n"," plt.xlabel('Value of K for KNN')\n"," plt.ylabel('Cross-Validated Accuracy')\n"," plt.show()\n"," \n"," # examine the best model\n"," print('GridSearch best score', grid.best_score_)\n"," print('GridSearch best params', grid.best_params_)\n"," print('GridSearch best estimator', grid.best_estimator_)\n"]},{"cell_type":"markdown","metadata":{"_cell_guid":"9ff8088d-53b8-4724-ab5a-3c23e8728b61","_uuid":"2ab0cb978d8869389d97fb4d29f4cab1c3a33ba7"},"source":["### **Tuning with RandomizedSearchCV** ###"]},{"cell_type":"code","execution_count":115,"metadata":{"_cell_guid":"446bfe3e-b42f-4821-a20a-2cb07fd07c50","_uuid":"b8d3212c33baad0e847e7a36272feb2ef31c4d5e","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def tuningRandomizedSearchCV(model, param_dist):\n"," #Searching multiple parameters simultaneously\n"," # n_iter controls the number of searches\n"," rand = RandomizedSearchCV(model, param_dist, cv=10, scoring='accuracy', n_iter=10, random_state=5)\n"," rand.fit(X, y)\n"," rand.cv_results_\n"," \n"," # examine the best model\n"," print('Rand. Best Score: ', rand.best_score_)\n"," print('Rand. Best Params: ', rand.best_params_)\n"," \n"," # run RandomizedSearchCV 20 times (with n_iter=10) and record the best score\n"," best_scores = []\n"," for _ in range(20):\n"," rand = RandomizedSearchCV(model, param_dist, cv=10, scoring='accuracy', n_iter=10)\n"," rand.fit(X, y)\n"," best_scores.append(round(rand.best_score_, 3))\n"," print(best_scores)"]},{"cell_type":"markdown","metadata":{"_cell_guid":"70d61d3d-4b78-43cb-bccf-d7588dc61762","_uuid":"695a98ccaa5870275bc2fe91ef9527dbb6833368"},"source":["### **Tuning with searching multiple parameters simultaneously** ###"]},{"cell_type":"code","execution_count":116,"metadata":{"_cell_guid":"114d4734-9647-4f09-b1bd-20c022421011","_uuid":"0f4aad3e3f129aadfda0828345ce6418d46c5cf2","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def tuningMultParam(knn):\n"," \n"," #Searching multiple parameters simultaneously\n"," # define the parameter values that should be searched\n"," k_range = list(range(1, 31))\n"," weight_options = ['uniform', 'distance']\n"," \n"," # create a parameter grid: map the parameter names to the values that should be searched\n"," param_grid = dict(n_neighbors=k_range, weights=weight_options)\n"," print(param_grid) \n"," \n"," # instantiate and fit the grid\n"," grid = GridSearchCV(knn, param_grid, cv=10, scoring='accuracy')\n"," grid.fit(X, y) \n"," \n"," # view the complete results\n"," print(grid.cv_results_)\n"," \n"," # examine the best model\n"," print('Multiparam. Best Score: ', grid.best_score_)\n"," print('Multiparam. Best Params: ', grid.best_params_)"]},{"cell_type":"markdown","metadata":{"_uuid":"2e05b3654a69f79cce46c2f5f007933de7dd91dc"},"source":["\n","## **8. Evaluating models**
\n","\n","### Logistic Regression"]},{"cell_type":"code","execution_count":117,"metadata":{"_cell_guid":"8613beea-11e3-426b-91f6-39df3626eaf9","_uuid":"89f5e2c8ec51637568ac22982649205ca1c340e2","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def logisticRegression():\n"," # train a logistic regression model on the training set\n"," logreg = LogisticRegression()\n"," logreg.fit(X_train, y_train)\n"," \n"," # make class predictions for the testing set\n"," y_pred_class = logreg.predict(X_test)\n"," \n"," print('########### Logistic Regression ###############')\n"," \n"," accuracy_score = evalClassModel(logreg, y_test, y_pred_class, True)\n"," \n"," #Data for final graph\n"," methodDict['Log. Regres.'] = accuracy_score * 100"]},{"cell_type":"markdown","metadata":{"_cell_guid":"de99d1dd-eb98-478c-9ed0-3cb518eac4b2","_uuid":"1f71d045fa89ece846fe9e44559f057293e8bdf7"},"source":["\n"]},{"cell_type":"code","execution_count":118,"metadata":{"_cell_guid":"2c090f3c-ecc9-433d-84a9-0d8f56cfd75d","_uuid":"dd4c840a2b9a7ed7ad737730c4f780d11d603699","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["########### Logistic Regression ###############\n","Accuracy: 0.7962962962962963\n","Null accuracy:\n"," 0 191\n","1 187\n","Name: treatment, dtype: int64\n","Percentage of ones: 0.4947089947089947\n","Percentage of zeros: 0.5052910052910053\n","True: [0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0]\n","Pred: [1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0]\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjAAAAHUCAYAAAAkzBJmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde1yO9/8H8Nedik4OMUIOYdUsJaOcLUxyjGkhZM1xyZwPY8aX3xzGhpzGLMLIqUJYfUMODXOITGMih6xSORRFdV+/P1r3d/fuu64O913Xrdfz+7gfj6/r87mu633HY97e78/numSCIAggIiIi0iF6FR0AERERUUkxgSEiIiKdwwSGiIiIdA4TGCIiItI5TGCIiIhI5zCBISIiIp3DBIaIiIh0DhMYIiIi0jlMYIiIiEjnMIGhSunevXtYsWIF+vfvj7Zt28Le3h5ubm745ptvkJycXO7xJCQkwNvbG46OjmjTpg3WrVuntXv5+/vDxsYG+/bt09o9iqN79+6wsbGBjY0NfvvttyLnbtu2TTH34MGDZbpveHg4/vjjj2LNvXDhAmxsbDBjxowy3ZOINI8JDFU6W7duRf/+/bFt2zbUrVsXgwYNgoeHB4yNjbF9+3b06dMHV69eLdeYZs2ahfPnz6Ndu3bw8vKCk5OT1u7l5OSESZMmoWXLllq7R0kdP368yPGwsDCN3GflypXw8/NDenp6seY3bNgQkyZNQq9evTRyfyLSHP2KDoCoPG3btg0rVqyAtbU1/P390bRpU6Xx4OBgfPnllxgzZgxCQ0NhaWlZLnHdvHkTZmZm2LhxI6pUqaLVezk7O8PZ2Vmr9yiJd955B7/88gvmzZsHPT3Vf1M9fPgQ169fh4mJCV6+fFmme6WmppZovqWlJfz8/Mp0TyLSDlZgqNJ4+PAhVq5cierVq2P79u0qyQsADBo0CKNGjUJmZia2bt1abrHl5OSgevXqWk9epKh379548uQJLl++rHb86NGjAIAePXqUZ1hEJHFMYKjSCAkJQU5ODry8vGBubl7oPB8fH0yfPh2DBg1SOp6dnY1169ahT58+aNWqFdq2bYvRo0cjKipK5Ro2Njb4/PPPcevWLUyYMAFt27ZF69atMWLECPz666+KeXPmzIGNjQ0AIDExETY2NujevbvSWHR0tMr1R44cCRsbG9y/f19x7OnTp1i0aBF69+4Ne3t7ODs7Y8yYMSrnF7YG5vHjx1iwYAG6desGOzs7dOrUCdOnT8edO3eU5hWsC9m2bRsiIiLg4eEBBwcHODk5YcqUKXjw4EGhP1t13NzcAADHjh1TOx4WFgZ7e3s0btxY7fj9+/exYMECfPTRR7C3t4eDgwP69OmD1atXIzs7WzHPxsYGwcHBAIBPP/1U8XMv+D6bN2/GokWL4OjoCCcnJ+zcuVNlDUxMTAxatmyJDz74AElJSUpxfPPNN7CxscHcuXNL9P2JqHSYwFClcerUKQBAt27dipxXr149jBs3Dvb29opjGRkZGDp0KPz9/VGlShV4enrCxcUFsbGxGDduHDZt2qRynYSEBAwdOhRpaWnw8PBA165dcenSJYwZMwa3b98GAPTs2ROTJk0CAJiZmWHSpEkYNWpUib/bmzdvMGbMGAQFBeHdd9+Ft7c3unfvjsuXL+Ozzz7D6dOnizw/Li4O7u7uCAoKgpWVFUaMGIFWrVohLCwMQ4YMUZtEHTlyBH5+fqhTpw5GjBiBZs2a4dixYxg1ahRycnKKHbuDgwMaNmyI8PBwyOVypbH4+HjcunULffv2VXvuH3/8gcGDByM0NBT29vbw9vZGv379kJaWho0bN2LWrFmKuZMmTYKtrS0AYODAgYqfe4Ht27cjIiICQ4cOhZOTE1q3bq1yv9atW2Ps2LHIzMzEwoULFcejo6MRGBiIpk2bYv78+cX+7kRUBgJRJdGxY0fB2tpaePbsWYnPXbBggWBtbS189dVXQk5OjuL4gwcPhK5duwo2NjZCTEyM4ri1tbVgbW0tLFu2TOk6/v7+grW1tbBw4UKl49bW1oKLi4vSsdmzZwvW1tbCuXPnVOIZMWKEYG1tLSQkJAiCIAgnTpwQrK2the+//15p3m+//SZYW1sLPj4+imNr164VrK2thb179wqCIAh5eXlC3759BWtrayE4OFjp/KioKMHW1lZo37698PLlS0EQBOH8+fOK7xcZGamYK5fLBW9vb8Ha2lo4evRoIT/J/3FxcRGsra2FnJwcYfny5YK1tbVw4cIFpTlr1qwRbG1thaSkJEXcBw4cUIyPHz9esLa2Fi5evKh0XmpqqtCmTRvB1tZWyMjIKPJnWvB9bG1thTt37ihdp2Bs+vTpimNv3rwRBg0apPiez549E7p06SK8//77QmxsrOj3JiLNYAWGKo3nz58DAIyNjUt03ps3b3Do0CFUr14d8+bNg77+/9a+N2rUCFOmTIEgCAgKClI5d9y4cUq/LmgPlbTNIkYQBAD5lZRXr14pjrdt2xbh4eHYuHFjoefGxMTgzz//RJcuXeDu7q401rVrV7i7uyM9PR3h4eFKY9bW1orvAwAymQwffvghgJJ/vz59+gBQ3Y0UFhaGdu3aoV69emrPGzlyJJYvX4527dopHa9duzbeffddyOVyPHv2rFgxWFtbo3nz5qLzDAwMsGLFClStWhXffPMN5s+fj+TkZEydOhV2dnbFuhcRlR0TGKo0atWqBQB48eJFic5LSEjAq1evYG9vj6pVq6qMt23bFkB+8vBPNWvWVNyzgJmZGYD8pEiTOnbsiKZNm+LUqVPo1KkTJkyYgMDAQNy7dw9NmjSBoaFhoefevHkTAArdul3Y97OyslKZW/D9StJCAgA7Ozs0btxYqY30+++/IyEhAf369Sv0vE6dOsHd3R3Pnj3DhQsXsG/fPqxatQo+Pj64ceMGAKi0pQrTqFGjYsfbokULTJ06FSkpKQgPD0enTp3g4+NT7POJqOyYwFClUbAINCEhQXRufHy84i++jIwMAP/7y/nfCqoD/6x8AFCb7MhksmLHWxLVqlVDUFAQPvvsM9SqVQsnT57E//3f/6F3794YPHgwrl+/Xui5Bd/P1NRU7XjB98vKylI6ri4pKvh+BRWhknBzc8OTJ09w6dIlAPnVFwMDgyKfwZKSkoJp06ahU6dOGDVqFObPn4/Q0FBUr15dEXdxY6lWrVqJ4u3Vq5di11ibNm209ntLROoxgaFKo2Dx7pkzZ4qc9/jxY/Tt2xedOnVCVlaW4i/2wp7QW1DR+Xe1pawK/kJUV0H4d7IE5Fd8Zs2ahRMnTiA8PBwLFy5Ehw4d8Pvvv2PMmDHIzMxUe5/ifr+aNWuW6nsU17/bSMePH0fnzp0Lva8gCBg3bhzCwsLg6emJn3/+GRcvXsTp06exevVq1K5dW2uxCoKAL7/8Enl5eahZsyY2bdpU7Kf7EpFmMIGhSqN///4wMjLCrl27inwSa0BAAARBQNu2bWFkZIRmzZrByMgIt2/fVtt+unDhAoD8NRSaZGBgAAAqD2+Ty+V4+PCh0rEzZ85gyZIlim3VTZo0wbBhw7Bt2zY4Ozvj+fPnip1P/1bwRN6Cyse/nT9/HoDmv9+/2drawsrKCuHh4bh69SoSExML3X0EALdu3UJcXBzatWuHBQsW4IMPPkCNGjUA5LewCipt/6zAaKpKEhgYiPPnz6Nv375YvXo1cnJyMHPmTI23BomocExgqNKoX78+Jk6ciBcvXsDb21tloalcLse2bdsQGBgIY2NjTJ06FUB+IjFgwABkZmZi6dKlyM3NVZzz6NEjfP/995DJZCoLYMuqWbNmAICTJ08qHd++fbtiQXKBx48fY8eOHdiyZYvS8devX+PJkyfQ09NDw4YN1d7H0dERzZs3x6VLl7B//36lsejoaBw8eBA1a9aEi4tLWb+SqD59+uDJkydYvnw5jIyMlBYJ/1tBi+758+dKvyd5eXlYunSp4mf0z7GCBdglXaPzT/Hx8fjuu+9Qq1YtzJ8/Hx06dICHhwdu376N1atXl/q6RFQyfJUAVSrjxo3D8+fPsXXrVvTu3RudOnVCixYtkJGRgcuXL+Pu3bswNTXFmjVrFAkEAMycORNXr17FwYMHcePGDTg7O+PFixc4ceIEMjIy8MUXX6BNmzYajXXgwIHw9/dHcHAwUlNTYWtri99//x2XLl2Co6Oj0vuaBgwYgKCgIOzbtw+3bt1C27ZtkZOTg9OnT+P+/fvw8fEpdCePnp4evv32W4wePRrz5s3DkSNH8N577yEhIQGnTp1C1apVsWrVKpiYmGj0+6nTp08frF+/HlevXkWfPn2KvGfTpk3Rpk0bXLlyBUOGDEGHDh2Qk5ODM2fOICEhAbVr10ZaWprSLqT69esDANauXYtLly7B19e3RPHl5uZi1qxZyM7Oxv/93/8pHog4e/ZsREVFISAgAN27d1csfCYi7WEFhioVmUyGWbNmISgoCP3798ejR48QFBSEQ4cOQSaTwcfHB0ePHkXnzp2VzjMzM8OePXvg6+uL3Nxc7NmzB1FRUXB0dMRPP/2Ezz//XOOx1qpVC7t27cKHH36IK1euYNeuXQCAnTt3wtHRUWmukZERfvrpJ0yYMAGvXr3Cnj17cODAAZibm2PZsmVKD3RT5/3338fBgwcxZMgQ3L17Fzt27MDNmzfh7u6OgwcPqvw8tKVFixaKVlVR7SMg//dy/fr1GDZsGF68eIGdO3ciMjISjRo1wubNmzF79mwAyhWs4cOHo2vXrrhz5w52796NR48elSi+jRs34saNG3BxcVHaHWVmZoavv/4acrkcs2fPLnS9ERFpjkwozXYBIiIiogrECgwRERHpHCYwREREpHOYwBAREZHOYQJDREREOocJDBEREekcJjBERESkc5jAEBERkc7hk3j/lhW+oaJDIJIc108PVHQIRJJ0OjFSq9fPSb2rsWsZ1GkmPkkHsQJDREREOocVGCIiIqmR51V0BJLHBIaIiEhqBHlFRyB5TGCIiIikRs4ERgzXwBAREZHOYQWGiIhIYgS2kEQxgSEiIpIatpBEsYVEREREOocVGCIiIqlhC0kUExgiIiKp4XNgRLGFRERERDqHFRgiIiKpYQtJFBMYIiIiqeEuJFFsIREREZHOYQWGiIhIYvggO3FMYIiIiKSGLSRRTGCIiIikhhUYUVwDQ0RERDqHFRgiIiKp4YPsRDGBISIikhq2kESxhUREREQ6hxUYIiIiqeEuJFFMYIiIiKSGLSRRbCERERGRzmEFhoiISGrYQhLFBIaIiEhiBIHbqMWwhUREREQ6hxUYIiIiqeEiXlFMYIiIiKSGa2BEMYEhIiKSGlZgRHENDBEREekcVmCIiIikhi9zFMUEhoiISGrYQhLFFhIRERHpHFZgiIiIpIa7kEQxgSEiIpIatpBEsYVEREREOocVGCIiIqlhC0kUExgiIiKpYQIjii0kIiIi0jmswBAREUmMIPBBdmKYwBAREUkNW0iimMAQERFJDbdRi+IaGCIiItI5rMAQERFJDVtIopjAEBERSQ1bSKLYQiIiIiJRMTExeO+99xATE1PkvF9//RW2trbw9/dXGcvJycGmTZvQq1cv2Nvbw83NDTt37oQgCCWOhxUYIiIiqZFYC+nBgwfw8/ODXCSuFy9eYM6cOYUmJF999RWCg4Ph7u6ONm3aICoqCosXL8aTJ08wderUEsXECgwREZHUCHLNfcro5MmT8PDwQEpKiujcRYsWIT09Xe1YTEwMgoOD4ePjg+XLl8PT0xMbNmyAm5sbtm7dikePHpUoLiYwREREpNb06dMxYcIEmJubo2/fvkXODQsLQ1hYGPz8/NSOh4SEAAC8vb2Vjvv4+CAnJwdHjx4tUWxMYIiIiKRGLtfcpwzu3LkDPz8/hISEwMrKqtB5SUlJWLRoEby9veHk5KR2zrVr11CvXj1YWFgoHW/ZsiWqVKmCa9eulSg2roEhIiKSGg2ugenRo0eR45GRkYWO7du3D4aGhkWeLwgC5syZgzp16mDatGmIi4tTOy8pKQmNGzdWOa6vrw9zc3MkJiYWeR+V80o0m4iIiCoNseQFALZv347ffvsNQUFBqFq1aqHzMjIyYGRkpHbMyMgIWVlZJYqNCQwREZHUaPA5MEVVWMrqzp07+O677zBx4kTY2dmJzpfJZGqPC4JQ6FhhmMAQERFJjcS2UauTk5ODmTNnonHjxvD09FTsPsrIyAAAZGVlIT09HaampjA0NISxsXGhVZbs7GzUr1+/RPdnAkNERCQ1OvAk3uTkZNy8eRMA0LlzZ5XxrVu3YuvWrVi6dCkGDx4MS0tLtVuxc3NzkZ6ejjZt2pTo/kxgiIiIqMTeeecdBAQEqByPj4/HkiVLMHDgQLi7u6NFixYAADs7OwQFBSEtLQ21a9dWzL958yby8vJgb29fovszgSEiIpIaHWghVa1aFR07dlQ5bmxsDABo1KiR0njfvn0RFBSEgIAAzJgxQ3E8ICAABgYGos+Z+TcmMERERFKjAy2kknJ2doarqyu2bNmCtLQ0xasEIiIi4OfnxzUwREREJE0rV66ElZUVQkNDERYWhkaNGuHrr7/G8OHDS3wtmVCaV0C+hbLCN1R0CESS4/rpgYoOgUiSTidqb2syAGTtX6KxaxkNma+xa0kJKzBERERSowNrYCoa34VEREREOocVGCIiIqnh6g5RTGCIiIikhi0kUWwhERERkc5hBYaIiEhqWIERxQSGiIhIat7CB9lpGhMYIiIiqWEFRhTXwBAREZHOYQWGiIhIariNWhQTGCIiIqlhC0kUW0hERESkc1iBISIikhpWYEQxgSEiIpIabqMWxRYSERER6RxWYIiIiCRGkHMXkhgmMERERFLDNTCi2EIiIiIincMKDBERkdRwEa8oJjBERERSwzUwopjAEBERSQ3XwIhiAkPlYnbAMVy9+xjhiz8TnfvVjnAcvhiHTb6D0N62sdKYIAg4GP07DkbfQHxSGgRBQON3aqJvu/cwwsUR+lW4rIt0n2PH1vg+6Fv8N/gElkxeqjT2XmsbeE8dhVZt34deFT3cu5WAAz8FIzL0ZAVFS1Qx+F970roff7mIX67cLtbck9fjcfhiXKHjX++KwOI9kUh98RL92tliUAc7ZOfkYnXoWXyx+RDy+K8W0nHGpsaY891M6Omp/ue5s2snrAteg4492+PG5d9x5Oej0NPTw9cb5mPa0i8qIFrSGrlcc5+3FCswpDWvc3Lx7YEo7D93o1jzn2ZmYfGeyELHL9x6gEMX4tCyUV1smfwxTKoZAgDe5ORi8ubDOHfzPg5fjIN7+/c1Ej9RRfBb9DnqN7JQOW5kYoQ5q2bAwNAAC8YvwqkjpxVjU5b4YfCn7rgaHYOTh6PKM1zSFr6NWhQrMKQVUbF3MWjJDuw/dwOdWzYt1jlL9kTidU4e2r5rqXY8/OqfAIBxbs6K5AUADA30Mc7VCQBwOvZe2QInqkAdP+qAvkPdcPaXcypj7bs7oXqt6jhz/JxS8gIAG5dsxqvMVxj++dDyCpWowjGBIa0I/vV3vHr9Bl9+4gL/CQNE5x+5GIfIa/GYPqgL6tcyUzunm50Vxrs5w65JPZUxA/0qAICXr9+ULXCiClKjVnXMXDEN185fx/6tB1XGGzRpAACI/U21ovk6+zUe3n2Ed+1awMjESOuxUjlgC0kUW0ikFV4ujvi/Ua5KlZLCJD/NwPL9Uej4XhMM7miHq/GP1c7ratcMXe2aqR37b8wdAIB1gzqlD5qoAk1bNgVGJkZYOm0F6jaoqzKe8yYHAGBY1UDt+SZmJtDT04OFZT3cu5WgzVCpPHAbtShJJjDXr1/HtWvXkJiYiFevXkFPTw9mZmawsLCAg4MD7OzsKjpEEtGukDaQOgt//i8A4OvhPUt1rz8epmB3VAz09fTwcadWpboGUUX6aFAPuPTrhu+/XIvH9/9Sm8DcvJK/uL1rny7Y6b8b8n/8y/rd91ugfuP8dTMmZiblEzRRBZNUAhMdHY3//Oc/uH//PoRCFjDJZDK0aNEC8+bNQ/v27cs5QtK0oNPX8OsfD/CfER+hXk3TEp9/NykdvhtD8SY3D5P7d0TTerW0ECWR9tSxqIMvFk/ClXNXEbw9tNB5Ny79jphfr6F1Bwcs3rIQm5dtRUpiMt7/4H1MXzYFr7New9jUGDKZrByjJ63hk3hFSSaBiY6OxpgxY2BpaYnp06ejVatWqFu3LoyNjSEIArKyspCSkoLr169j7969GDNmDAICAtCuXbuKDp1K6cGTZ1gdeg7d7KwwwLllic+/du8vfPHDITx7mQ3PLvbw6cU/C6R7Zq+cjir6VbBs2reicxeM/w+W/LgQXXp3QpfenRTHw3YfQ05ODtxHDcDrrNfaDJfKC1tIoiSTwPj7+8PGxga7du2CsbGx2jlWVlZwdnbG8OHD4eXlhTVr1mDnzp3lHClpglwu4Ksd4TDUr4KvhvUo8fnHL9/C17si8DonD6N7foApAztrIUoi7Rowsh+cXZzw7azvkPQoWXT+s7RnmDRoCtp0doRNK2u8ef0GV85dxb1bCViyZSEAIC0lTctRE0mDZBKYP/74A7NmzSo0efknExMTeHp6YuXKleUQGWnDX08zcO3eXwCAnvN+VDtnwvpgAMCWyR8rranZ9t/LWHPoLGSQYc6QDzG0m4P2AybSgh4DXAAAM1dMw8wV01TGe33cE70+7olje3/B0qkrFMevnL2KK2evKs21bW2DZ+nPkZaSrt2gqVwIb/HuIU2RTAJjZmaG5GTxf4EUePLkCfT1JRM+lZCZUVWMd3NWO3byejxuJ6aiXztbNKxTAw3MqyvGAiOvYHXoWVQz0MfS0b3hYt+8vEIm0rhj+8IR8+s1leMWjSzg9okr4m/exeljZ/Dn7/GoWbsmfjy+EdcuxGLxpG+U5tu1fR91G9TF8f3h5RU6aRtbSKIkkwF06dIF27dvh6OjI7p161bk3LNnz2Lbtm3o2bN0u1ao4lU3roqJfdQvwn6c9iI/gXF6T+ldSFfuJGJ16FnoV9GD/4QBaGfdqLzCJdKK43t/UXu8dQeH/AQm7i4CvgtUHM96lY0uvTvB0qohHt1LBADUqlMLM1dMQ15eHnb57y6XuKkccBGvKMkkMNOmTcP169cxYcIENG7cGA4ODqhfvz6MjIwgk8mQlZWF5ORk3LhxA3fu3IGlpSVmzJhR0WFTOVpz6BzkgoAWFrVx6U4iLt1JVJlTv5YZ3DvwVQL0dvp+3lqs+nk5Nh5eh8iQE5DnyfFhv66oY1EHq+etxf07Dyo6RKJyI5kEpnbt2ggKCsKOHTtw6NAhHD58WO1W6qZNm8LX1xeffvopTEz4vIPK4nVOLmITkgAAtxNTcTsxVe281s3qM4Ght9aVs1cx+eNp8JnhjR7u3SEIAv68cQf/N2U5Lp+5UtHhkSaxhSRKJhT2wJUKlpmZieTkZGRkZEAul8PExAQNGzaEqWnJnxVSHFnhG7RyXSJd5vrpgYoOgUiSTicW/uJZTXi5cJjGrmWy8O1sLUqmAvNvpqamWktWiIiISLdJNoEhIiKqtNhCEsUEhoiISGq4C0mUXkUHQERERFRSTGCIiIikRi5o7qMhMTExeO+99xATE6Mytn//fgwePBj29vZwdHTE8OHDERUVpTIvJycHmzZtQq9evWBvbw83Nzfs3Lmz0Bc4F4UJDBERkcQIcrnGPprw4MED+Pn5Qa7meps3b8a8efNQtWpVTJ8+Hb6+vkhLS8P48eMREhKiNPerr77C999/D0dHR8ybNw9WVlZYvHgxVq9eXeKYuAaGiIiICnXy5EnMmTMHz549UxlLTU3F2rVr4ezsjG3btkFPL78uMnToUAwYMADLli1Dv379oK+vj5iYGAQHB8PHxwezZ88GAHh6emLKlCnYunUrPDw8YGlpqXKPwrACQ0REJDUSaSFNnz4dEyZMgLm5Ofr27asyfvHiReTk5ODjjz9WJC9A/qNQevTogadPn+Lu3bsAoKjGeHt7K13Dx8cHOTk5OHr0aIliYwJDREQkNRJJYO7cuQM/Pz+EhITAyspKZdzFxQWHDx+Gi4uLylh6ev6b0atUqQIAuHbtGurVqwcLCwuleS1btkSVKlVw7Zrqi02LwhYSERGR1EhkG/W+fftgaGhY6LiRkRGsra1Vjj9+/BgRERGoW7euIvFJSkpC48aNVebq6+vD3NwciYmq77crChMYIiKit1iPHj2KHI+MLPy1CEUlL4XJysrC1KlT8fr1a0yePFnRWsrIyICRkZHac4yMjJCVlVWi+zCBISIikhodfRJvZmYmJk6ciJiYGPTv3x8eHh5K4zKZTO15giAUOlYYJjBEREQSI2gwgSmqwqJJycnJGD9+POLi4uDq6oqlS5cqjRsbGxdaZcnOzkb9+vVLdD8u4iUiIqIyuXPnDjw9PREXFwcPDw98//33MDAwUJpjaWmJlJQUlXNzc3ORnp7OBIaIiEjnSWQXUnHEx8dj5MiR+OuvvzBp0iQsWbJEsfPon+zs7JCYmIi0tDSl4zdv3kReXh7s7e1LdF8mMERERFIjl2vuo0VZWVnw9fVFeno65s6dCz8/v0LnFjxHJiAgQOl4QEAADAwM1D5npihcA0NERESlsmfPHty7dw9NmjRBrVq1EBoaqjKnS5cuMDc3h7OzM1xdXbFlyxakpaWhTZs2iIqKQkREBPz8/ErcQmICQ0REJDU6sgspOjoaAHD//n3MmjVL7ZygoCCYm5sDAFauXAkrKyuEhoYiLCwMjRo1wtdff43hw4eX+N4yoTSvgHwLZYVvqOgQiCTH9dMDFR0CkSSdTtTuzp6MCb01di2zTcc1di0p4RoYIiIi0jlsIREREUkMmyPimMAQERFJjY6sgalITGCIiIikhgmMKK6BISIiIp3DCgwREZHEaPJdSG8rJjBERERSwwRGFFtIREREpHNYgSEiIpIa7b7C6K3ABIaIiEhiuAZGHFtIREREpHNYgSEiIpIaVmBEMYEhIiKSGq6BEcUWEhEREekcVmCIiIgkhot4xTGBISIikhq2kEQxgSEiIpIYVmDEcQ0MERER6RxWYIiIiKSGLSRRTGCIiGTf2PYAACAASURBVIgkRmACI4otJCIiItI5rMAQERFJDSswopjAEBERSQxbSOLYQiIiIiKdwwoMERGR1LACI4oJDBERkcSwhSSOLSQiIiLSOazAEBERSQwrMOKYwBAREUkMExhxTGCIiIikRpBVdASSxzUwREREpHNYgSEiIpIYtpDEMYEhIiKSGEHOFpIYtpCIiIhI57ACQ0REJDFsIYljAkNERCQxAnchiWILiYiIiHQOKzBEREQSwxaSOCYwREREEsNdSOLYQiIiIiKdU6wKzKxZs0p1cZlMhuXLl5fqXCIiospKECo6AukrVgJz6NChUl2cCQwREVHJsYUkrlgJTGBgoLbjICIior9JMYGJiYnBsGHDsHv3brRu3Vpp7Pz58/D390dcXBwMDQ3h4uKCGTNmoHbt2krzcnJysHXrVhw8eBBJSUlo2LAhvLy84OXlBZmsZN+5WAmMk5NTiS5KREREb48HDx7Az88Pcrnq9qjo6GiMHTsWLVq0wOTJk/H8+XNs27YNMTEx2L9/P0xMTBRzv/rqKwQHB8Pd3R1t2rRBVFQUFi9ejCdPnmDq1Kkliklri3jlcjnOnDmjrcsTERG9tQRBc5+yOnnyJDw8PJCSkqImTgGLFy+GhYUFdu3ahdGjR+OLL77A6tWrcffuXaUOTkxMDIKDg+Hj44Ply5fD09MTGzZsgJubG7Zu3YpHjx6VKK5Sb6PetWsXQkJCkJ6eDrlcDuHvn5IgCMjNzUVGRgZycnIQFxdX2lsQERFVSlJpIU2fPh1HjhxBs2bN0KlTJ4SFhSmNx8bG4u7du5gyZQpMTU0Vx7t164bmzZsjNDQUEydOBACEhIQAALy9vZWu4ePjg2PHjuHo0aMYN25csWMrVQJz8OBBLF68uMg5pqamGDBgQGkuT0RERBJw584d+Pn5YezYsdi8ebPKeExMDADAwcFBZaxVq1YICQlBRkYGzMzMcO3aNdSrVw8WFhZK81q2bIkqVarg2rVrJYqtVAnM3r17YWBggI0bN8LJyQleXl54//338eWXX+L27dtYsmQJ/vjjD3z66aeluTwREVGlpsl3IfXo0aPI8cjIyELH9u3bB0NDw0LHk5KSAEAlKQGAunXrAgASExNha2uLpKQkNG7cWGWevr4+zM3NkZiYWGSc/1aqNTB37txBjx490LlzZxgaGsLBwQG//fYbDA0NYWdnhx9++AHVqlXDli1bSnN5IiKiSk2Qa+5TFkUlLwCQmZkJADA2NlYZMzIyAgC8evUKAJCRkaE4pm5uVlZWiWIrVQUmOztbKYuysrLC7t278ebNGxgaGqJGjRro3r07rl69WprLExERkYYUVWEpq4JdSeq2QBesjdXT+1+tpLCt0oIglHgbdakqMLVq1cKLFy8Uv7a0tIRcLse9e/cUx+rUqaMoLREREVHxyQWZxj7aVLBFWl31JDs7GwBgZmYGIL9KU1iVJTs7WzGvuEqVwDg4OCAyMhLPnj0DALz77rsQBAHnz59XzLl165bS3m8iIiIqHkGQaeyjTZaWlgCA5ORklbGUlBTIZDLUq1dPMVfdVuzc3Fykp6ejfv36Jbp3qRKYESNGIDU1Ff3790d0dDQaNGgAR0dHrF69GuvWrcPChQtx+vRp2Nvbl+byREREpAPs7OwA5G+n/rfY2Fg0b95csb3azs4OiYmJSEtLU5p38+ZN5OXllThnKFUC0759eyxevBhv3rxRLOApeOHj+vXrsWfPHtSoUaPET9UjIiKi/OfAaOqjTa1bt4alpSWCgoLw8uVLxfGoqCjEx8dj4MCBimN9+/YFAAQEBChdIyAgAAYGBorx4ir1g+yGDBkCd3d35OXlAQAcHR1x7NgxhIeHo1q1anBxccE777xT2ssTERFVWrryNmqZTIZ58+bB19cXw4cPh6enJ1JTUxEQEABra2t4eXkp5jo7O8PV1RVbtmxBWlqa4lUCERER8PPzK3ELqdQJDJC/d1tf/3+XsLCwwKhRo8pySSIiokpPKk/iLY7u3btj48aNWL9+PZYtW4bq1avDzc0N06ZNU1kLu3LlSlhZWSE0NBRhYWFo1KgRvv76awwfPrzE95UJQsnzvF9//bXYczt06FDSy1eIrPANFR0CkeS4fnqgokMgkqTTidrbmgwAN5uXrJ1SlJbxYeKTdFCpKjCffvppsfdr811IREREJaPt7c9vg1IlMO7u7moTmFevXuH+/fv4448/4OTkBFdX1zIHSEREVNloe/vz26BUCcyyZcuKHA8PD8e0adMwduzYUgVFREREVJRSbaMW06tXL3Tr1g0bNnBdCRERUUkJguY+b6sy7UIqSrNmzRAdHa2tyxMREb21uAZGnFYqMABw6dIlVK1aVVuXJyIiokqsVBWY/fv3qz0uCAJevnyJU6dOISYmBn369ClTcERERJURF/GKK1UCM3/+/CK3UQuCgAYNGmD69OmlDoyIiKiyepvXrmhKqRIYX1/fQhMYQ0NDNGvWDB9++KHSU3qJiIiINKVUT+J9G+kbNqzoEIgkJ+vxmYoOgUiSDOo00+r1L1m6a+xabR+FaOxaUlKqRbyjRo1CSEjRP5DAwEA+yI6IiKgUBEGmsc/bqlg9HkEQUFCoEQQBFy9ehJOTE+Ryudr5ubm5uHTpEv766y/NRUpERFRJcBu1uGIlMD/++CO+++47pWPr16/H+vXrizzPxsam9JERERERFaJYCczo0aMRERGB1NRUAMBff/0FU1NTmJmZqcyVyWTQ19dHgwYNMGPGDM1GS0REVAlwcaq4YiUwBgYG2Lt3r+LXtra28Pb2xqRJk7QWGBERUWXFFpK4Uu1zDgwMRMOG6nftvH79mk/gJSIiIq0q1S4kJycnvHnzBl988QUOHDigNNa1a1f4+fkhOTlZIwESERFVNtyFJK5UFZiEhAQMHToUL168QIsWLRTHs7KyYGFhgYiICMTExCAoKAgNGjTQWLBERESVgfo9vvRPparA+Pv74+XLl1i9ejX8/PwUx42MjBAaGop169YhPT0da9as0VigRERERAVKVYG5cuUKXF1dC31QXc+ePdGzZ0+cOcOneBIREZWUgLe39aMppUpgnj59infeeafIOQ0aNEBGRkapgiIiIqrM5NxHLapUCUz9+vVx+fLlIufExMTAwsKiVEERERFVZnJWYESVag2Mq6srbty4ge+//17ldQKCIGDdunWIiYnBRx99pJEgiYiIiP6pVG+jfvnyJT7++GPcv38ftWrVQqtWrWBqaorMzEz8/vvvSEtLQ+PGjbFv3z5Ur15dG3FrHN9GTaSKb6MmUk/bb6OOrOepsWv1SA7S2LWkpFQtJBMTEwQFBWHVqlU4evQooqKiFGOGhoZwd3fHzJkzdSZ5ISIikhJuoxZXqgrMP+Xk5ODhw4d49uwZTExMYGVlBQMDA5w8eRJ79uzB5s2bNRWrVrECQ6SKFRgi9bRdgYnQYAXmI1Zg1DMwMECzZvm/kSkpKdiyZQv279+PpKSkMgdHRERUGXEbtbgyJzAAcO7cOezZswcnT55EXl4eBEFAnTp18PHHH2vi8kRERJUKW0jiSp3APH36FAcOHMDevXvx8OFDAIBMJkPXrl3h4eEBFxcXVKlSRWOBEhERERUocQJz6dIl7N69GxEREcjJyYEgCGjSpAkePHgADw8PLFq0SBtxEhERVRqswIgrVgKTmZmJ4OBgBAUFIT4+HoIgoHr16nB3d8egQYPg6OgIW1tbyGTs2REREZUV18CIK1YC06VLF2RnZ8PQ0BA9e/ZE37590b17dxgaGmo7PiIiIiIVxUpgsrKyYGxsjNGjR6NXr16wtbXVdlxERESVlpwFGFHFepWAn58fateujQ0bNmDQoEHo1q0bvv32W9y6dUvb8REREVU6csg09nlbFSuB8fX1RUREBLZt24Z+/frhxYsX2Lp1K9zd3eHu7o6tW7dqO04iIqJKQ9Dg521Vol1I7du3R/v27ZGZmYkjR47gwIEDiI2Nxa1btyCTyXDhwgUcPnwYvXr1QtWqVbUVMxEREVVyZX6VQHx8PPbv34/Dhw8jNTUVMpkMxsbGcHNzg7u7O9q2baupWLWKrxIgUsVXCRCpp+1XCRy0GK6xaw1O+llj15KSMicwBfLy8nDy5Ens378fZ8+eRW5uLvT09HDz5k1NXF7rmMAQqWICQ6SethOY/fW9NHatIX/t0ti1pEQjrxIAgCpVqqBnz57o2bMn0tLScPDgQYSEhGjq8kREREQKGqvA6DpWYIhUsQJDpJ62KzD7NFiB8WAFhoiIiMoDXyUgrljbqImIiKhySkhIwOTJk+Hk5IRWrVphwIABCA4OVpl3/vx5eHl5oU2bNmjfvj3mzp2LtLQ0rcXFCgwREZHESOVJvH/99ReGDh2KrKwsjBw5EvXr18fhw4cxZ84cpKWlYcyYMQCA6OhojB07Fi1atMDkyZPx/PlzbNu2DTExMdi/fz9MTEw0HhsTGCIiIomRyhN0AwMD8fTpU6xevRpubm4AgE8++QSDBg3CunXr4OXlhWrVqmHx4sWwsLDArl27YGpqCgBo3bo1xo0bh8DAQEycOFHjsbGFRERERGolJCQAALp166Y4ZmBggM6dOyMrKwsJCQmIjY3F3bt3MWTIEEXyUnBO8+bNERoaqpXYmMAQERFJjFReJdCsWf5uq/j4eKXj9+/fh0wmQ506dRATEwMAcHBwUDm/VatWuHfvHjIyMsoYiSomMERERBIjl2nuUxY+Pj5o0aIF5s6di4sXL+Lhw4fYtGkTTpw4gU8++QTvvPMOkpKSAAAWFhYq59etWxcAkJiYWLZA1OAaGCIiIonR5DbqHj16FDkeGRlZ6Fjt2rUxadIkfPnllxg5cqTieK9evbBgwQIAQGZmJgDA2NhY5XwjIyMAwKtXr0octxgmMERERKTW5s2bsWrVKjRv3hyjR49GjRo1cPbsWezbtw++vr7w9/eHXJ6fbslkquWegmfl6ulpvuHDBIaIiEhiNPmI/KIqLEXJzMzE+vXr0bBhQ+zdu1exQNfV1RWNGzfGypUrsW/fPsUW6aysLJVrZGdnAwDMzMxKGX3huAaGiIhIYqSwBubevXvIzs6Gq6ur0u4iAPD09AQA/Prrr7C0tAQAJCcnq1wjJSUFMpkM9erVK30ghWACQ0RERCoMDQ0BAHl5eSpjBa2hvLw82NnZAQBiY2NV5sXGxqJ58+YqCZAmMIEhIiKSGLkGP6X17rvvokGDBggLC1N5JcDOnTsBAJ07d0br1q1haWmJoKAgvHz5UjEnKioK8fHxGDhwYBmiKBzfRv03vo2aSBXfRk2knrbfRv2D5QiNXWv8o52lPvfMmTOYOHEizM3NMXToUNSqVQsXLlzAsWPH8MEHH2Dbtm0wNDTEiRMn4OvrC2tra3h6eiI1NRUBAQGwtLTEnj17tPIqASYwf2MCQ6SKCQyRepUlgQGA69evY8OGDbh8+TKysrLQsGFD9OvXD+PGjUPVqlUV806dOoX169fj1q1bqF69Orp27Ypp06ahTp06Zf0KajGB+RsTGCJVTGCI1NN2ArOpkeYSmAkPy5bASBW3URMREUmMJh9k97biIl4iIiLSOazAEBERSQwrMOKYwBAREUkMF6eKYwJDREQkMWV9i3RlwDUwREREpHNYgSEiIpIYroERxwSGiIhIYpjAiGMLiYiIiHQOKzBEREQSw11I4pjAEBERSQx3IYljC4mIiIh0DiswREREEsNFvOKYwBAREUkM18CIYwuJiIiIdA4rMERERBIjZw1GFBMYIiIiieEaGHFMYIiIiCSG9RdxXANDREREOocVGCIiIolhC0kcExgiIiKJ4ZN4xbGFRERERDqHFRgiIiKJ4TZqcUxgiIiIJIbpizi2kIiIiEjnsAJDREQkMdyFJI4JDBERkcRwDYw4tpCIiIhI57ACQ0REJDGsv4hjAkNERCQxXAMjjgkMERGRxHANjDiugSEiIiKdwwoMERGRxLD+Io4JDBERkcRwDYw4tpCIiIhI57ACQ0REJDECm0iimMAQERFJDFtI4pjAULkyMTHG3DmT4e7uhqZNLPHmTQ5iYm5g9dotOHToF6W5TZpYYtHCWfioZ1fUqlUDjx8nIzT0OBYtXoUXLzIq6BsQac6MBUtx9frviAzZqTLWfeAIpKSmqT1v2OD+mDf9c8Wv5XI5dh84jANHfkHCg0eoYWYGpw8cMM57KJo3bay1+IkqEhMYKjempiaIOhUCB/uWuHzlOjZtCkT1GmYYPKgPDu7/CfPmL8XyFesAAE2bNkL02SOoW7cOjh6NRFzcbbRv/wG++GIsuvfojC5dByIz82UFfyOi0tu8fQ+OR55GvXdqq4w9ffYcKalpsGnRDN27dlAZb/WeteL/C4KAmV8vxy8nTqNmjero28sF+lX0EXk6GifPnMeapV+hQztHrX4X0jw+B0YcExgqNzNnfA4H+5bY9EMgJvnNVRxfuGglzkeHYdHCmdh/4Aji4xOw4KvpqFu3DqZN/xpr/X9UzF2/bhnGjxuJyX5j8M3SNRXxNYjK5PXrN1i25gfsCz1a6Jy42/EAgF4unTF+9LAirxcWfhK/nDiNJo0aIsB/Oer+nRD5jhmBEeOnYe7ib3H45y0wMzXR3JcgrWP6Io67kKjcDBnSH3K5HPPmL1U6/vhxEn7YvAP6+vpw690dAODklP8vxoBte5TmbvlxBwCgQ/sPyiFiIs06dfY8BniNw77Qo+jSoV2h8/748y4AwObdZqLXDAs/CQCY9rmPInkBgDrmtfD5ZyOQmvYUh479t4yRE0kPExgqN/7+W7Hg6xV4/vyFytjr168BAGZmpgCAtNR0APmtpH9q2KA+AODJ3+NEuuTgkXC8fJWF+TN8seHbRYXOu/VnfgXGpoV4AvMw8S8AgGOrlipjtn8nQJev3ShNuFSB5BA09nlbsYVE5WbTD9sLHRvk3gcAEBsbBwDY+MN2dOrkhB+3fIeJE2ch7o8/4dTOEWtWL0FWVhbWr/+pXGIm0qQRn7hj6VczYGJiXOS8P/68C2MjI0SejkbwkXA8eJQIExNjdO3ghEljRipVWgwMDQAAb3JyVK5TsE7s0eNkDX4LKg9S2oWUk5ODgIAAHDx4EImJibCwsICbmxsmTJgAY+P//Vk+f/48/P39ERcXB0NDQ7i4uGDGjBmoXVt1nZcmsAJDFW7CeG84O7dBfHwCjv+SXw7fsycEnsPGo3mzJrh44Tgynscj8r/7YWhogA9dBuPylesVHDVRyTm1sRdNXrJfv0bCw0d4lZWFTQE/o1VLawwZ4IZ679TBwSO/4JPP/BRVFwCwb2kLADgeeVrlWhGnzgEAMl9ywbuuETT4v7KaOnUqVq1ahVatWmHevHlo06YNfvjhB0ybNg2CkH/96OhofPbZZ8jMzMTkyZMxbNgwHD9+HCNGjMBLLf35YwWGKtSQIf2x+vv/ICcnBz6fTUFubi4AoFWr9/CfRbNgYmKMAwfDcD/hIeztW6Jnz6748cfvMNDdGw8eJFZw9ESa9yQ1Hc2tmqC6qQlWf/MVataoDiB/t9GaH7bjxx1B+HrZGvzkvwwAMMrTHUd+OQH/zYGoUqUK+nz0IQS5HCFH/4v9h45BX19f8ZcMUUmFhYUhIiICEyZMwNSpUwEAQ4cOhZmZGXbs2IGrV6/C0dERixcvhoWFBXbt2gVT0/ylAK1bt8a4ceMQGBiIiRMnajw2mcA/2QAAfcOGFR1CpTN+3CisXbMEgiDA+9PJCAoKBQAYGxvhVtw5mJvXRI+eHjh/4bLinKFD3bEzcD2ux95Emw8+qqjQK42sx2cqOoS3ml0nN9R7p7ba58Cok5ubhz6ePniclIITITsVraSo6IuY+59v8SIjUzHXzNQES+ZNw9z/rETDBvUQHLhRK9+hsjKoI74+qSx8mg7R2LV+Sthf6nNHjRqF27dvIyoqClWrVlUcv3//PoKDg9GzZ0/I5XJ4eHhgypQpKolKnz59IJfLcfz48VLHUBhWYKjcyWQyrFj2FaZOHY+srCyMGDUJoaH/+8Pdv38v1K9fD5t+CFRKXoD81tJIryFwdXVBe+cPVMaJ3mb6+lVga90cj5NS8OjxX4oEpltHJxzfF4CTZ88j5Uka6tWtgw87OUNPT4ZXWVl4p7Z5BUdOJSWFVwnk5ubi6tWr6N69uyJ5ycrKgqGhIZo0aYIpU6YAAAIDAwEADg4OKtdo1aoVQkJCkJGRATMzM43GJ7kE5vr10q1tsLe313AkpA0GBgbYtXM9Bg/qi7S0pxj88ac4F/2b0pwmjS0BAHFxt9Ve4/ffb8HV1QWNmzRkAkNvnSep6Xjw6DEaWNRFfYu6KuNZWdkAoPSvYQCobmaKgW49lY79+ttVAMC7zZpqJ1jSCT169ChyPDIyUu3xR48e4c2bN7C0tERISAg2btyIhIQEGBoaonfv3pg/fz5q1KiBpKQkAICFhYXKNerWzf8znJiYCFtb2zJ+E2WSS2CGDh1aqn5tXFycFqIhTZLJZAja8wMG9HfF3bv30W/ASNz++4Fd/5SU9AQAYG3dXO113rXOL93+xZ0V9BY6+t9T+NZ/Cz5x74MFM/2Uxl69ykLc7XgYVauKFlZNAAB7go9g3ZYd+Gb+dHTt6KQ0v2Bhb9eOhT9zhqRJCruQXrzIf+TFiRMn8PPPP2PcuHFo0aIFLly4gF27diE+Ph579uxBZmZ+6/KfO5IKGBkZAQBevXql8fgkl8D8/PPP8PPzQ2pqKvr06QMrK6uKDok0ZM5sPwzo74r79x/hw+6D8fhxktp5YUcj8OJFBkZ7eyIwcK/SjqO+fXqib5+euHv3PqJ/vVReoROVm57dOuH7jQE4dCwSn7j3VTzLJTc3D8vW/IBnz1/Ae+hgVK1qCAB4793mePb8BXbsDUGXDu0gk8kA5O9ACj0aAQe79+D8QesK+z5UOnINLk8trMIi5s2bNwCAu3fvYtu2bejQIf+1Fh999BFq1aqFtWvXIjg4GHJ5frpV8GfvnwoKEnp6mt/0LLkEpnXr1ti1axc++eQT3Lp1C0uXLoWhoWFFh0VlVLNmDcyeNQkAEHPtBsZ8NlztvDNnLuDkqXMYO34Gdgauw+moEBw6HI6EhAdo+Z4N3Ny6IzPzJUZ5+yEvL688vwJRuWhYvx6m+36G5Wt+gNe4qXDt3gXVzUxx4co1/BmfAEf7lpg0dqRivoPdexjQuwcOHY/E0DFfwKmNAx4nJSMyKhrmtWrim/nTK/DbkC4rqKg0a9ZMkbwU+OSTT7B27VpER0crWkdZWVkq18jOzm95anr9CyDBBAYAGjdujKVLl2LixInYunWrVrZfUflq19YBpn+/i2XggN4YOKC32nnfLF2Dk6fO4cCBI7if8BCzZvniw24dUXNgbzx5koYdO/fjm6VrEB+fUI7RE5WvkZ+4o1mTRgj4+QBOnPkVb3Jy0KhBfXwxfjS8hw5S+UfdorlT0KJZUxw69l/sPnAYdWrXgsfAPhg7ylPpoXekOyp+Ce//1rTUqVNHZczc3BwymQyZmZmwtMxft5icnIymTZsqzUtJSYFMJkO9evU0Hp8kExgAcHFxQd++fREeHo4xY8bAwMCgokOiMoj47+kSb1W/dPkaPvEcp6WIiCrejXPHCh3r5PwBOjkX751fBvr68PEaAh8vzW29pYolhVcAmJubo2HDhoiPj4dcLldqAz18+BCCIMDS0hJ2dnYAgNjYWDg7OytdIzY2Fs2bN1c8G0aTJP0k3lWrViE4OJjJCxERUQVwd3dHWloadu/erXT8xx9/BAC4ubmhdevWsLS0RFBQkNJTd6OiohAfH4+BAwdqJTbJVmCIiIgqKyk8BwYAxo4di5MnT2LJkiW4desWWrZsibNnzyIiIgIDBw5E+/btAQDz5s2Dr68vhg8fDk9PT6SmpiIgIADW1tbw8vLSSmx8Eu/f+CReIlV8Ei+Retp+Eq9nE3eNXSvofkiZzs/MzMSGDRtw7NgxPHnyBA0bNoSHhwd8fHyU2kqnTp3C+vXrcevWLVSvXh1du3bFtGnT1K6h0QQmMH9jAkOkigkMkXraTmA8mmiu7bLvfqjGriUlkl4DQ0RERKQO18AQERFJjFTWwEgZExgiIiKJkcKrBKSOLSQiIiLSOazAEBERSQz314hjAkNERCQxUngSr9SxhUREREQ6hxUYIiIiieEiXnFMYIiIiCSG26jFsYVEREREOocVGCIiIonhIl5xTGCIiIgkhtuoxTGBISIikhgu4hXHNTBERESkc1iBISIikhjuQhLHBIaIiEhiuIhXHFtIREREpHNYgSEiIpIY7kISxwSGiIhIYthCEscWEhEREekcVmCIiIgkhruQxDGBISIikhg518CIYguJiIiIdA4rMERERBLD+os4JjBEREQSw11I4pjAEBERSQwTGHFcA0NEREQ6hxUYIiIiieGTeMUxgSEiIpIYtpDEsYVEREREOocVGCIiIonhk3jFMYEhIiKSGK6BEccWEhEREekcVmCIiIgkhot4xTGBISIikhi2kMSxhUREREQ6hxUYIiIiiWELSRwTGCIiIonhNmpxTGCIiIgkRs41MKK4BoaIiIh0DiswREREEsMWkjhWYIiIiCRGLgga+2hKdnY23Nzc0L17d5Wx8+fPw8vLC23atEH79u0xd+5cpKWlaeze6jCBISIiIlErVqzA3bt3VY5HR0fjs88+Q2ZmJiZPnoxhw4bh+PHjGDFiBF6+fKm1eNhCIiIikhiptZDOnDmDn3/+GQYGBkrHBUHA4sWLYWFhgV27dsHU1BQA0Lp1a4wbNw6BgYGYOHGiVmJiBYaIiEhipNRCevbsGb788ksMGjQIlpaWSmOxsbG4e/cuhgwZokheAKBbt25o3rw5QkNDy3z/wjCBISIiokItWLAABgYGmDdvnspYTEwMAMDBwUFlrFWrVrh37x4yMjK0COnNigAAC8xJREFUEhdbSERERBKjyRZSjx49ihyPjIwsdCwkJATh4eHYvn27UoWlQFJSEgDAwsJCZaxu3boAgMTERNja2pYk5GJhAkNERCQxUniQXWJiIpYsWQJvb284OzurnZOZmQkAMDY2VhkzMjICALx69Uor8TGBISIieosVVWEpjFwux5w5c1C3bl1MmzatyHkAIJPJVMYK3qitp6ed1SpMYIiIiCSmonchBQQE4NKlS9i8eTNevnyp2A4tl8shl8uRnp4OAwMDmJiYAACysrJUrpGdnQ0AMDMz00qMTGCIiIgkRhDkFXr/U6dOQS6XY8yYMWrHO3ToACcnJ/Tq1QsAkJycjKZNmyrNSUlJgUwmQ7169bQSIxMYIiIiiZFXcAVm9uzZePHihcrxL7/8Ejk5Ofj2229RvXp15OTkAMjfTv3vdTKxsbFo3ry52sW/msAEhoiIiJTY2dmpPV6tWjXo6emhY8eOAPLXuVhaWiIoKAjDhg1TtJSioqIQHx+P6dOnay1GJjBEREQSI0hgF1JxyGQyzJs3D76+vhg+fDg8PT2RmpqKgIAAWFtbw8vLS2v35oPsiIiIJEYOQWMfbevevTs2btwIQ0NDLFu2DHv37oWbmxsCAgIUFRltkAm6kuZpmb5hw4oOgUhysh6fqegQiCTJoE4zrV7f0lx9C6c0HqXf0Ni1pIQtJCIiIolhbUEcExgiIiKJkcKTeKWOa2CIiIhI57ACQ0REJDEV/SReXcAEhoiISGK4BkYcW0hERESkc1iBISIikpiKfpWALmACQ0REJDFsIYljAkNERCQx3EYtjmtgiIiISOewAkNERCQxbCGJYwJDREQkMVzEK+7/27vTkKjWB47jP1tumLYQGaVJG6VDmZVhO1M5VFaQEdhmYWUhlARtFL5JjSgiioz2hUojLCSjwKISJOtNabbYQosVRZnSlNlERnNfhPO/c9U79edezzn6/YAv5jzPmfN754/neY6yhQQAACyHFRgAAEyGLSTfKDAAAJgMbyH5xhYSAACwHFZgAAAwGf6Zo28UGAAATIYtJN/YQgIAAJbDCgwAACbDW0i+UWAAADAZzsD4RoEBAMBkWIHxjTMwAADAcliBAQDAZFiB8Y0CAwCAyVBffPNzU/MAAIDFcAYGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGAABYDgUGplBZWanU1FSNGzdOQ4YM0Zw5c1RUVGR0LMA0bt++LZvNptu3bxsdBTAFCgwMV1NTo0WLFun8+fOaOXOm1q5dK5fLpaSkJF27ds3oeIDhXr58qZSUFP348cPoKIBptDE6AJCVlaXHjx9r3759mjBhgiQpLi5OcXFxysjIUH5+vvz8/AxOCRijoKBA69evl9PpNDoKYCqswMBweXl56tWrl6e8SFJAQIDi4+NVXl6u0tJSA9MBxlm9erWSk5PVpUsXTZs2zeg4gKlQYGCo6upqPXv2TIMHD643FhERIUkUGLRYT548UUpKis6ePas+ffoYHQcwFbaQYKh3797J7XarR48e9ca6desmSXr9+nVTxwJM4fTp0/rjjz+MjgGYEiswMFR1dbUkyd/fv95Y+/btJUkul6tJMwFmQXkBGkeBgaHq3qpo6JCu2+1udAwA0LJRYGCogIAASdLXr1/rjdWtvHTo0KFJMwEAzI8CA0P17NlT0s+zMH9XUVEhSQ2ejwEAtGwUGBgqMDBQvXv31t27d+uN1V1r6A0lAEDLRoGB4aZPn64nT56osLDQc62mpkY5OTnq16+f53VqAADq8Bo1DLdo0SLl5eVp5cqVSkxMVFBQkHJycvTmzRsdPHiQQ7wAgHooMDBcYGCgsrOztW3bNmVnZ6u2tlbh4eE6fPiwRo4caXQ8AIAJ+bnr3lUFAACwCM7AAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAAAy6HAAAbIzc1VWFhYvR+bzaahQ4cqNjZWmzdvVmVlpSG5duzY4bm2fv16hYWF6fr16//Xd1ZVVSk7O/vfiuilobwAWgb+FxJgoPDwcDkcDs9nt9stl8ulkpISHTt2TJcuXdLp06cVFBRkWEaHw6GQkBCFhob+9r1VVVWaNGmSBgwYoPnz5/8H6QC0VBQYwEA2m00pKSkNjq1bt055eXnKzMxUenp6Eyf7H4fD4VWyfofL5dLnz5//5UQAwBYSYFrJycmSpIKCAoOTAID5UGAAkwoODpYkffjwQZK0YMECDR06VCUlJYqNjVVERISmTZsml8slSXI6ndq6dascDocGDRqk0aNHa9WqVXr69GmD33/q1CnNmDFDkZGRGj9+vHbv3q3v37/Xm9fYGZgXL14oNTVVdrtdgwcP1uTJk7Vt2zZ9+vRJkpSZmamYmBhJUnFxscLCwpSZmem5/7/KC6BlYAsJMKny8nJJUvfu3T3XamtrlZycrGHDhslut+vr16/y9/dXRUWF5s2bp1evXmnEiBGaNGmS3r9/r/z8fBUUFOjQoUOKioryfE9aWppOnjypHj16aNasWfr48aMOHDigjh07/lK2kpISJSUlqaamRna7XX379tW9e/d06NAh3bhxQ1lZWYqOjtbChQt1/Phxz3Oio6MlqcnzAmh+KDCACX3//l07d+6UJE2ZMsVzvba2VmPHjtX27du95qelpenVq1fKyMhQfHy85/rixYs1e/ZsrV27VpcuXVKbNm108+ZNnTx5UgMHDtTRo0fVqVMnSdK9e/e0YMECn9ncbrc2bNggl8ulPXv2aOLEiZ6x9PR0ZWdnKzc3VwkJCQoJCfEUmL+e9WnKvACaJwoMYKAHDx54bau43W59+PBB169fV3l5ufr37+85C1MnNjbW63NlZaWuXLmiiIgIrzIg/TwkPGPGDOXk5KioqEh2u13nzp2TJK1YscJTBiRp0KBBmjNnjo4cOfKPme/cuaPnz5/L4XB4lRfp57md9u3bq0+fPo3e39R5ATRPFBjAQA8fPtTDhw89n1u1aqWAgAD16tVLKSkpSkxMVGBgoNc9PXv29Pp8//59ud1uffv2zasM1Xn79q0kqaysTHa7XWVlZZKkyMjIenOjoqJ8FoK6+4cMGVJvrFu3blqzZs0/3t/UeQE0TxQYwEAzZ87Uli1bfusef39/r88fP36UJD169EiPHj1q9L66edXV1ZKkDh061JvTuXNnn893Op2N3v8rmjovgOaJAgNYXEBAgCRp7ty52rhxo8/5db/0P336pK5du3qNffny5ZefV1cs/q6mpsYzxwx5ATRPvEYNWJzNZpP082xKQy5cuKCdO3d6tqoiIiIkSTdv3qw3t7S01OfzwsPDG32e0+nU8OHDtWTJEkmSn5+f4XkBNE8UGMDigoODNWbMGN2/f1/Hjh3zGnv27JnS0tJ04MABz1maWbNmqVWrVtq1a5fev3/vNTcrK8vn86KiohQaGqqrV6+qqKjIa2zv3r368eOHxo0bJ0lq0+bnIu9f/15LU+cF0DyxhQQ0AxkZGZo/f742b96sixcvKjIyUk6nU/n5+fry5YtSU1M9h39tNptWrFihXbt2KS4uTjExMaqtrdXFixcVFBTkOePSmNatW2vLli1aunSpkpKSFBMTo9DQUJWWlurWrVuKjo5WQkKCJKlLly5q166dysrKtGnTJo0aNUoxMTFNmhdA88QKDNAMhISEKDc3V4mJiaqoqNCJEydUWFioYcOG6ciRI1q4cKHX/OXLl2vHjh0KDg7WuXPnVFhYqPj4eKWmpv7S84YPH64zZ85o6tSpKi4u1vHjx/X27VstW7ZM+/fv96y8tG3bVunp6QoKCtKpU6d0+fJlQ/ICaH783G632+gQAAAAv4MVGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDkUGAAAYDl/AlyKBSHqhJ/aAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["[[151 40]\n"," [ 28 159]]\n"]}],"source":["stacking()"]},{"cell_type":"markdown","metadata":{"_uuid":"87e8181f247c4dd00dd8b2caf65ebe5b76367719"},"source":["\n","## **9. Predicting with Neural Network**\n"]},{"cell_type":"markdown","metadata":{"_uuid":"ee05c058a7e73956696bead61f457ee04f39a004"},"source":["### Create input functions\n","You must create input functions to supply data for training, evaluating, and prediction."]},{"cell_type":"code","execution_count":132,"metadata":{"_uuid":"3c532804f31ae661e5cf820406e4eee58679dcc6","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["import tensorflow as tf\n","import argparse\n","\n","\n","batch_size = 100\n","train_steps = 1000\n","\n","X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0)\n","\n","def train_input_fn(features, labels, batch_size):\n"," \"\"\"An input function for training\"\"\"\n"," # Convert the inputs to a Dataset.\n"," dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))\n","\n"," # Shuffle, repeat, and batch the examples.\n"," return dataset.shuffle(1000).repeat().batch(batch_size)\n","\n","def eval_input_fn(features, labels, batch_size):\n"," \"\"\"An input function for evaluation or prediction\"\"\"\n"," features=dict(features)\n"," if labels is None:\n"," # No labels, use only features.\n"," inputs = features\n"," else:\n"," inputs = (features, labels)\n","\n"," # Convert the inputs to a Dataset.\n"," dataset = tf.data.Dataset.from_tensor_slices(inputs)\n","\n"," # Batch the examples\n"," assert batch_size is not None, \"batch_size must not be None\"\n"," dataset = dataset.batch(batch_size)\n","\n"," # Return the dataset.\n"," return dataset\n","\n"]},{"cell_type":"markdown","metadata":{"_uuid":"7540da5ccf242c31fae61193422a50c4132fb7cd"},"source":["### Define the feature columns\n","A feature column is an object describing how the model should use raw input data from the features dictionary. When you build an Estimator model, you pass it a list of feature columns that describes each of the features you want the model to use."]},{"cell_type":"code","execution_count":133,"metadata":{"_uuid":"4b51ea10c5fc254910a46910db0fb76b27150b24","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["WARNING:tensorflow:From C:\\Users\\puran\\AppData\\Local\\Temp\\ipykernel_20412\\3225071575.py:2: numeric_column (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use Keras preprocessing layers instead, either directly or via the `tf.keras.utils.FeatureSpace` utility. Each of `tf.feature_column.*` has a functional equivalent in `tf.keras.layers` for feature preprocessing when training a Keras model.\n"]}],"source":["# Define Tensorflow feature columns\n","age = tf.feature_column.numeric_column(\"Age\")\n","gender = tf.feature_column.numeric_column(\"Gender\")\n","family_history = tf.feature_column.numeric_column(\"family_history\")\n","benefits = tf.feature_column.numeric_column(\"benefits\")\n","care_options = tf.feature_column.numeric_column(\"care_options\")\n","anonymity = tf.feature_column.numeric_column(\"anonymity\")\n","leave = tf.feature_column.numeric_column(\"leave\")\n","work_interfere = tf.feature_column.numeric_column(\"work_interfere\")\n","feature_columns = [age, gender, family_history, benefits, care_options, anonymity, leave, work_interfere]\n"]},{"cell_type":"markdown","metadata":{"_uuid":"0ec5458a421476ca5b77b77d67e5d7dbd406090f"},"source":["### Instantiate an Estimator\n","Our problem is a classic classification problem. We want to predict whether a patient has to be treated or not. We'll use tf.estimator.DNNClassifier for deep models that perform multi-class classification."]},{"cell_type":"code","execution_count":147,"metadata":{"_uuid":"605d76f9ecf1e3a87332633a0b84c68b04024494","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["INFO:tensorflow:Using default config.\n","WARNING:tensorflow:Using temporary folder as model directory: C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\n","INFO:tensorflow:Using config: {'_model_dir': 'C:\\\\Users\\\\puran\\\\AppData\\\\Local\\\\Temp\\\\tmpzxdwhcif', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n","graph_options {\n"," rewrite_options {\n"," meta_optimizer_iterations: ONE\n"," }\n","}\n",", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}\n"]}],"source":["# Build a DNN with 2 hidden layers and 10 nodes in each hidden layer.\n","model = tf.estimator.DNNClassifier(feature_columns=feature_columns,\n"," hidden_units=[10, 10],\n"," optimizer=tf.keras.optimizers.legacy.Adagrad(learning_rate=0.1, decay=0.001))"]},{"cell_type":"markdown","metadata":{"_uuid":"294ab3369fd6ddee67b62b402ebe707001010466"},"source":["### Train, Evaluate, and Predict\n","Now that we have an Estimator object, we can call methods to do the following:\n","\n","* Train the model.\n","* Evaluate the trained model.\n","* Use the trained model to make predictions.\n"]},{"cell_type":"markdown","metadata":{"_uuid":"4fcb1a081143098bce426cc496167f024c432350"},"source":["#### Train the model\n","The steps argument tells the method to stop training after a number of training steps."]},{"cell_type":"code","execution_count":148,"metadata":{"_uuid":"805f28d819c59eee02123b11eff66d812d392188","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\keras\\optimizers\\legacy\\adagrad.py:93: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Call initializer instance with the dtype argument instead of passing it to the constructor\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\model_fn.py:250: EstimatorSpec.__new__ (from tensorflow_estimator.python.estimator.model_fn) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:Done calling model_fn.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\estimator.py:1414: NanTensorHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\estimator.py:1417: LoggingTensorHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\basic_session_run_hooks.py:232: SecondOrStepTimer.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\estimator.py:1454: CheckpointSaverHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:Create CheckpointSaverHook.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\monitored_session.py:579: StepCounterHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\monitored_session.py:586: SummarySaverHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:Graph was finalized.\n","INFO:tensorflow:Running local_init_op.\n","INFO:tensorflow:Done running local_init_op.\n","INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...\n","INFO:tensorflow:Saving checkpoints for 0 into C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\\model.ckpt.\n","INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\monitored_session.py:1455: SessionRunArgs.__new__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\monitored_session.py:1454: SessionRunContext.__init__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\monitored_session.py:1474: SessionRunValues.__new__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:loss = 0.7750711, step = 0\n","INFO:tensorflow:global_step/sec: 127.227\n","INFO:tensorflow:loss = 0.40610826, step = 100 (0.789 sec)\n","INFO:tensorflow:global_step/sec: 328.947\n","INFO:tensorflow:loss = 0.34490243, step = 200 (0.303 sec)\n","INFO:tensorflow:global_step/sec: 357.148\n","INFO:tensorflow:loss = 0.39927828, step = 300 (0.278 sec)\n","INFO:tensorflow:global_step/sec: 354.609\n","INFO:tensorflow:loss = 0.33172143, step = 400 (0.290 sec)\n","INFO:tensorflow:global_step/sec: 346.023\n","INFO:tensorflow:loss = 0.3397673, step = 500 (0.281 sec)\n","INFO:tensorflow:global_step/sec: 456.62\n","INFO:tensorflow:loss = 0.42048493, step = 600 (0.222 sec)\n","INFO:tensorflow:global_step/sec: 411.523\n","INFO:tensorflow:loss = 0.32625598, step = 700 (0.242 sec)\n","INFO:tensorflow:global_step/sec: 440.531\n","INFO:tensorflow:loss = 0.37452662, step = 800 (0.226 sec)\n","INFO:tensorflow:global_step/sec: 425.526\n","INFO:tensorflow:loss = 0.4125634, step = 900 (0.235 sec)\n","INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000...\n","INFO:tensorflow:Saving checkpoints for 1000 into C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\\model.ckpt.\n","INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000...\n","INFO:tensorflow:Loss for final step: 0.34743762.\n"]},{"data":{"text/plain":[""]},"execution_count":148,"metadata":{},"output_type":"execute_result"}],"source":["model.train(input_fn=lambda:train_input_fn(X_train, y_train, batch_size), steps=train_steps)"]},{"cell_type":"markdown","metadata":{"_uuid":"a4e82a5b76e6d0a89d21187413ed1574788fbe5a"},"source":["### Evaluate the trained model\n","Now that the model has been trained, we can get some statistics on its performance. The following code block evaluates the accuracy of the trained model on the test data."]},{"cell_type":"code","execution_count":149,"metadata":{"_uuid":"2b99faa167137ef3e90c7ebb9cd093837e8d4ef5","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n","INFO:tensorflow:Done calling model_fn.\n","INFO:tensorflow:Starting evaluation at 2022-12-16T18:37:47\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow\\python\\training\\evaluation.py:260: FinalOpsHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:Graph was finalized.\n","INFO:tensorflow:Restoring parameters from C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\\model.ckpt-1000\n","INFO:tensorflow:Running local_init_op.\n","INFO:tensorflow:Done running local_init_op.\n","INFO:tensorflow:Inference Time : 6.38700s\n","INFO:tensorflow:Finished evaluation at 2022-12-16-18:37:54\n","INFO:tensorflow:Saving dict for global step 1000: accuracy = 0.8068783, accuracy_baseline = 0.505291, auc = 0.8851108, auc_precision_recall = 0.850176, average_loss = 0.4337394, global_step = 1000, label/mean = 0.49470899, loss = 0.43456596, precision = 0.75, prediction/mean = 0.50710773, recall = 0.9144385\n","INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1000: C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\\model.ckpt-1000\n","\n","Test set accuracy: 0.81\n","\n"]}],"source":["# Evaluate the model.\n","eval_result = model.evaluate(\n"," input_fn=lambda:eval_input_fn(X_test, y_test, batch_size))\n","\n","print('\\nTest set accuracy: {accuracy:0.2f}\\n'.format(**eval_result))\n","\n","#Data for final graph\n","accuracy = eval_result['accuracy'] * 100\n","methodDict['NN DNNClasif.'] = accuracy"]},{"cell_type":"markdown","metadata":{"_uuid":"de375081922a83052d997ce836c31884ce44efd7"},"source":["### Making predictions (inferring) from the trained model\n","We now have a trained model that produces good evaluation results. We can now use the trained model to predict whether a patient needs treatment or not."]},{"cell_type":"code","execution_count":150,"metadata":{"_uuid":"a72f2f39e610a12fea7f542fa4cccec9ca17544a","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["INFO:tensorflow:Calling model_fn.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\head\\base_head.py:786: ClassificationOutput.__init__ (from tensorflow.python.saved_model.model_utils.export_output) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\head\\binary_class_head.py:561: RegressionOutput.__init__ (from tensorflow.python.saved_model.model_utils.export_output) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","WARNING:tensorflow:From y:\\Anaconda\\envs\\StrokePredictionModel\\lib\\site-packages\\tensorflow_estimator\\python\\estimator\\head\\binary_class_head.py:563: PredictOutput.__init__ (from tensorflow.python.saved_model.model_utils.export_output) is deprecated and will be removed in a future version.\n","Instructions for updating:\n","Use tf.keras instead.\n","INFO:tensorflow:Done calling model_fn.\n","INFO:tensorflow:Graph was finalized.\n","INFO:tensorflow:Restoring parameters from C:\\Users\\puran\\AppData\\Local\\Temp\\tmpzxdwhcif\\model.ckpt-1000\n","INFO:tensorflow:Running local_init_op.\n","INFO:tensorflow:Done running local_init_op.\n"]}],"source":["predictions = list(model.predict(input_fn=lambda:eval_input_fn(X_train, y_train, batch_size=batch_size)))"]},{"cell_type":"code","execution_count":151,"metadata":{"_uuid":"e078018202e2a75c3cace605d815be5435798682","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
index
\n","
prediction
\n","
expected
\n","
\n"," \n"," \n","
\n","
0
\n","
929
\n","
0
\n","
0
\n","
\n","
\n","
1
\n","
901
\n","
1
\n","
1
\n","
\n","
\n","
2
\n","
579
\n","
1
\n","
1
\n","
\n","
\n","
3
\n","
367
\n","
1
\n","
1
\n","
\n","
\n","
4
\n","
615
\n","
1
\n","
1
\n","
\n"," \n","
\n","
"],"text/plain":[" index prediction expected\n","0 929 0 0\n","1 901 1 1\n","2 579 1 1\n","3 367 1 1\n","4 615 1 1"]},"execution_count":151,"metadata":{},"output_type":"execute_result"}],"source":["# Generate predictions from the model\n","template = ('\\nIndex: \"{}\", Prediction is \"{}\" ({:.1f}%), expected \"{}\"')\n","\n","# Dictionary for predictions\n","col1 = []\n","col2 = []\n","col3 = []\n","\n","\n","for idx, input, p in zip(X_train.index, y_train, predictions):\n"," v = p[\"class_ids\"][0] \n"," class_id = p['class_ids'][0]\n"," probability = p['probabilities'][class_id] # Probability\n"," \n"," # Adding to dataframe\n"," col1.append(idx) # Index\n"," col2.append(v) # Prediction\n"," col3.append(input) # Expecter\n"," \n"," \n"," #print(template.format(idx, v, 100 * probability, input))\n","\n","\n","results = pd.DataFrame({'index':col1, 'prediction':col2, 'expected':col3})\n","results.head()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"83d68dc1-1929-4069-8b9f-2b1b0768840d","_uuid":"289d8b5896d20f5859307e07c509c92151b4e942"},"source":["\n","## **10. Success method plot**"]},{"cell_type":"code","execution_count":152,"metadata":{"_cell_guid":"ff9279ed-3a53-47ef-8d69-b9c013c73ba0","_uuid":"67df920b185fcf2a8941369bb91c8975d0c8ce10","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["def plotSuccess():\n"," s = pd.Series(methodDict)\n"," s = s.sort_values(ascending=False)\n"," plt.figure(figsize=(12,8))\n"," #Colors\n"," ax = s.plot(kind='bar') \n"," for p in ax.patches:\n"," ax.annotate(str(round(p.get_height(),2)), (p.get_x() * 1.005, p.get_height() * 1.005))\n"," plt.ylim([70.0, 90.0])\n"," plt.xlabel('Method')\n"," plt.ylabel('Percentage')\n"," plt.title('Success of methods')\n"," \n"," plt.show()"]},{"cell_type":"code","execution_count":153,"metadata":{"_cell_guid":"3672320b-e060-45e4-b481-029ad98feb58","_uuid":"26d24346015d93adf6c4fa9d384f480b7b391584","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABAAAAAM5CAYAAACZz0NoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxMZ///8XdWYiKCEiTWaBJaW+1ENail1ihiqV2pvdbSBdVWLeHWllS1dtoSN1VF9W7tX0vaqp0gFYIKNyESQZKZ3x9+mbvTJCgqY87r+U+b61znXOeaz9x93Oc951zHyWKxWAQAAAAAAByac06fAAAAAAAA+OcRAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABuOb0CQAAYO/279+vJUuW6Ndff9V///tf5c6dW8WLF9fzzz+v7t27K3/+/Dl9ig4rOTlZ77//vjZt2qSUlBRVr15d8+bNy+nTsnH06FGdPXtWL774orUtMDBQPj4+2rZt22M9lwYNGujcuXM6fPiwXF35v3kAAFvcAQAAwF0sW7ZMYWFh+umnn1SlShV169ZNzZs3l5OTkz799FM1bdpUx44dy+nTdFiffvqpVq1aJR8fH3Xv3l3NmjXL6VOysXXrVrVt21aHDh3K6VMBAOCeiIYBAMjG2bNnNWnSJJUsWVJfffWVChQoYLN96dKleu+99zRy5EitXbtWTk5OOXSmjuvo0aOSpA8++EAVKlTI4bPJ7PLlyzKbzTl9GgAA3BfuAAAAIBtbt25VWlqa2rdvn+niX5JeeeUVlS9fXidOnNCJEydy4Awd3+3btyWJxywAAHgECAAAAMhGamqqJOn48ePZ9hk/frzmzJmjIkWKWNu6du2qwMBAnT59OlP/Bg0aKDAwUGlpaTbthw4d0uuvv67g4GBVrlxZzZs319y5c3Xz5s1M5/TFF1+odevWqly5soKDg/Xaa6/p4MGDmcbat2+f+vfvr5o1a6pChQpq1qyZZs+erVu3bmXqGxkZqbCwMFWvXl2VK1dWq1at9Nlnn1kvwDOcO3dOo0ePVqNGjfTss8+qbt26GjJkyN+6Bf78+fMaN26c6tevbz3GiBEjdPLkSWufVatWKTAwUFFRUZKkhg0bKjAwUGfPns32uGPGjFFgYKDi4+M1ZcoUPf/886pYsaLatGmjTZs2SZJ+/PFHtW3bVpUqVVLDhg01c+bMTHOU7oQ/PXr0ULVq1VSxYkW1bt1aS5Yssfm1v2vXrho7dqwkac6cOQoMDNSePXtsjhMTE6PBgwdbP9f27dtr48aNWZ7/mjVr1LFjR1WpUkWVKlVSaGiolixZovT09Ex9z5w5o5EjR6pu3bqqXLmyevTooSNHjmR53EdRMwCAY3CyWCyWnD4JAADs0cmTJ9WiRQtZLBa9+OKLevnll1WzZk3lyZPnrvt17dpVUVFR+uGHH1SyZEmbbVkt0vaf//xHw4YNs2739fXVnj17dPjwYYWEhGj27NlycXHR7du31b17d+3du1f+/v6qXbu2UlJStG7dOpnNZs2fP1/Vq1eXJK1du1ZjxoyRu7u7XnzxRRUuXFi//PKLfvvtN1WpUkWLFi1Srly5JEnz58/XlClTFBAQoDp16sjJyUnbt2+3zn/69OmSpCtXrqh9+/a6dOmSGjdurGLFiuncuXPauHGjnJ2dtWLFCgUFBd31szl69Ki6d++ua9euqXbt2goKClJsbKy2bNmi3LlzKyIiQnXq1NHRo0f1448/avXq1Tp37py6desmLy8vde/eXV5eXlkee8yYMVq9erXKly+vhIQENW7cWFevXrU+ntGjRw8tXrxYTZo0UeHChfXdd9/p4sWLGjp0qAYMGGA9zueff67w8HAVKFBADRo0kJeXl3bs2KHjx4+rSZMm+uijj+Tk5KRVq1bpxx9/1E8//aRq1aqpVq1aCg0NlZ+fnwIDA+Xh4SFnZ2eVKlVKNWvW1MWLF7Vhwwalp6fr008/VYMGDSRJFotFb731lv7973+rUKFCev755+Xm5qbt27fr3Llzql+/viIiIqzfl5iYGHXu3FlXr15VSEiISpQooT179iguLk4Wi0U3btywfr8eRc0AAA7EAgAAsrVw4UJLuXLlLAEBAZaAgABL+fLlLe3atbNMmTLFEhUVZTGbzZn2eeWVVywBAQGW2NjYTNtCQkIsAQEBltTUVIvFYrFcv37dUqNGDUvlypUt+/fvt/Yzm82Wfv36WQICAiybNm2yWCwWy5w5cywBAQGWESNGWG7fvm3tu2/fPktQUJAlNDTUYrFYLBcvXrRUrFjRUrduXcvZs2dtxg8PD7cEBARYZsyYYW2rUaOGpWHDhjbHvHXrluWll16yBAQEWC5cuGCxWCyWJUuWWAICAiwrVqywOeY333xjCQgIsLzzzjt3/SzT09MtzZs3twQEBFhWr15ts23r1q2WoKAgS61atSzJycmZPsu4uLi7HttisVjeeOMNS0BAgKVRo0aWa9euWdunTZtmrd/27dut7adOnbIEBARYGjdubG07fPiwJSgoyNKiRQvLlStXbM59+PDhloCAAMvy5cut7f/+978zfZ4Wi8U63oQJE2y+I8uXL7cEBARY+vXrZ21bt26dJSAgwNKuXTvL5cuXre3JycmWXr16WQICAixz5861tvfo0cMSEBBgWbVqlbUtNTXVMnLkSOu4Gd+vh60ZAMCx8AgAAAB30b17d61cuVJt2rRRvnz5lJaWpgMHDmjevHl65ZVXFBoaqsOHDz/w8bdt26arV6+qffv2qlixorXdyclJw4cPV//+/a3rD3zzzTdydXXVW2+9JTc3N2vfSpUqafTo0WrdurXS0tK0Zs0a3bx5U/3795evr6/NeIMHD5bJZFJkZKRNe0JCgmJiYqx/u7u7a/78+fr555/l4+Mj6c4v1dKd1yJmPB4hSS+99JJ+/PFHjRs37q5z3bdvn06cOKF69eqpTZs2Ntuef/55tWnTRleuXNEPP/xwz8/tbjp06GBzl0DVqlUlSeXLl1dwcLC1vVSpUipYsKDOnTtnbYuMjJTZbNbIkSNt1h1wdnbW6NGjrX3uh5OTkwYPHmyzOGSjRo0kyebxkJUrV0qS3n77bZu1JvLkyaMJEybI2dlZy5cvlyRdvHhRu3bt0jPPPKPQ0FBr36y+F9LD1wwA4Fh4CwAAAPdQvnx5TZkyRenp6Tpy5IiioqK0c+dO7d6923pL+6pVq1SiRIm/feyM57YrV66caVtAQIACAgIkSbdu3dLvv/8uf3//LBfE69mzp/XfM9YDOHDggK5cuZKpb548eXTp0iXFx8fLx8dHnTt3VkREhNq0aaNy5cqpbt26qlu3rqpVq2ZzQdm0aVNFREQoMjJSP/zwg2rVqqXg4GDVq1dPxYsXv++51qhRI8vt1apV06pVq3T06NFMAcHfUbp06UzzlZTlOebOnVuXL1+2/p3x2W3fvl0HDhzIsv/Ro0dlsVju+daHfPnyZVo8MuPvGzduWNsOHz6s3LlzZ/mWg+LFi6tIkSKKi4tTUlKSdew/h0UZvL29VbZsWeubE6SHrxkAwLEQAAAAcJ9cXFxUoUIFVahQQb1799bZs2c1dOhQHTp0SIsXL9bbb7/9t4959epVSVLevHkfST9JSkxMlHTnjoF7HdPHx0dDhw5VqVKltGLFCv322286cuSIPv/8c3l7e+vVV19Vnz59JEmFChXSqlWr9Nlnn+nHH3/Uxo0brQva1apVSxMmTMh08f1n169flyR5enpmuT3jToOUlJR7zvFuslujwd3d/Z77Znx2S5YsuWu/5OTkbOeRIWONhaxY/rQEU1JSkvLlyydn56xvzPTx8dH58+d148YN6/ll9z3w9va2+fthawYAcCwEAAAAZCE9PV0tW7aUJK1fvz7LPn5+fnrrrbfUqVMn/f7775m2Z/V++D//8itJJpNJ0v8ujrPqnydPHutFbXb9UlJSlDt3bjk5OVmPGRkZmeUvxVlp3bq1WrdurevXr+vnn3/W1q1b9e2332ratGkqXLiwWrVqJUkqWrSoJkyYoPHjx+v48ePatWuXvvvuO+3evVuvvfaavv/++2x/Gc+4YI6Pj89ye8bF7V8vYh+njM9u586dKliw4GMZ09PTUwkJCbp9+3aWIcW1a9ck3flcMj6bjM/qr/76/ZIermYAAMfCGgAAAGTBxcVFFotFMTEx2rdv3z37Z/x6Lf3vl+bk5GSbPlevXrX+kp8hYwX2rG43P3r0qKpUqaJx48Ypb9688vX11enTpzMdQ5JGjBihihUr6uzZsypXrpykO899/5XZbNbUqVM1d+5cpaamKj4+Xh999JFWrVol6c4vyw0aNNC7776r8ePHS5J+/vlnSXeCkPHjx+v69etycnJSYGCgevTooeXLl6tUqVKKjY3VxYsXs/2MypcvL0n65Zdfsty+e/duSbI+9pAT7vbZJSUl6YMPPtDSpUutbY/iwrl8+fIym8369ddfM22Lj49XbGysSpUqJXd3dz3zzDNycXHR3r17M/W9ceOGTpw4YdP2sDUDADgWAgAAALLRq1cvSdLw4cNtnqvOkJiYaH1FXrt27aztZcqUkSRt3rzZpv+sWbNsbv2W7iwK5+npqcjISB07dszabjab9emnn0q6s0CeJIWGhiotLU1Tp061eTf8gQMHtG3bNpUpU0Z+fn5q3bq13NzcFBERodjYWJvx5s2bp3nz5mnnzp1yc3OTyWTSvHnz9K9//SvTegFxcXGS/vfs/LFjx/T111/bXABnfA5Xr16VyWTKcn2CDFWqVJG/v79++eUX68J3GXbu3KlVq1bJ29tbISEh2R7jn5ZRx2nTpunSpUs226ZPn67FixfbfBcyXs2Xlpb2wGO+/PLLkqSpU6cqISHB2p6SkqLx48fLbDarbdu2ku6sIdCwYUMdP35cixYtsva1WCyaMWNGpjsAHrZmAADHwiMAAABko3379oqJidGCBQvUtm1bVa1aVeXLl1fu3Ll19uxZbdu2TcnJyRo1apR1pXlJCgsL01dffaWIiAidOHFCxYsX188//6xTp04pKCjI5kI/b968ev/99zVy5Eh16NBBL774ogoXLqxdu3bp6NGjatmypXXl+L59+2r79u3697//rcOHD6tmzZq6du2aNmzYIFdXV02ZMkXSnUcTxo8fr3Hjxql169Zq1KiRihQpokOHDmn37t0qVKiQ9dd9T09PDR48WOHh4WrevLlefPFFeXl5KTo6Wtu3b1fJkiUVFhYm6c4bEb777jvNnDlTe/bsUfny5ZWSkqL//Oc/unr1qt555527Pmfv7OysadOmqUePHnrrrbf03XffqVy5coqNjdWWLVuUK1cuTZ8+3Xobfk547rnnNGDAAEVERKh58+Zq0KCB8ufPr59//lkHDx5UmTJlNHz4cGv/okWLSpLWrFkj6c6jFH/3DoYWLVpo+/bt+uabb9SyZUvVr19fbm5u2rFjh+Li4lSvXj317t3b2v/tt9/WoUOHNGnSJG3evFmBgYHau3evoqOjVaRIEV24cMHa92FrBgBwLE6Wv/4UAQAAbOzdu1crV67Ur7/+qkuXLun27dsqVKiQqlevrldeeSXL5+yjoqL0ySef6ODBg3J1dVXNmjU1YsQIzZw5Uxs3btThw4etvx5Ld16RN2fOHO3du1c3btyQn5+fXn75ZfXs2dOm382bNzVv3jx99913iouLU+7cuVWjRg0NGTLE+jhBhl9++UVffPGFfvvtN924cUNFixZVcHCw+vbtqyJFitj0Xb9+vZYtW6ZTp04pMTFRRYoUUcOGDfXaa6/Z/EJ84cIFzZ07V//3f/+nCxcuWG9L79atmxo0aHBfn2dcXJzmzJmj7du368qVKypYsKDq1KmjV1991Xr3RIauXbsqKipKP/30k/z8/O563DFjxmj16tVasGCB6tSpY23fs2ePunXrppYtWyo8PNxmnwYNGujcuXOKjo62af/pp5+0ZMkSHTp0SKmpqSpWrJgaN26snj17ZlqjYNKkSVq9erVu376tt99+W+3bt1dgYKB8fHy0bdu2TOeZ1TaLxaJVq1ZpxYoVio6OlrOzs/z9/dW2bVuFhYVlWiDw4sWLmjVrljZv3qxr166pXLlyGjVqlD766CNFRUXZfL8eRc0AAI6BAAAAAAAAAAOwyzUAjh07ptdee01Vq1ZV9erV1bt3b+sCRH+2e/dudenSRc8995xq1aqlsWPH2rzL916+//57tW3bVpUrV1ZwcLAmTZqUacEmAAAAAAAcgd3dAXDgwAF169ZNZrNZXbp0UdGiRbV+/XodOHBAU6dOVYsWLSTdWSzo1VdfVdmyZRUaGqpr165p4cKFKlKkiFauXHnP5wdXrVqlsWPHqnr16mrWrJlOnz6tZcuWqUqVKlq8eHG27+IFAAAAAOBJZHcBQNu2bXXkyBEtWbJE1atXlySlpqaqW7duiomJ0caNG+Xt7a2XXnpJt2/f1po1a6zvFd66dav69u2r119/Xf379892jBs3bigkJESlS5fWkiVL5ObmJkn68ssv9e6772ratGnW9x0DAAAAAOAI7Opn7vPnz+vw4cOqX7++9eJfktzc3NS7d29du3ZNGzdu1MGDB/X777+rXbt21ot/Sapfv778/f2tK/FmZ8uWLbp69ao6d+5svfiXpA4dOshkMt1zfwAAAAAAnjR2FQBkvLbmr6sYS1KpUqUkSYcOHdK+ffskSZUqVcrUr0KFCjp16pSuX7+e7Tj79+/Pcn9XV1eVL19eBw4ceKDzBwAAAADAXtlVAJAnTx5JynIhvqtXr0qSLl26ZA0K/voKI0kqXLiwJOncuXPZjpOxf8a7e/+6f2Ji4l0DBAAAAAAAnjR2FQD4+/srX7582rRpk27evGmz7fvvv5d05/3HSUlJkv4XGPyZh4eHpDvP+WcnKSlJLi4ucnd3f6D9AQAAAAB40thVAODm5qZ+/frp3LlzevXVV/Xbb78pNjZWERERWrNmjdzc3OTq6iqz2SxJcnJyynSMjDUN77aKv9lsznLf+93/XuxsXUUAAAAAAOSa0yfwV7169dLNmzc1Z84cdezYUZJUokQJffzxx+rVq5e8vb2tr/hLSUnJtH/GnQN58+bNdgyTyaS0tDSlpqbaLAJ4v/vfi9lsUWKiY99B4OLiLC8vDyUmpig93ZzTp4OHRD0dDzV1LNTTsVBPx0I9HQ81dSxGqaeXl4dcXO79I7bdBQBOTk4aOHCgunXrpuPHj8vT01MBAQE6c+aMzGazSpQooQIFCkiS4uPjrYsDZrh48aKcnJzk4+OT7Rh+fn7W/TP+/c/7e3t7K3fu3A81j7Q0x/1y/Vl6utkwczUC6ul4qKljoZ6OhXo6FurpeKipY6Ged9jVIwCStH79em3dulV58+ZV1apVFRgYKCcnJ+3evVuSVKNGDT377LOSpIMHD2ba/+DBg/L397d5PeBfZbd/Wlqajh49muXbBQAAAAAAeJLZXQCwZMkSjR071rrQnyT997//1eeff65y5cqpVq1aqly5svz8/LR8+XKbNwZs3bpVMTExat269V3HeOGFF2QymbR48WKlp6db21esWKGkpCS1adPm0U8MAAAAAIAc5DJhwoQJOX0Sf1a4cGGtWLFCO3bsUFpamn755ReNHz9eCQkJ+vjjj+Xj4yMnJycVL15cX3/9tbZs2SKLxaLNmzdr8uTJKl26tCZOnGizwv+aNWt09uxZlSlTRpLk7u4uT09Pff3114qKilJaWpq+/fZbzZ49WzVr1tTw4cMfehHAlJTUh/4s7Jmzs5M8PNx182aqzGYWPXzSUU/HQ00dC/V0LNTTsVBPx0NNHYtR6unh4S5n56wXuv8zJ4sdLlm/detWffrppzp+/Lg8PDxUrVo1DR48WGXLlrXpt2XLFs2ePVvR0dHy8vLS888/r+HDh+upp56y6RcYGChfX19t2rTJpn316tWaP3++YmNjVbBgQTVt2lSDBg266+MD9yM93awrV5Lv3fEJ5urqrPz5TUpISOZZGgdAPR0PNXUs1NOxUE/HQj0dDzV1LEapZ4ECpvtaBNAuA4AnHQEAnjTU0/FQU8dCPR0L9XQs1NPxUFPHYpR63m8AYHdrAAAAAAAAgEePAAAAAAAAAAMgAAAAAAAAwAAIAAAAAAAAMAACAAAAAAAADIAAAAAAAAAAAyAAAAAAAADAAAgAAAAAAAAwAAIAAAAAAAAMgAAAAAAAAAADIAAAAAAAAMAACAAAAAAAADAAAgAAAAAAAAyAAAAAAAAAAAMgAAAAAAAAwAAIAAAAAAAAMAACAAAAAAAADIAAAAAAAAAAAyAAAAAAAADAAAgAAAAAAAAwAAIAAAAAAAAMgAAAAAAAAAADIAAAAAAAAMAACAAAAAAAADAAAgAAAAAAAAyAAAAAAAAAAAMgAAAAAAAAwAAIAAAAAAAAMAACAAAAAAAADIAAAAAAAAAAAyAAAAAAAADAAAgAAAAAAAAwAAIAAAAAAAAMgAAAAAAAAAADIAAAAAAAAMAACAAAAAAAADAAAgAAAAAAAAyAAAAAAAAAAAMgAAAAAAAAwAAIAAAAAAAAMAACAAAAAAAADIAAAAAAAAAAAyAAAAAAAADAAAgAAAAAAAAwAAIAAAAAAAAMgAAAAAAAAAADIAAAAAAAAMAACAAAAAAAADAAAgAAAAAAAAyAAAAAAAAAAAMgAAAAAAAAwAAIAAAAAAAAMAACAAAAAAAADIAAAAAAAAAAAyAAAAAAAADAAAgAAAAAAAAwAAIAAAAAAAAMgAAAAAAAAAADIAAAAAAAAMAACAAAAAAAADAAAgAAAAAAAAyAAAAAAAAAAANwzekTyEpsbKxmzJih3bt3KyUlRaVLl1bPnj0VGhoqSfrkk080a9asux7jww8/VNu2bbPdfvbsWTVs2DDLbcHBwZo3b96DTwAAAAAAADtjdwHAH3/8oY4dOyolJUVdu3ZV0aJFtXbtWo0ZM0aXL19Wnz599OKLL6pEiRKZ9r19+7bef/99ubu7q0aNGncdJzo6WpLUr18/+fv722wrXLjwo5sQAAAAAAB2wO4CgMWLFyshIUEzZ85Us2bNJEkdOnRQaGioZs2apS5duigoKEhBQUGZ9p04caJu3rypGTNmyM/P767jZAQAHTt2VLFixR79RAAAAAAAsCN2twZAbGysJKl+/frWNjc3NwUHByslJcW6/a/27t2rZcuW6aWXXsr21v4/i46Olslk4uIfAAAAAGAIdhcAlClTRpIUExNj03769Gk5OTnpqaeeynK/KVOmyMPDQ2+88cZ9jRMdHa2nn35akmQ2m5WSkvIQZw0AAAAAgH2zuwCgV69eKlu2rMaOHauoqCjFxcVpzpw52rRpkzp06KBChQpl2mfz5s3at2+funTpoiJFitxzjFu3bunMmTMym83q3bu3KlWqpMqVK6tZs2Zav379PzEtAAAAAABylN2tAVCwYEENGjRIb775prp27Wptb9y4scaNG5flPosXL5abm5u6det2X2McP35c6enpOnbsmLp3764uXbooPj5eCxcu1LBhw3Tt2jV16tTpoebh6mp32coj5eLibPNPPNmop+Ohpo6FejoW6ulYqKfjoaaOhXracrJYLJacPok/mzt3rqZPny5/f3/16NFD+fLl044dOxQZGan69evrk08+kbu7u7V/bGysmjRpotDQUE2ePPm+xoiLi9PatWtVpUoV1a5d29qelJSkFi1aKDExUdu2bZOnp+cDzcFiscjJyemB9gUAAAAA4J9gV3cAJCUlafbs2fL19dWKFSusF+BNmjRRiRIlFB4ersjISHXp0sW6zw8//CBJat68+X2PU7x4cQ0YMCBTu6enp0JDQxUREaEDBw6oTp06DzQPs9mixMQbD7Tvk8LFxVleXh5KTExRero5p08HD4l6Oh5q6liop2Ohno6FejoeaupYjFJPLy+P+7rLwa4CgFOnTunmzZtq0qRJpl/fw8LCFB4erl27dtkEAJs3b5a3t7fNL/kPI2ORweTk5Ic6Tlqa4365/iw93WyYuRoB9XQ81NSxUE/HQj0dC/V0PNTUsVDPO+zqQYiMW/vT09Mzbct4UuHP227fvq2DBw+qZs2acnW9/yxj4cKFatSokfbt25dpW8bbB4oXL/63zh0AAAAAAHtmVwHA008/rWLFimndunW6fPmyzbalS5dKkoKDg61tx48fV2pqqp599tm/NU6pUqUUFxenRYsW2bTHxsZq1apVCgoKUlBQ0APOAgAAAAAA+2NXjwA4Oztr4sSJ6t+/v0JDQ9WxY0flz59fe/bs0YYNG1S1alW1b9/e2j82NlaS5Ofnd9fjrlmzRiaTSY0aNZIkvfDCC2rSpInWr1+vpKQkhYSEKD4+Xl9++aVcXV314Ycf/mNzBAAAAAAgJ9hVACBJ9erV05dffqmIiAgtWLBAKSkp8vX11aBBg9S3b1+bNwBcuXJFkpQ3b967HnP06NHy9fW1BgCSFB4ersDAQH377beaNGmSTCaTgoODNWTIEJUuXfqfmRwAAAAAADnE7l4D6AjS0826cuXhFhG0d66uzsqf36SEhGQW03AA1NPxUFPHQj0dC/V0LNTT8VBTx2KUehYoYLqvtwDY1RoAAAAAAADgn0EAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAEtTupcAACAASURBVAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAAbjm9AlkJTY2VjNmzNDu3buVkpKi0qVLq2fPngoNDbX2SU1NVZUqVZSamppp/9KlS+v777+/5zjff/+95s6dq99//12enp566aWXNHToUJlMpkc6HwAAAAAAcprdBQB//PGHOnbsqJSUFHXt2lVFixbV2rVrNWbMGF2+fFl9+vSRJMXExCg1NVUdOnRQtWrVbI6RN2/ee46zatUqjR07VtWrV9eoUaN0+vRpLVu2TEeOHNHixYvl7MzNEQAAAAAAx2F3AcDixYuVkJCgmTNnqlmzZpKkDh06KDQ0VLNmzVKXLl3k4eGh6OhoSVKrVq1UvXr1vzXGjRs3NGXKFFWpUkULFiyQm5ubJKlUqVJ699139d1336lVq1aPdmIAAAAAAOQgu/uZOzY2VpJUv359a5ubm5uCg4OVkpJi3Z4RADz99NN/e4wtW7bo6tWr6ty5s/XiX7oTNJhMJq1Zs+bBJwAAAAAAgB2yuwCgTJkyku7c4v9np0+flpOTk5566ilJdwKAQoUKydvbWxaLRcnJyfc9xv79+yVJlSpVsml3dXVV+fLldeDAgYeZAgAAAAAAdsfuAoBevXqpbNmyGjt2rKKiohQXF6c5c+Zo06ZN6tChgwoVKiTpTgBgMpk0ZMgQValSRc8995xCQkK0dOnSe45x4cIFSVLRokUzbStcuLASExN1/fr1RzsxAAAAAABykN2tAVCwYEENGjRIb775prp27Wptb9y4scaNGydJSkhI0KVLl3T58mXVqlVL4eHhunr1qpYvX6733ntPFy5c0MiRI7MdIykpSS4uLnJ3d8+0zcPDQ9KddQLuZzHB7Li62l228ki5uDjb/BNPNurpeKipY6GejoV6Ohbq6XioqWOhnrbsLgCYO3eupk+fLn9/f/Xo0UP58uXTjh07FBkZqYEDB+qTTz6RxWLRiBEjVKJECTVt2tS6b5s2bRQWFqZ58+YpLCxMxYsXz3IMs9ksJyenLLdZLBZJeqi3ADg7Oyl/fmO8StDLyyOnTwGPEPV0PNTUsVBPx0I9HQv1dDzU1LFQzzvsKgBISkrS7Nmz5evrqxUrVsjT01OS1KRJE5UoUULh4eGKjIxUly5d1Ldv30z7u7q6qlOnTnrrrbe0e/fubAMAk8mktLQ0paam2iwCKEk3b96UdH+vEsyO2WxRYuKNB97/SeDi4iwvLw8lJqYoPd2c06eDh0Q9HQ81dSzU07FQT8dCPR0PNXUsRqmnl5fHfd3lYFcBwKlTp3Tz5k01adLEevGfISwsTOHh4dq1a5e6dOmS7TEyFgm826KAfn5+kqT4+Hjrv2e4ePGivL29lTt37gedhiQpLc1xv1x/lp5uNsxcjYB6Oh5q6liop2Ohno6FejoeaupYqOcddvUgRMYz+enp6Zm2Zdyan56ervXr16tx48basGFDpn4Zbw/I7td/SXr22WclSQcPHrRpT0tL09GjRzO9HQAAAAAAgCedXQUATz/9tIoVK6Z169bp8uXLNtsyVvcPDg5W2bJldfr0aS1atMgmLLhy5YoWLFigp556SsHBwdmO88ILL8hkMmnx4sU2+69YsUJJSUlq06bNI54ZAAAAAAA5y64eAXB2dtbEiRPVv39/hYaGqmPHjsqfP7/27NmjDRs2qGrVqmrfvr3c3d3Vq1cvzZ8/X126dFGLFi107do1LV++XFevXlVERIRy5cplPe6aNWtkMpnUqFEjSZKnp6dGjBihiRMnqnv37mrVqpViYmK0dOlS1a5dW02aNMmpjwAAAAAAgH+EkyXj3no7cuDAAUVEROjXX39VSkqKfH191aJFC/Xt29d6YW+xWLRs2TItX75cp06dUu7cufXcc89p0KBBqlixos3xAgMD5evrq02bNtm0r169WvPnz1dsbKwKFiyopk2batCgQZnWH/i70tPNunIl+zUIHIGrq7Py5zcpISGZZ2kcAPV0PNTUsVBPx0I9HQv1dDzU1LEYpZ4FCpjuaxFAuwwAnnQEAHjSUE/HQ00dC/V0LNTTsVBPx0NNHYtR6nm/AYBdrQEAAAAAAAD+GQQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAARAAAAAAAABgAAQAAAAAAAAYAAEAAAAAAAAGQAAAAAAAAIABEAAAAAAAAGAABAAAAAAAABgAAQAAAAAAAAZAAAAAAAAAgAEQAAAAAAAAYAAEAAAAAAAAGAABAAAAAAAABkAAAAAAAACAAbjm9Ang0fr229VaseIrXbhwXj4+RdS2bQe1bdteTk5OkqS9e3/R/PlzdfLkCbm7u+vZZytqwIAh8vMrftfjHjlySBERHys6+qg8PPKoadOXNHbs6Gz7v/nmKJlMJr311oRHOT0AAAAAwAPiDgAHsnbtN5o69QNVq1ZdkyfPUEhII82cOU1ffbVUknTo0AENGzZQ+fLl0/jx72nYsFE6f/6cBgzoo6tXr2Z73HPnzmrYsIHKlSu3Jk78UJ06ddXKlcs1ceLETH3T09P1r39N1bZtm/+xeQIAAAAA/j67vAMgNjZWM2bM0O7du5WSkqLSpUurZ8+eCg0Ntem3cuVKffnllzp58qRcXFxUrlw59evXT/Xr17/nGGfPnlXDhg2z3BYcHKx58+Y9krk8TuvWfasKFSrp9ddHSZKqVauhuLjTWr06Up07d9WSJQtUqlRpvffeFDk738l+KlSorJdfbq7169eqc+euWR532bJFypPHpMmTp8vNzU21awcrTx4PTZ8+RZ07d1ehQkUkSSdPntC//jVVx44dUa5cuR7PpAEAAAAA98XuAoA//vhDHTt2VEpKirp27aqiRYtq7dq1GjNmjC5fvqw+ffpIkubOnavp06frueee04gRI5SamqrIyEj169dPkydPVps2be46TnR0tCSpX79+8vf3t9lWuHDhf2Zy/7Dbt2+rYMGCNm358nnr2rVrkqRy5Z5RvXovWC/+Jempp55SnjwmnT9/NtvjRkXtVp06wXJzc7O2NWjQSNOmfag9e3apRYs7wcz774+Xh4eHPvtsocaMGf4opwYAAAAAeEh2FwAsXrxYCQkJmjlzppo1ayZJ6tChg0JDQzVr1ix16dJFycnJ+vjjj1WzZk0tXLjQekHbsWNHtWrVSpMnT1aLFi3k6pr99DICgI4dO6pYsWL//MQeg7Cwzpo06V1t3Lhedes+r8OHD2rDhnVq2rS5JKlHjz6Z9tm79xddv56o0qX9M22TpFu3burChT9UvHgJm/b8+fPL09NTZ86csba9/fa7Klv26Uc4IwAAAADAo2J3AUBsbKwk2dzG7+bmpuDgYC1YsECxsbE6deqUUlNT9fLLL9v8mu3p6amGDRtq8eLF+v333xUQEJDtONHR0TKZTA5z8S9JISGN9OuvP+u998ZZ22rUqK2hQ0dk2T8hIUFTpryvwoV91KxZiyz7XL+eJEkymTwzbTOZTEpOTrL+zcU/AAAAANgvu1sEsEyZMpKkmJgYm/bTp0/LyclJTz31lEJCQrR27VqFhIRk2v/KlSuSJBcXl7uOEx0draefvnPBajablZKS8ihOP0eNGTNCmzf/pAEDhuiTTz7T66+P1LFjR/TOO2/IYrHY9P3vfy9p6NDXlJCQoA8+mKo8efJkeUyLxSxJ+v8vEfjLNotNAAMAAAAAsF92d/XWq1cvlS1bVmPHjlVUVJTi4uI0Z84cbdq0SR06dFChQoXk4eGhgIAAeXl52ex7/vx5/ec//1HhwoVVunTpbMe4deuWzpw5I7PZrN69e6tSpUqqXLmymjVrpvXr1//TU/xHHDy4X1FRuzRkyHB17txNVapUVbt2HfX22+9q+/at2rlzh7VvTMxJ9e3bQ5cuXdL06R+rXLlnsj2up2deSVJycnKmbTdu3MjyzgAAAAAAgP2xu0cAChYsqEGDBunNN99U167/W5W+cePGGjduXLb7paSkaNiwYbp165aGDBly11+mjx8/rvT0dB07dkzdu3dXly5dFB8fr4ULF2rYsGG6du2aOnXq9FDzcHV9vNnKpUvxkqTKlSvbjF2tWjVJ0unTp1S/fn398kuURo8eIU9PT82Z84X8/cve9bh585pUqFBhnT9/1ua4iYlXlZSUJH9//2zn6uTk9Ng/B0f0zTertHz5l/rjj/Py8Smi9u3D9PLLHeT0l9sy0tJS1bdvb9WuXUevvvpatsc7f/682rbN+pEPSWrevKXeeeddSdLbb4/Rjz/+kKnPe+99qBdfbPKAM8Lj4OLibPNPPNmop2Ohno6FejoeaupYqKctuwsAMlb39/f3V48ePZQvXz7t2LFDkZGRGjhwoD755BO5u7vb7JOUlKT+/ftr3759atmypdq3b3/XMby9vTV06FBVqVJFtWvXtra3bNlSLVq00LRp09SyZUt5ej7Yr9vOzk7Kn9/0QPs+qAoVykmSTpw4oueeq2BtP3RoryTp6adL648/TmvUqGHy8/PTvHnz5OPjc1/HrlcvWLt2/Z9MJjfrZ79hwxq5uLgoJOT5LOfq4uKsXLlcH/vn4GgiIyM1efL76tq1qxo2bKioqChNnz5Vzs4W9e7d29rv5s2bGjVqjI4cOaQGDV646+duMpXU8uXLM7UvW7ZMGzZsUOfOHa37x8ScUKtWrdSlSxebviVLlqS2TwgvL4+cPgU8QtTTsVBPx0I9HQ81dSzU8w67CgCSkpI0e/Zs+fr6asWKFdYL8CZNmqhEiRIKDw9XZGSkzcVIfHy8+vXrp6NHj6pJkyb68MMP7zlO8eLFNWDAgEztnp6eCg0NVUREhA4cOKA6deo80DzMZosSE2880L4PqmjRkgoJaagPP/xQFy78V88886xOnYrRF198psDAIFWvXke9enVXamqqevZ8VceP/67jx3+37u/tnV9+fsUlSYcOHbD5u0OHLlq3bp169OipTp1e0ZkzZzRnziyFhYXJZPJWQkLmxwPS0826dSsty224f8uXr1DFipU1cOAwSVJQUEUdP35SS5YsVdu2HSVJ+/bt1bRpk3Xp0iVJUkrK7Xt+7iVL2i7YGB19VBs2bFD//oPk719OCQnJunkzRadPn9Yrr/TI1F8StbVzLi7O8vLyUGJiitLTzTl9OnhI1NOxUE/HQj0dDzV1LEapp5eXx33d5WBXAcCpU6d08+ZNNWnSJNOv72FhYQoPD9euXbusAcDJkyfVp08f/fHHH2rfvr3efffdey7+dy9PPfWUpKyfef870tIe/5dr3Lj3tWjRPK1evVKff/6pfHyK6KWXWqpHj1d17twfOn78mCTpzTdHZ9q3WbMWeuutCZKkPn162Pzt51dSM2bM0uzZH+nNN0crXz5vdezYRW+8MVLXr9/Kdq4WiyVHPgdHcuvWbRUsWNDmc/Tyyqdr165Z20aOHKaKFStrypR/qV27ljKb/97nbrFYNGXKJJUpU0ZhYZ2t+x47dlxms1llyjxNHZ9g6elm6udAqKdjoZ6OhXo6HmrqWKjnHXYVAGTcXp6enp5pW8Yq9hnbYmJi1LVrV125ckWDBg3S4MGD73uchQsXaunSpQoPD1flypVttmW8faB48eIPNIec5Obmpj59XlOfPpmf/86TJ4927Pjlvo6TVb9Klapo7tyF1r9dXZ3l6uoq6VaWx1i5cu19jYW7CwvrrEmT3tXGjetVt+7zOnz4oDZsWKemTZtb+8ye/fk913K4m//8Z6OOHDmsxYsXy8XFxfofxpMnoyVJa9b8W9u2bVFi4jWVL/+sBg58Xc888+zDTQwAAADAY2dXKyE8/fTTKlasmNatW6fLly/bbFu6dKkkKTg4WCkpKRo4cKCuXLmisWPH/q2Lf0kqVaqU4uLitGjRIpv22NhYrVq1SkFBQQoKCnq4yQCPQEhIIzVp8pLee2+cmjZ9QSNGDFaFCpU0dOgIa5+HufiXpK+/XqKKFSurZs2aNu0nThyXdOetGRMmfKAJEz7Q7du3NWRIP508eeKhxgQAAADw+NnVHQDOzs6aOHGi+vfvr9DQUHXs2FH58+fXnj17tGHDBlWtWlXt27fXsmXLdOrUqf+/EFl+rVmzJtOx6tWrpwIFCkiS1qxZI5PJpEaNGkmSXnjhBTVp0kTr169XUlKSQkJCFB8fry+//FKurq73tY4A8DiMGTNCBw/u14ABQ1Su3DOKiTmh+fM/1zvvvKFJk8IzvQng7zpwYJ+OH4/W1KkzMm0LC+uskJBGqlathrWtatUa6tQpVIsXz9fEifzvBAAAAHiS2FUAIN25cP/yyy8VERGhBQsWKCUlRb6+vho0aJD69u0rd3d37dy5U5J0+vRpjR6d+Xl2SVq+fLk1ABg9erR8fX2tAYAkhYeHKzAwUN9++60mTZokk8mk4OBgDRkyRKVLl/7nJwrcw8GD+xUVtUtvvPG2WrZsI0mqUqWqihXz0+jRr2vnzh2qW7feQ42xZctPypvXS3Xq1M20rUSJUipRopRNW968eVWhQiWdPHn8ocYFAAAA8PjZXQAgSRUrVtScOXOy3f7555//reNFR0dnanN3d9fAgQM1cODAv31+wONw4cIfkqQKFSrZtFeu/Jwk6dSpmIcOAHbu3KF69erL1dUt07Yff9yofPnyqXr1Wjbtt27dUr583g81LgAAAIDHz67WAADwPyVLlpIk7d//m037wYP7JUlFi/o+1PETE6/p7Nk4VaxYKcvtq1evVHj4ZKWmplrbLl26qIMH96tKlaoPNTYAAACAx88u7wAAIAUEBOmFFxpo1qx/6fr1RJUv/6xOnfpdCxbMVUBAkOrXD7nvYx06dFD58+eXr6+ftS0m5qQkqVSpMlnu06NHH40YMVhvvTVKbdt2UGJioubPn6u8eb3UqVPXh5scAAAAgMeOOwAAOzZ+/AcKC+uiNWtWacSIwYqM/EovvdRSs2bN/f+vYbw/r73WUwsXfmHTduXKFUlS3rxeWe5TvXpNTZ/+sZKSkjR+/FjNmDFFgYGBioiYp7x58z74pAAAAADkCCeLxWLJ6ZNwNOnpZl25kpzTp/GPcnV1Vv78JiUkJFvfG48nF/V0PNTUsVBPx0I9HQv1dDzU1LEYpZ4FCpjk4nLv3/e5AwAAAAAAAAMgAAAAAAAAwABYBNBBODs7ydnZ6bGNl3F7yf3cZvIomc0Wmc08tQIAAAAAfxcBgANwdnaSt3eex34xLkleXh6Pdbz0dLOuXr1BCIAn2rffrtaKFV/pwoXz8vEporZtO6ht2/ZycrIN8dLS0tS/f2/VqlVHvXv3u+dxt2z5ScuWLdLp06fl6empunXrqE+fAcqXL7+1z4kT0frss9k6duyIzGaLAgOD9NprgxUYGPTI5wkAAAD7QgDgAJydneTi4qzwZb/qbPz1nD6df4yfT16N7FJVzs5OBAB4Yq1d+42mTv1A7dqFKTi4vvbt26uZM6fp1q1b6tz5f69XvHXrpiZOfEdHjx5WrVp17nncTZt+1LhxY9S6dVu9+uoAXbt2RV988Zn27duvL75Yoly5cuncubMaOLCvAgICNWbMO3JyctbXXy/VgAG9tWDBMpUoUeofnDkAAAByGgGAAzkbf10x567l9GkAuIt1675VhQqV9PrroyRJ1arVUFzcaa1eHWkNAPbv/00zZkzRpUuX7vu4ixZ9odq162rUqDcl3Vnx9tlny6l9+/bauXO7QkIaKTLyK+XKlUvTpn0kD487d+9UrVpd7dq10MqVyzV8+BuPeLYAAACwJywCCACP0e3bt+Xp6WnTli+ft65d+19498Ybw+XjU1Tz5y+9r2OazWZVq1ZTrVqF2rSXLl1aknTu3FlJUsmSpdWp0yvWi39Jyp07twoVKqxz58490HwAAADw5OAOAAB4jMLCOmvSpHe1ceN61a37vA4fPqgNG9apadPm1j6zZ38uf/+y931MZ2dnDR48LFP7Dz/8IEkqU+bOsUJD22Xqc+bMaf3+e4yqVav5d6cCAACAJwwBAAA8RiEhjfTrrz/rvffGWdtq1KitoUNHWP/+Oxf/2Tlz5oymTp2qwMCgbNcQuHnzpj74YIJy5cqtdu3CHnpMAAAA2DceAQCAx2jMmBHavPknDRgwRJ988plef32kjh07onfeeUMWy6NZ3DI29pQGDuwrd3d3ffjhNDk7Z/5PfXJykkaNGqpjx45o/Pj35eNT5JGMDQAAAPvFHQCAHXJ2dpKzs9O9Oz4iGa+QfNyvkjSbLYZ6o8PBg/sVFbVLb7zxtlq2bCNJqlKlqooV89Po0a9r584dqlu33kONsXfvL3rzzVEymUxauHCB8uf3UVqa2aZPfPwFjR79uuLizmjixMkPPSYAAACeDAQAgJ1xdnaSt3eex34xLkleXh737vQIpaebdfXqDcOEABcu/CFJqlChkk175crPSZJOnYp5qIvxH374XpMmTVDx4iX00UezVaZMGSUkJNv0OXnyhEaMGKxbt24pPPxjPfdctQceDwAAAE8WAgDAzjg7O8nFxVnhy37V2fjrOX06/xg/n7wa2aWqnJ2dDBMAlCxZStKd1/yVKlXa2n7w4H5JUtGivg987F27duiDD8arQoVKmjx5hry9vTL1iY+/oGHDBsrFxUWffjpPpUuXeeDxAAAA8OQhAADs1Nn464o5d+3eHfHECAgI0gsvNNCsWf/S9euJKl/+WZ069bsWLJirgIAg1a8fct/HOnTooPLnzy9fXz/dunVLkye/Lw+PPOrevZdiY0/J1dVJefN66Pr1FBUoUEiFC/to5sxwJSRc0ciRY5WcnKxDhw5aj2cymQgEAAAAHBwBAAA8RuPHf6BFi+b9P/buPbDm+vHj+OuczdjOzCZss+VujS9m7iIji1yjRFkiNCtMCPn66jIRIuWeclsuDV3UN7qibyWS64TJxtxXLru57XLO7w8/5/tdu7icbdY5z8c/5v1+f96X897U57XPRevXf6zFi9+Vt7ePOnfupgEDnpWz863/kxwR8Yw6deqqCRNe1f79+3T+/DlJ0siRw3K1feaZZ/X00wO1desPkqQZM97I1aZhw0aaO3fRHa4KAAAAfweFFgAkJCTowIEDSklJUVhYmE6fPi0vLy+5uhbvPcUAUJKVKlVKgwdHaPDgiFtq/+OPv960vHHjprnaOTsb5eVl0sWLl6wPAfz+++13OGsAAADYA5ufMpaYmKi+ffuqS5cuGjNmjCZPnixJ+vjjjxUSEqLvvvvO5kkCAAAAAADb2BQAJCUlKSwsTLt27dL999+voKAg63usvby8dPnyZY0YMUL79+8vlMkCAAAAAIA7Y1MAMG/ePF24cEHvvfeeFi9erNatW1vrwsLCtHz5chkMBi1axH2lAAAAAADcTTYFAN9//71CQ0P1wAN5v7e6cePGeuihh7Rv3z5bhgEAAAAAADay6SGA58+fV9WqVQts4+vrq/Pnz9syDAAAJdpnn32iNWtW6+zZ0/L29tGjj/bWo48+LoPBIEk6fvyY5syZpX379sjJyVkPPBCiYcNGqmzZsgX2m5h4TPPnv6Pdu3fJxaWUgoKC9fzzI+Tn529ts3//Pr377jwdOLBfrq5uatmylYYMGaYKFSoU6ZrtXVHu6YIFs7V79045OTkrKChYw4a9wJ4CAIqFTVcAVKhQQUeOHCmwTVxcHP/BAgDYrc8//1TTp09WkyZNNXXqW2rXLlRvv/2mVq9eIUlKS0vTiBHPKzn5oiZOjFJExDB9//1mvfzySwX2m5R0Vs89N0gpKSmKipqsV199VUePJmjUqGG6du2qJOnAgf0aPnyI0tLSNGHCaxo//uX/P26g0tPTi3zt9qro9zRZM2fO1Lhx/9SxY+wpAKD42HQFQJs2bbRu3Tr99NNPatWqVa76b7/9Vj/++KN69+5tyzAAAJRYX3zxmerXD9ILL4yRJDVp0kwnTiTqk0/Wqm/ffvr003VKS0vVkiUr5eXlJUmqWLGSxowZob179ygoqGGe/S5e/K7c3Nz09tvz5e7uJi8vk8qVq6AXX3xBhw4dVFBQsKKjl8jdvaxmz14oDw8P6/h9+z6mlSuXa8iQocXzIdiZot7TOXMWyNe3gi5evCRvb1+NGzeKPQUAFAubrgAYOnSoypUrp/DwcI0cOVLbt19/x/TixYsVGRmpyMhIlStXTkOGDCmUyQIAg2aktgAAIABJREFUUNJkZGTI3d09R1m5cp5KSUmRJG3f/rMaNAi2nihKUvPmLeXmZtK2bT/l2afFYtF//rNZXbs+ojJlyljL69Spq/Xrv1RQULAk6dixY2rQIMh6oihJpUuXVp06/9DWrT8W2hodTdHvqau1PDCQPQUAFB+bAgBvb29FR0crICBAGzdu1I4dO2SxWPTmm2/q66+/VrVq1bRkyRL5+fkV1nwBAChR+vTpq19+2aavvtqg9PR0bd/+szZu/EIdO3aWdP2e7ypVquQ4xmg0yte3sk6cSMyzzzNnTis9PV0+Pr6aOXOaOnRop/r162v06BE6e/astZ2Xl6fOnDmT6/jTp0/qzJnThbhKx1LUe/rmm2+oefPmatOmhcaOHcmeAgCKjU23AEhS7dq19cknnyg2NlaxsbFKTU2VyWRSnTp11LhxY+vDcgAAsEft2oVq584dmjTpZWtZs2YtNWLEaElSenqa3NxMuY5zc3PTpUuX8uwzOfmiJGnBgjmqW/cfmjRpiq5du6QZM2YqMnKIli//UK6ururcubumTXtd77wzU2FhT8tgMCgmZpWOHTumrKzMIlitYyjqPf3HP+pp5syZOn78tBYsmMueAgCKjc0BwA3169dX/fr1C6s7AAD+Fl56abRiY/fq+ecjVafOPxQf/7uWLHlPEyeO05QpM2SxWPIJwy0yGPK+EC8zM0uSVL58eU2e/KZcXJzl5WVS+fKVNHjwAH311Qb16PGYunXroUuX0rV48btau3a1DAaD2rZtrx49HtW///1ZEa7avhX1nk6dOkP33FNWFy9ekq+vvyIinmFPAQDFwqYA4NNPP71pG6PRKDc3N/n4+CgwMFDOzoWWOQDA34LRaJDRWLxXQzk5GXP8WVzMZovMZkuxjnk3xcbu1S+//Kxx4/6lbt16SJKCgxurcmV/jR37grZu/VHu7u55/lb48uUrqljRO89+3dzcJEktWrSS0fjfPaxXr4Hc3cvqyJHD1rInnnhKvXo9oVOnTsrDo5y8vLz0+uuv5LiHHLeu+Pe0PnsKACg2Np2Nv/TSS7d1iX/58uX16quv6qGHHrJlWAD42zAaDfL0dCv2E/EbPDxcb96oEGVnm5WcfNlhQoCzZ6/fq12/flCO8oYNG0mSjh6N1733VtWpUydy1JvNZp05c1ohIe3y7NfPz19Go1EZGRm56rKzs1S6dGlJ0qFDB5SUdFYhIQ+qatVq1jZxcQcVEBB4x+tyZOyp/frss0+0Zs1qnT17Wt7ePnr00d569NHHrf8ve/z4Mc2ZM0v79u2Rk5OzHnggRMOGjVTZsmVveYzZs2dqzZrV+vHHX3OU//57nN59d54OHTogs9mi++4LVETEcN13H3sKoHjZFABMnTpV8+fP1/Hjx9W8eXM1bdpU3t7eSk9P1+7du/Xdd9/J09NT3bt31x9//KFNmzZp5MiRWrVqlRo0aFBYawCAEstoNMjJyagZK3fqZFLa3Z5OkfL3LqsXwxrLaDQ4TABw4wRt797dqlaturU8NnavJMnX10/NmrXQqlXRunjxovWp8du3/6zLly+pWbMWefbr5uamBg0a6j//2awhQ4bK2fn6mwB27NiuK1euqEGD60+M37Vrp95/f6HWr29qPUnZsWObjh5NUFhY/yJZs70rjj0dOnS4pOvPEPj111/Y02Lw+eefavr0yerVq49atw7Rnj279Pbbb+ratWvq27ef0tLSNGLE86pQoYImTozShQsXNH/+bP3xR5JmzZp3S2Ps3r1T69bF5Co/deqkhg4NV0DAfXrppYkyGIz68MMVev75QVq6dKWqVKlWyKsFgPzZFAAkJyfr1KlTmjNnTq7f6j/zzDP66aefFB4erqpVq2rcuHFKSEhQr169tHjxYr3zzjs2TRwA/k5OJqUp/lTK3Z4GCllAQKDatn1Qc+fOUlpaqurWraejRxO0dOkiBQQEKiSkndLT0/XRRzEaOXKonnnmWaWmpmj+/Nlq0eJ+1av33zB8//5YeXl5yc/PX5IUETFMw4cP0ZgxIxQW9rSuXUvX9Olvqm7demrduo0kqWPHTlqxYpkmThynvn2f1h9/nNWcObNUv36QHnro4bvymfzdFceejho1XOHhz+r48dOaN282e1oMvvjiM9WvH6QXXhgjSWrSpJlOnEjUJ5+sVd++/fTpp+uUlpaqJUtWWkOdihUracyYEdq7d4+CghoW2P/ly5f1+uuvqUKFivrjj6QcdWvXrlbp0qX15pvvyNX1+lVZjRs3Va9eXbVuXYxGjRpXBCsGgLzZdE3q6tWr1aFDh3wv6W/VqpXat2+v5cuXS5Jq1Kih0NBQ7dq1y5ZhAQAoMV55ZbL69AnT+vUfa/To4Vq7drU6d+6muXMXydnZWZ6enpo9e6HKlfNUVNS/tGjRfLVr115RUW/k6Cci4hktW/a+9e/16jXQ7NkLZTabNX78GE2bNk2tW7fRzJlz5OTkJEm6554KeuutucrKytKECWO1ZMl76ty5u2bOnG1tg9tX9HtqUWRkpObMeVutWj3AnhaDjIwMubu75ygrV85TKSnXg9nt239WgwbB1pN/SWrevKXc3Ezatu2nm/Y/bdo0lS9/jzp37parrmrV6nryyaesJ/+SVKZMGVWsWEmnTp260yUBwB2x6QqAs2fP6sEHHyywja+vrzZv3pzj7zf+sQUA4O+uVKlSGjw4QoMHR+TbpkaNWnrnnfkF9vPXe4al6/ehz5nzrpydjfLyMunixUvKyjLnaBMYWEdz5y66s8kjT0W9p/PnL8p3PyX2tCj06dNXU6a8pq++2qBWrdrot99itXHjF3r44S6SpMTEY2rfPucvtIxGo3x9K+vEicQC+96+fZvWr1+v5ctXaePGDbnqe/bslavs+PFEJSTEq0mT5jasCgBun00BgI+Pj7Zu3Sqz2ZzjibY3ZGdna/v27apYsaK17I8//lCFChVsGRYAAAC4Ze3ahWrnzh2aNOlla1mzZi01YsRoSVJ6eprc3Ey5jnNzc8vzjQ83pKena8qUKEVGRqpKlaq3NJerV69q8uRXVbp0GfXq1ec2VwIAtrHpFoCuXbsqLi5Oo0ePVlJSzvudUlJS9K9//UtxcXHq1KmTJOnAgQP6+uuvVb9+fVuGBQAAAG7ZSy+N1ubN3+n55yM1Z867euGFF3Xo0AFNnDhOFotFFoslnzdbWWQw5P+/y7Nnz1SlSpU0YMCAW5rHpUvpGjNmhA4dOqBXXnld3t4+d7YgALhDNl0BMGTIEG3fvl0bN27UN998o0qVKqlSpUpKS0tTYmKisrKy1LBhQw0dOlSXL1/Wo48+KmdnZw0aNKiw5g8AAADkKzZ2r3755WeNG/cvdevWQ5IUHNxYlSv7a+zYF7R1649yd3fP8zf9ly9fUcWK3nn2+9NPP+jbb7/WsmUrZDablZWVJYvl+htQsrKyZDQac1whm5R0VmPHvqATJ44rKmqqWrV6oAhWCwAFsykAcHFx0fLly7VixQp9/PHHiouL0+nTpyVJ1atX1+OPP65+/fqpVKlSOnXqlEJDQ/Xkk0/yCkAAAAAUi7Nnz0i6/vyF/9WwYSNJ0tGj8br33qo6depEjnqz2awzZ04rJKRdnv1u2fKdMjKuqW/fx3PVtW3bQp06ddWECa9Kko4c+V2jRw/XtWvXNGPGbDVq1MTWZQHAHbEpAJAkJycn9e/fX/3791dGRoaSk5NlMplkMuW8j8rPz09z5861dTgAAADgllWtWk2StHfvblWrVt1aHhu7V5Lk6+unZs1aaNWqaF28eNH6JoDt23/W5cuX1KxZizz7HTgwXI891ltOTkaVLVtGaWlX9fHHH+nzzz/R++9Hq1w5T0nXf/M/cuRQOTk5acGCxapevUYRrhYACmZzAPC/XFxcVKlSpVzlCQkJqlGDf+wAAABQvAICAtW27YOaO3eW0tJSVbduPR09mqClSxcpICBQISHtlJ6ero8+itHIkUP1zDPPKjU1RfPnz1aLFverXr3/Xrm6f3+svLy85OfnL1/fyvL1rZzjLR0VKnwvSQoMrGs95u23Z+jixQt68cXxunTpkvbvj7XWmUwmAgEAxcrmAGDLli369NNPdeHCBZnNZuu9TxaLRVlZWUpOTtaJEyd08OBBmycLAAAA3K5XXpms5csXa/36j7V48bvy9vZR587dNGDAs3J2dpanp6dmz16od955S1FR/5Kbm0nt2rXXsGEv5OgnIuKZHJf230xmZqa2bv1BkjRjxhu56hs2bMQrHwEUK5sCgE2bNmno0KHWk/68lCpVSi1a5H3pFAAAAFDUSpUqpcGDIzR4cES+bWrUqKV33plfYD8//vhrgfWDBg3RoEFDcoz7/ffbb2+yAFCEbHoN4PLlyyVJr732mjZu3KhatWqpZ8+e2rBhg9555x1VrVpVbm5umjp1aqFMFgAAAAAA3BmbAoCDBw8qJCREffr0UfXq1dW4cWMdOnRINWrUUMeOHbVs2TJlZmbq3XffLaz5AgAAAACAO2DTLQCXL19W7dq1rX+vWbOmPvroI2VlZcnZ2Vm+vr5q166dfvnlF5snCgBASWE0GmQ0GoptPCcnY44/i4vZbJHZnP9tfvaC/QQAOAqbAgAPDw9duXLF+nd/f39lZ2crMTFRNWvWlHT99X9btmyxaZIAAJQURqNBnp5uxX7yJkkeHq7FOl52tlnJyZft+qSR/QQAOBKbAoC6devqhx9+UEZGhlxcXFSzZk1ZLBbt2bPHGgAcP35cpUqVKpTJAgBwtxmNBjk5GTVj5U6dTEq729MpMv7eZfViWGMZjQa7PmFkPwEAjsSmAKB3796KjIxUr169NGnSJAUFBSkgIEAzZ86Uk5OT/vzzT33zzTdq2rRpYc0XAIAS4WRSmuJPpdztaaCQsJ8AAEdg0/VuHTp00PPPP6+EhASdOnVKkjRq1CilpKRo/Pjx1iAgMjKyUCYLAAAAAADujE1XAEhSZGSkwsLC5Ox8vau2bdsqJiZGn3/+ucqUKaMuXbooICDA5okCAAAAAIA7Z1MAsGPHDvn5+aly5co5yuvVq6d69epJkn7//XetW7dOvXr1smUoAAAAAABgA5tuAXj66af1ySefFNhm/fr1mjx5si3DAAAAAAAAG93WFQDffvutfvvtN+vfLRaLtm3bpqysrDzbZ2Vlaf369XJxcbFtlgAAAMAtMBoNMhoNxTbejVdIFverJM1mC290AHDbbisA8Pf3V2RkpMxmsyTJYDBox44d2rFjR4HHDRgw4I4nCAAAANwKo9EgT0+3Yj8ZlyQPD9diHS8726zk5MsOGQLs2vWrIiMj8q0fODBcAweG66efftCyZe8pPv6IPDzKqW3b9goPf05ubqYC+z927KjGj5+r7dt/kbOzs4KCgjVs2Avy8/O3ttmzZ5cWLZqv338/LDc3V7VrF6pnn31OJpN7oa0TKAq3FQAEBgZqwYIFunDhgiwWi/75z38qNDRU7du3z9XWYDDI2dlZvr6+aty4caFNGAAAAMiL0WiQk5NRM1bu1MmktLs9nSLj711WL4Y1ltFocMgA4L77ArVw4dJc5e+9t0CHDv2m0NCO+v77zfrXv8YqOLixoqLeUFZWlpYvX6zIyOe0cOES6wPM/yop6azCwweqZs0aioqarMuXr+q99+Zr1Khhio7+UKVLl9Hhw4c0atRwNWnSTJMnT9e5c39q4cK5Skw8plmz5hX18gGb3PZDAENCQqxff/LJJwoNDVWPHj0KdVIAAADAnTqZlKb4Uyl3exooIiaTu+rVq5+j7Icftmjnzl80adJUValSVRMnvqRq1apr5sw5KlWqlCQpKChYvXs/og0bPlf37j3z7Hvx4nfl5uampUuX6upVs7KyzKpcubLGjRulQ4cOKigoWDExK+Xp6anJk6db+5akKVNe0/Hjx1SlSrUiWztgK5veAvDBBx8U1jwAAAAA4LZdu3ZVs2a9qfvvb6127UIlSYmJR/XYY31ynKB7eZVX1arVtXXrD3kGABaLRf/5z2b17dtPrq6uunr1kiQpMLCu1q//0tpuyJBhSk1NzdG3s/P1rzMyMotkjUBhsSkAkKTs7Gx9++23SkxMVGZmpiyW3JchGQwGDR061NahAAAAACCHmJhVOn/+nGbPXmgt8/T00tmzp3O0y8rKUlLSWWVmZuTZz5kzp5Weni5fX1+99tpr+ve/v9DVq1fUpElzjRo1Tj4+PpKkSpW8VamStyTp8uXL+u23WC1aNE9BQcGqVat2Ea0SKBw2BQAnTpxQ//79debMmTxP/G8gAAAAAABQ2DIzM7VuXYzat+8gf/97reWdO3dTdPQSrVixTF26PKJr167pvffm69KlS3J1zfuBjcnJFyVJ8+bNVlBQkCZNmqJz587r3XfnKTJyiJYv/zDHsRaLRV26tFdmZqbKlSunYcNeKNrFAoXApgDgrbfe0unTp9WyZUuFhITIw8NDBoPtr105duyY3nrrLW3btk1XrlxR9erV9cwzz6hnz5yX6mzbtk1z5szRwYMH5eLionbt2unFF1/UPffcc0vjfPnll1q0aJESEhLk7u6uzp07a8SIETKZCn4yKAAAAIC7b/Pmb3Xhwnk9+WS/HOUDB4YrOztb77+/UAsXzpWzs7O6deupBx4I0bFjCXn2lZl5/dXm5cvfo7lz5yol5Yqysszy87tXERHP6KuvNqhHj8es7bOzszVt2ixlZ2dp7doPNXTos5oxY7YaNWpSdAsGbGRTALB161Y1atRIS5fmfgrnnTpz5oyeeOIJXblyRf369ZOvr68+//xzvfTSSzp//rwGDx5sHfvZZ59VrVq1FBkZqZSUFC1btkx79uzRunXrbnoS//HHH2v8+PFq2rSpxowZo8TERK1cuVIHDhxQdHS0jMbif30MAAAAgFu3efN3ql69hmrXDshR7uzsrOeeG66BA8N1+vQpVahQUWXLltWwYeEqW9Yjz77c3NwkSS1b3p/jXKBevfpydy+rI0cO5xqjWbMWkqQmTZqrX7/eio5eQgCAEs2mAODatWuF/oq/6OhoXbx4UW+//bY6deokSerdu7d69uypuXPnKiwsTGXKlNGkSZPk4+OjlStXyt39+vs2GzZsqPDwcEVHR+u5557Ld4zLly9r2rRpCg4O1tKlS60P8KhWrdr/3+/zb3Xv3r1Q1wUAAACg8GRlZWnHjm0KC+ufq2737p3KyMhQ8+YtVb16DWv7I0d+V5cu3fLsz8/PX0ajMc8H+WVnZ6l06dKSpB9//F7u7mXVsGEja32pUqVUs2YtHT2a99UFQElh06+5AwIClJBQuN/kx44dk5TzdYOlSpVS69atdeXKFR07dkyxsbFKSEhQr169rCf/N46pWbOm1q9fX+AYW7ZsUXJysvr27Zvj6Z29e/eWyWS66fEAAAAA7q74+CO6evWq6tcPylW3efO3mjbtdWVlZVnLvvjiM6Wnp6lNm3Z59ufm5qYGDRpqy5ZNysj474MCf/31F125ckUNGgRLklavXqEZM97I0Xd6err2749VrVoBufoFShKbAoBnn31Wmzdv1vfff19Y81GNGtcTuvj4+BzliYmJMhgMqlChgvbs2SNJCgrK/cNev359HT16VGlpafmOsXfv3jyPd3Z2Vt26dbVv3z6b1gAAAACgaCUkHJEkVatWI1ddjx6P6eLFC3r99Vf066+/KCZmpWbNmq727TsoKCjY2m7//lidOnXS+veIiGE6d+5PPfvss9q69Sdt2PC5XnvtX6pbt55at24jSRowYLCOH0/UxInjtH37z9q06VtFRkbo6tUrGjRoSBGvGrCNTbcAnDlzRv/4xz8UERGhgIAAVatWzXppzP8yGAyaNm3aLfU5cOBAbdmyRePHj9fLL78sX19fffHFF9q0aZP69OmjihUr6uzZs5JkfRXH/6pUqZIk6dSpUwoMDMxzjBvH+/r65nn8jh07lJaWprJly97SnAEAAAAUrwsXzktSnv/PXqNGLU2fPksLF87TuHEjVb58BT399EA9/fTAHO0iIp5Rp05dNWHCq5KkevUaaN68RXr//QUaP36MypQprQceaKuhQ1+Qk5OTJKlp0+Z66625Wrr0PU2c+JKMRoOCg5vo5ZcnqWrVakW6ZsBWNgUAU6ZMsX4dFxenuLi4PNvdTgBwzz33aNiwYfrnP/+pfv3++zTPDh066OWXX5Z0/RIb6b8P6vhfN17Ncfny5XzHSE9Pl5OTk1xcXAo83pYAwNm5+B4i6OTkWA8stPf12vv6/sre12vv68uLva/Z3tf3V/a+Xntf31/Z+3rtfX1/5Wjr/av+/Z9R//7P5FvfsuX9atny/gL72LZtV66y4OBgffDBB0pNvaLsbHOex7Vo0UItWrS4vQnjrrjxc+LoPy832BQAREdHF9Y8rBYtWqSZM2eqZs2aGjBggMqVK6cff/xRa9eu1dChQzVnzhyZzdd/EPN65aDFYpGkAp/ibzab831d4a0cfzNGo0FeXrxKsKh4eOT97lb8PbGf9oc9tS/sp31hP+0L+1m0+HztC/t5nU0BQLNmzQprHpKu/2Z+3rx58vPz05o1a6wP+OvYsaOqVKmiGTNmaO3atdZX/F25ciVXH1evXpWU96VAN5hMJmVlZSkzMzPHQwBv9fibMZstSk3N/wqEwubkZHSob+iC0lh7wH7aF0fbT4k9tTfsp31hP+2Lve/n3XLj+4jP1z44yn56eLje0lUONgUAN5jNZv300086cOCAUlJSNHbsWB0+fFju7u6qXLnyLfdz9OhRXb16VR07dszxdH9J6tOnj2bMmKGff/5ZzZs3lyQlJSWpWrVqOdr98ccfMhgM8vb2znccf39/6/E3vv7f4z09PVWmTJlbnndesrLs95vrbsvONvP52hH20/6wp/aF/bQv7Kd9YT+LFp+vfWE/r7P5Rojdu3froYceUnh4uGbNmqWlS5dKkjZu3KgOHTpo5cqVt9zXjXvys7Ozc9XduDQ/Oztb9erVkyTFxsbmahcbG6uaNWvmChD+V37HZ2Vl6eDBg3m+XQAAAAAAgL8zmwKAhIQEDRo0SOfOndPjjz+uNm3aWOtq1aolNzc3vf766/r5559vqb/atWurcuXK+uKLL3T+/PkcdStWrJAktW7dWg0bNpS/v79iYmJ06dIla5vvv/9e8fHxeuSRRwocp23btjKZTIqOjs4RNqxZs0bp6enq0aPHLc0XAAAAAIC/C5tuAZg3b56ys7MVExOjwMBAzZ07Vz/88IMkqUuXLqpTp4569eqlJUuWqGXLljftz2g0KioqSs8995x69uypJ554Ql5eXtq+fbs2btyoxo0b6/HHH5fBYNCECRM0dOhQ9e3bV3369NG5c+e0dOlSBQQEKCwsLEe/69evl8lkUmhoqCTJ3d1do0ePVlRUlPr376/u3bsrPj5eK1asUMuWLdWxY0dbPhYAAAAAAEocmwKAbdu26eGHH1ZgYGCe9TVq1FDHjh2tocCteOCBB7Rq1SrNnz9fS5cu1ZUrV+Tn56dhw4YpPDzcepvAgw8+qAULFmjevHmaOnWqPDw81KlTJ40aNcr6kMAbxo4dKz8/P2sAIElhYWFyc3PTkiVLNGnSJN1zzz3q16+fhg0bZn3HJwAAAAAA9sKmACA1NVUVK1YssI2np6dSU1Nvq98GDRpo4cKFN23Xtm1btW3b9qbt4uLi8izv2bOnevbseVtzAwAAAADg78imZwD4+Pho//79BbbZt2+ffHx8bBkGAAAAAADYyKYAIDQ0VNu3b9e6devyrI+OjtauXbvUvn17W4YBAAAAAAA2sukWgIiICH3zzTeaOHGi1qxZo4yMDElSVFSU9u3bp99++02+vr4KDw8vlMkCAAAAAIA7Y1MAUK5cOa1evVqvvvqqNm3aJIvFIklatWqVJKlVq1aaNGmSvLy8bJ8pAAAAAIdiNBpkNBqKdUwnJ2OOP4uL2WyR2Wwp1jHheGwKACSpYsWKmjdvns6fP6/9+/crNTVVJpNJderUka+vb2HMEQAAAICDMRoN8vR0K/YT8Rs8PFyLdbzsbLOSky8TAqBI2RwASNKRI0dkNBoVEhJiLVu0aJHatGmT7ysCAQAAACA/RqNBTk5GzVi5UyeT0u72dIqUv3dZvRjWWEajgQAARcqmAMBsNisqKkoxMTEaPny4nn/+eUlSRkaGZs2apbffflsRERGKjIwslMkCAAAAcCwnk9IUfyrlbk8DsAs2XU+zZs0affjhh6pbt66aNWtmLXdyctKcOXNUv359LViwQB999JHNEwUAAAAAAHfOpgAgJiZGNWrU0OrVq9WkSRNruZOTk0JDQ/XBBx+oSpUqWrFihc0TBQAAAAAAd86mACAxMVEhISFycXHJs97FxUVt27ZVfHy8LcMAAAAAAAAb2RQAlC5dWufOnSuwTWpqqkqXLm3LMAAAAAAAwEY2BQANGjTQpk2bdOLEiTzrT58+re+++0716tWzZRgAAAAAAGAjm94CMGDAAP3nP/9Rv379NHjwYAUFBals2bJKS0vTvn37tHjxYqWlpWngwIGFNV8AAAAAAHAHbAoAWrZsqQkTJmj69OmaPHlyjjqLxSInJyeNGzdODzzwgE2TBAAAAAAAtrEpAJCkp556Su3atdMXX3yhQ4cOKTk5WSaTSffdd5+6d++uKlWqFMY8AQAAAACADWwKAFauXKng4GDVrVtX4eHhhTUnAAAAAABQyGx6CODs2bO1cOHCwpoLAAAAAAAoIjYFABkZGfL39y+suQAAAAAAgCJiUwDQo0cPff755zp69GhhzQcAAAAAABQBm54B4OvrK4vFoq5duyogIED33nuvypQpk6udwWDQtGnTbBkKAAAAAADYwKYA4K233rJ+ffDgQR08eDDPdgQAAAAAAADcXTYFANHR0YU1DwAAAAAAUIRsCgCaNWtWWPMAAAAAAABRJp/iAAAgAElEQVRFyKYA4Aaz2ayffvpJBw4cUEpKisaOHavDhw/L3d1dlStXLowhAAAAAACADWx6C4Ak7d69Ww899JDCw8M1a9YsLV26VJK0ceNGdejQQStXrrR5kgAAAAAAwDY2BQAJCQkaNGiQzp07p8cff1xt2rSx1tWqVUtubm56/fXX9fPPP9s8UQAAAAAAcOdsCgDmzZun7OxsxcTEKCoqSg0aNLDWdenSRR9++KFcXV21ZMkSmycKAAAAAADunE0BwLZt2/Twww8rMDAwz/oaNWqoY8eO+b4eEAAAAAAAFA+bAoDU1FRVrFixwDaenp5KTU21ZRgAAAAAAGAjmwIAHx8f7d+/v8A2+/btk4+Pjy3DAAAAAAAAG9kUAISGhmr79u1at25dnvXR0dHatWuX2rdvb8swAAAAAADARs62HBwREaFvvvlGEydO1Jo1a5SRkSFJioqK0r59+/Tbb7/J19dX4eHhhTJZAAAAAABwZ2y6AqBcuXJatWqVHnzwQcXGxurQoUOyWCxatWqV9u/fr/vvv18rVqyQl5dXYc0XAAAAAADcAZuuAJCkSpUqad68eTp//rz279+v1NRUmUwm1alTR76+voUxRwAAAAAAYKPbDgDOnz+vOXPmaPPmzbp48aJ8fHzUqVMnDRkyRCEhIUUxRwAAAAAAYKPbCgDOnz+vxx9/XGfOnJHFYpEkHT9+XIsWLdLmzZu1evVqmUymIpkoAAAAAAC4c7f1DIBFixbp9OnT6t69uzZu3Ki9e/fq008/VUhIiH7//XdFR0cX1TwBAAAAAIANbisA+OGHHxQcHKxp06apevXqKl26tAIDAzVv3jxVqVJFmzZtKqp5AgAAAAAAG9xWAHDmzBk1atQoV7mTk5NatWqlxMTEQpsYAAAAAAAoPLcVAFy7dk2urq551nl5eenSpUuFMikAAAAAAFC4bisAMJvN+dYZDIYC6wEAAAAAwN1zWwEAAAAAAAD4eyIAAAAAAADAATjf7gHfffedTp06lav80KFDkqTx48fnqjMYDJoyZcodTA8AAAAAABSG2w4ADh48qIMHD+Zb/8knn+QqIwAAAAAAAODuuq0A4I033iiqeQAAAAAAgCJ0WwFAz549i2oeAAAAAACgCPEQQAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOgAAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAAznd7Av/r5MmTat++fYFtmjVrpmbNmmnu3LkFtnvjjTf06KOP3tFYrVu31uLFi28+YQAAAAAA/iZKVABQvnx5TZ8+Pc+6tWvXaseOHQoNDVXz5s1VpUqVXG0yMjL0+uuvy8XFRc2aNStwrLi4OEnSkCFDVLNmzRx1lSpVusMVAAAAAABQMpWoAMDNzU2PPPJIrvI9e/Zo9+7d6tChg/r37y9JCgwMzNUuKipKV69e1VtvvSV/f/8Cx7oRADzxxBOqXLlyIcweAAAAAICSq8Q/AyA7O1sTJkxQmTJl9Morr+TbbteuXVq5cqU6d+5809sIpOsBgMlk4uQfAAAAAOAQSnwAEBMToyNHjmj48OGqUKFCvu2mTZsmV1dXjRs37pb6jYuLU+3atSVJZrNZV65cKZT5AgAAAABQEpXoACAzM1Pz58+Xt7e3+vbtm2+7zZs3a8+ePQoLC5OPj89N+7127ZqOHz8us9msQYMGKSgoSA0bNlSnTp20YcOGwlwCAAAAAAAlQol6BsBfbdy4UX/++afGjRsnFxeXfNtFR0erVKlSevrpp2+p38OHDys7O1uHDh1S//79FRYWpqSkJC1btkwjR45USkqKnnzySZvm7uxcfNmKk1OJznEKnb2v197X91f2vl57X19e7H3N9r6+v7L39dr7+v7K3tdr7+v7K3tfr72vLy+OuOaiduMz5bO9rkQHAKtWrZKbm5t69+6db5tjx45p69at6tmzp7y9vW+pX09PT40YMULBwcFq2bKltbxbt27q2rWr3nzzTXXr1k3u7u53NG+j0SAvL9MdHYub8/BwvdtTQCFiP+0Pe2pf2E/7wn7aF/bT/rCnRYfP9roSGwD8+eef2rNnjzp37lzgifjXX38tSerSpcst933vvffq+eefz1Xu7u6unj17av78+dq3b5/uv//+25+4JLPZotTUy3d07J1wcjI61Dd0auoVZWeb7/Y0igz7aV8cbT8l9tTesJ/2hf20L+yn/bH3Pc3Lzp2/aujQ8HzrBw8eosGDh+iPP/7Q3LnvaNu2rcrKylLduv/Q8OEv6L77cr8dTpJOnz6tRx/tmm+/Xbp008SJr0mSDh+O04IFc3Xw4G8ymy0KDKyj558frsDAOrYtrhh5eLje0lUOJTYA2LJliywWizp16lRgu82bN8vT0zPHb/JtceNBg5cuXbKpn6wsx/rBLU7Z2WY+XzvCftof9tS+sJ/2hf20L+yn/XHEPa1VK0ALFy7NVf7eewt06NBvevDBDkpNTVNExCCVKlVKY8aMl4tLaS1b9r4iI5/T8uUxeT4s3tOzvBYuXCpnZ4PKlnVVWtoVZWVZ9Mkna/Tdd9+oc+dHlJVl1qlTJxURMVgBAffppZcmymAw6sMPV2jIkIFaunSlqlSpVgyfQvEpsQHAr7/+KqPRWOCJfUZGhmJjY/Xggw/K2fnWl7Js2TKtWLFCM2bMUMOGDXPUxcfHS7p+lQAAAAAAoOiYTO6qV69+jrIfftiinTt/0aRJU1WlSlUtXfqeUlKStXLlR9aT/cDAOho0qJ927/5VDz30cK5+XVxcVK9efTk7G+XlZdLFi5e0f/9+fffdNwoPH6qgoOvngWvXrlbp0qX15pvvyNX1+hUnjRs3Va9eXbVuXYxGjbq1t8z9XZTYAODAgQOqVq1agZf/Hz58WJmZmapXr95t9V2tWjWdOHFCy5cvzxEAHDt2TB9//LECAwMVGJj3pSQAAAAAgKJx7dpVzZr1pu6/v7XatQuVJG3Zsklt27bP8Zv+e+6poE8/3XjL/VosFs2cOVVVq1ZXnz7/fcNc1arV9eSTT1lP/iWpTJkyqlixkk6dOlUIKypZSmwAcPToUbVo0aLANseOHZMk+fv7F9hu/fr1MplMCg29/g3Utm1bdezYURs2bFB6erratWunpKQkrVq1Ss7OznrjjTcKZQ0AAAAAgFsXE7NK58+f0+zZCyVJWVlZOnYsQR07dtJ77y3Qv//9qZKTk1W/fpBGjhyrmjVr3VK/X3/9pQ4ePKDZsxfKycnJWt6zZ69cbY8fT1RCQryaNGleOIsqQUpkAJCenq7MzEx5eHgU2O7ChQuSpLJlyxbYbuzYsfLz87MGAJI0Y8YM3Xffffrss880ZcoUmUwmtW7dWpGRkapevbrtiwAAAAAA3LLMzEytWxej9u07yN//+i3ZaWmpys7OVkzMKlWu7Kdx4yYqMzND77+/UMOHD9Hy5atVsWKlm/a9cuUHql8/SI0aNSmw3dWrVzV58qsqXbqMevXqUyjrKklKZADg7u6uuLi4m7Z7+umn9fTTT9+0XV59ubi4aOjQoRo6dOgdzREAAAAAUHg2b/5WFy6c15NP9rOWZWZmWr+eOXOO3NzcJEn33VdXTz7ZUx99tEYREcMK7Hfnzp06fPiQ3nhjRoHtLl1K10svjdahQwc0ZcoMeXv72LCakqlEBgAAAAAAAMeyefN3ql69hmrXDrCWubmZJEnBwY2tJ/+S5OPjo6pVq+v33w/ftN+vvvpKHh4eatmydb5tkpLOauzYF3TixHFFRU1Vq1YP2LCSkuvmLwoEAAAAAKAIZWVlaceObXrwwYdylLu7u8vLq7wyMzPyPKZ06dI37XvLli1q06Ztvm+OO3Lkd4WHD1BSUpJmzJitkJB2d7aIvwECAAAAAADAXRUff0RXr15V/fpBuepatLhfv/76i5KTk61lx48f04kTidbX+eUnJSVFiYmJatAg73ZJSWc1cuRQGQwGLViw+KbPCPi74xYAAAAAAMBdlZBwRJJUrVqNXHUDBgzWDz9s0ahRQzVgwLPKysrSokXzVKmSt7p162Ftt39/rLy8vOTn99+3xMXHX+83vwe9v/32DF28eEEvvjhely5d0v79sdY6k8mk6tVzz+fvjAAAAAAAAHBXXbhwXlLeb3jz8/PXggVLtGDBHE2a9LKcnIxq0qS5IiNHWZ8RIEkREc+oU6eumjDh1Tz6zf2GuczMTG3d+oMkacaM3K+Cb9iwkebOXWTTukoaAgAAAAAAwF0VFtZfYWH9862vXr2Gpk+fVWAfP/74a66y0NAOevzxnrp48ZKyssw56kqVKqXvv99+ZxP+m+IZAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AOe7PQEAAAAAgGMwGg0yGg3FNp6TkzHHn8XFbLbIbLYU65i3ggAAAAAAAFDkjEaDPD3div1kXJI8PFyLdbzsbLOSky+XuBCAAAAAAAAAUOSMRoOcnIyasXKnTial3e3pFBl/77J6MayxjEYDAQAAAAAAwHGdTEpT/KmUuz0Nh8RDAAEAAAAAcAAEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOgAAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA6AAAAAAAAAAAdAAAAAAAAAgAMgAAAAAAAAwAEQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOgAAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADgAAgAAAAAAAByA892ewP86efKk2rdvX2CbZs2a6YMPPlBmZqaCg4OVmZmZq0316tX15Zdf3nS8L7/8UosWLVJCQoLc3d3VuXNnjRgxQiaT6Y7XAAAAAABASVSiAoDy5ctr+vTpedatXbtWO3bsUGhoqCQpPj5emZmZ6t27t5o0aZKjbdmyZW861scff6zx48eradOmGjNmjBITE7Vy5UodOHBA0dHRMhq5OAIAAAAAYD9KVADg5uamRx55JFf5nj17tHv3bnXo0EH9+/eXJMXFxUmSunfvrqZNm97WOJcvX9a0adMUHByspUuXqlSpUpKkatWq6bXXXtO///1vde/e3cbVAAAAAABQcpT4X3NnZ2drwoQJKlOmjF555RVr+Y0AoHbt2rfd55YtW5ScnKy+fftaT/4lqXfv3jKZTFq/fr3tEwcAAAAAoAQp8QFATEyMjhw5ouHDh6tChQrW8ri4OFWsWFGenp6yWCy6dOnSLfe5d+9eSVJQUFCOcmdnZ9WtW1f79u0rnMkDAAAAAFBClOgAIDMzU/Pnz5e3t7f69u2boy4uLk4mk0mRkZEKDg5Wo0aN1K5dO61YseKm/Z49e1aS5Ovrm6uuUqVKSk1NVVpaWuEsAgAAAACAEqBEPQPgrzZu3Kg///xT48aNk4uLi7X84sWL+vPPP3X+/Hm1aNFCM2bMUHJysmJiYjRp0iSdPXtWL774Yr79pqeny8nJKUefN7i6ukq6/pyAW3mYYH6cnYsvW3FyKtE5TqGz9/Xa+/r+yt7Xa+/ry4u9r9ne1/dX9r5ee1/fX9n7eu19fX9l7+u19/Xlxd7XbO/r+6uSuN4SHQCsWrVKbm5u6t27d45yi8Wi0aNHq0qVKnr44Yet5T169FCfPn20ePFi9enTR/fee2+e/ZrNZhkMhjzrLBaLJNn0FgCj0SAvL14lWFQ8PFzv9hRQiNhP+8Oe2hf2076wn/aF/bQ/7Kl9KYn7WWIDgD///FN79uxR586d5e7unqOufPnyCg8Pz3WMs7OznnzySU2YMEHbtm3LNwAwmUzKyspSZmZmjocAStLVq1cl3dqrBPNjNluUmnr5jo+/XU5OxhL5zVVUUlOvKDvbfLenUWTYT/viaPspsaf2hv20L+ynfWE/7Q97al+Kcz89PFxv6YqDEhsAbNmyRRaLRZ06dbqt4248KLCghwL6+/tLkpKSkqxf3/DHH3/I09NTZcqUuc0Z55SVZb8/uHdbdraZz9eOsJ/2hz21L+ynfWE/7Qv7aX/YU/tSEvez5N2U8P9+/fVXGY1GtWzZMlfdhg0b1KFDB23cuDFXXXx8vCTl+9t/SapXr54kKTY2Nkd5VlaWDh48mOvtAAAAAAAA/N2V2ADgwIEDqlatWq7L/yWpVq1aSkxM1PLly5WdnW0tv3DhgpYuXaoKFSqodevW+fbdtm1bmUwmRUdH5zh+zZo1Sk9PV48ePQp3MQAAAAAA3GUl9haAo0ePqkWLFnnWBQQEaODAgVqyZInCwsLUtWtXpaSkKCYmRsnJyZo/f75Kly5tbb9+/XqZTCaFhoZKktzd3TV69GhFRUWpf//+6t69u+Lj47VixQq1bNlSHTt2LJY1AgAAAABQXEpkAJCenq7MzEx5eHjk22bs2LHy8/NTTEyMpk6dqjJlyqhRo0YaNmyYGjRokGfbGwGAJIWFhcnNzU1LlizRpEmTdM8996hfv34aNmyYnJycimxtAAAAAADcDSUyAHB3d1dcXFyBbQwGg5566ik99dRTN+0vv7569uypnj173tEcAQAAAAD4OymxzwAAAAAAAACFhwAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA6AAAAAAAAAAAdAAAAAAAAAgAMgAAAAAAAAwAEQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOgAAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA6AAAAAAAAAAAdAAAAAAAAAgAMgAAAAAAAAwAEQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADoAAAAAAAAAAB0AAAAAAAACAAyAAAAAAAADAARAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA4AAIAAAAAAAAcAAEAAAAAAAAOgAAAAAAAAAAHQAAAAAAAAIADIAAAAAAAAMABEAAAAAAAAOAACAAAAAAAAHAABAAAAAAAADgAAgAAAAAAABwAAQAAAAAAAA6AAAAAAAAAAAdAAAAAAAAAgAMgAAAAAAAAwAEQAAAAAAAA4AAIAAAAAAAAcADOd3sC/+vkyZNq3759gW2aNWumDz74QJK0bt06rVq1SkeOHJGTk5Pq1KmjIUOGKCQkxKaxWrdurcWLF9/+AgAAAAAAKKFKVABQvnx5TZ8+Pc+6tWvXaseOHQoNDZUkLVq0SDNnzlSjRo00evRoZWZmau3atRoyZIimTp2qHj16FDhWXFycJGnIkCGqWbNmjrpKlSoVwmoAAAAAACg5SlQA4ObmpkceeSRX+Z49e7R792516NBB/fv317lz5zR79mw1b95cy5Ytk9F4/U6GJ554Qt27d9fUqVPVtWtXOTvnv7wbAcATTzyhypUrF82CAAAAAAAoIUr8MwCys7M1YcIElSlTRq+88ook6ZdfflFmZqYee+wx68m/JLm7u6t9+/a6ePGiEhISCuw3Li5OJpOJk38AAAAAgEMoUVcA5CUmJkZHjhzR+PHjVaFCBUlSu3bt9Pnnn8vHxydX+wsXLkiSnJycCuw3Li5OtWvXliSZzWZdu3ZNrq6uhTx7AAAAAABKhhJ9BUBmZqbmz58vb29v9e3b11ru6uqqgIAAeXh45Gh/+vRpffPNN6pUqZKqV6+eb7/Xrl3T8ePHZTabNWjQIAUFBalhw4bq1KmTNmzYUGTrAQAAAADgbinRVwBs3Ph/7N13VFTX+zXwfRmqYMfY0GAQAcXCV00wYrDFGhSsCKJiN4gtlmCJEo010dgVBZWiYEMkYsHYOxbUCNgQRLFhQRCRMvP+wc95Q2iDhTtlf9ZixbkF9+SqzH3uOc/Zj2fPnmHatGnQ1dUt9ti3b99i4sSJePfuHcaNG5dvasB/3bp1C7m5uYiLi8PgwYPh6uqKJ0+eYPPmzZg4cSJSU1MxYMCAj8qurV12tRWJRKnrOJ+cur9fdX9//6Xu71fd319h1P09q/v7+y91f7/q/v7+S93fr7q/v/9S9/er7u+vMOr+ntX9/f2XMr5fpS4AbN26FeXKlUO/fv2KPS49PR1jxoxBdHQ0HBwc0Ldv32KPr1SpEsaPHw8bGxu0atVKvt3BwQE//PADlixZAgcHBxgZGX1Qbi0tAZUrG37QuVSyChU4VUOd8HqqH15T9cLrqV54PdULr6f64TVVL8p4PZW2APDs2TNER0ejW7duxd6IP3nyBKNGjUJsbCw6d+6MBQsWlPi969Spgx9//LHAdiMjIzg5OWHNmjW4du0avv322w/KLpXK8Pp1xged+yEkEi2l/MP1ubx+/Ra5uVKxY3w2vJ7qRdOuJ8Brqm54PdULr6d64fVUP7ym6qUsr2eFCgYKjThQ2gLAsWPHIJPJ0LVr1yKPuXPnDoYPH45Hjx6hb9++8Pb2LrH5X0neNxp88+bNR32fnBz1/YsrttxcKf//qhFeT/XDa6peeD3VC6+neuH1VD+8pupFGa+n8k1K+D8XL16ElpZWviH6/3b37l24ubnh0aNHGDt2LObNm6fwzf/mzZvRsWNHREdHF/p9gbxRAkRERERERETqQmkLADExMTA1NS10+P/bt2/h4eGBFy9ewMvLC56enqX63qampkhKSsKWLVvybU9ISMDu3bthaWkJS0vLj8pPREREREREpEyUdgrAvXv3YGtrW+i+4OBg3Lt3D19++SUqV66MsLCwAse0adMGVapUAQCEhYXB0NAQHTt2BAC0bdsWnTt3RkREBNLT09GuXTs8efIEW7duhba2tkJ9BIiIiIiIiIhUiVIWANLT05GdnY0KFSoUuv/MmTMAgMTEREydOrXQY0JCQuQFgKlTp6J27dryAgAA/P7777CwsMDevXsxf/58GBoaws7ODuPGjUO9evU+8TsiIiIiIiIiEpdSFgCMjIxw8+bNIvdv2LChVN+vsO+lq6sLDw8PeHh4lDofERERERERkapR2h4ARERERERERPTpsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQagAUAIiIiIiIiIg3AAgARERERERGRBmABgIiIiIiIiEgDsABAREREREREpAFYACAiIiIiIiLSACwAEBEREREREWkAFgCIiIiIiIiINAALAEREREREREQaQFvsAP/24MEDdOjQodhjvv76awQEBAAAzp07h5UrVyI2Nha6urpo164dJk+ejKpVqyr0+x04cAA+Pj6Ij4+HkZERunXrhvHjx8PQ0PCj3wsRERERERGRMlGqAkCVKlWwePHiQvft2LEDUVFR6NixIwDgzJkzGDFiBOrXr49x48YhNTUVmzdvRnR0NHbu3FniTfzu3bvh5eWFli1bYsqUKUhMTERQUBBiYmLg7+8PLS0OjiAiIiIiIiL1oVQFgHLlyqFnz54FtkdHR+PKlSvo1KkTBg8eDJlMhrlz56JGjRoICgqCkZERAKBZs2YYOXIk/P39MWbMmCJ/n4yMDCxatAg2NjbYtGkTdHR0AACmpqbw9vbGX3/9hR49enyeN0lEREREREQkAqV/zJ2bm4sZM2ZAX18fs2fPBgBcv34d8fHx6Ih/xLEAACAASURBVNOnj/zmHwDs7e1hZmaGsLCwYr/nsWPH8OrVK7i4uMhv/gGgX79+MDQ0LPF8IiIiIiIiIlWj9AWAkJAQ3LlzB56enjA2NgaQNyIAAJo2bVrg+MaNG+PevXtIS0sr8ntevXq10PO1tbXRsGFDXLt27VPFJyIiIiIiIlIKSl0AyM7Oxpo1a1C9enW4uLjItz9+/BgAUKNGjQLnfPHFFwCAhw8fFvl9359fs2bNQs9//fp1sQUEIiIiIiIiIlWjVD0A/mv//v149uwZpk2bBl1dXfn29PR0AHk9A/7LwMAAQN48/6Kkp6dDIpHk+56FnV++fPkPyq2lJaBKlbJbSUAQ8v47c+g3yMmVltnvW9a0JXn1qooVDSCTiRzmM+L1VC+acj0BXlN1w+upXng91Quvp/rhNVUvYlxPLS1BoeOUugCwdetWlCtXDv369cu3XSrN+8MiCAXfpOz//g8X18VfKpUWeq6i55dEEARIJIpdgE/JuJJBmf+eYtCUFRp4PdWLplxPgNdU3fB6qhdeT/XC66l+eE3VizJeT+VL9H+ePXuG6OhotGvXLl+jPwDyJf7evn1b4LzMzEwAKPbpvaGhIXJycpCdnf1B5xMRERERERGpGqUtABw7dgwymQxdu3YtsM/ExAQA8OTJkwL7nj59CkEQUL169SK/d0nnV6pUCfr6+h8anYiIiIiIiEjpKG0B4OLFi9DS0kKrVq0K7LO2tgaQtxzgf12/fh1mZmYFRg0ocn5OTg5iY2MLXV2AiIiIiIiISJUpbQEgJiYGpqamhd7IN2vWDCYmJggJCcGbN2/k248fP467d++iZ8+exX7vtm3bwtDQEP7+/sjNzZVv3759O9LT0+Ho6Pjp3ggRERERERGREhBkMuXsM2ltbQ1bW1ts3Lix0P1HjhyBh4cHGjRogP79+yMlJQWbNm2CiYkJgoOD5X0CACAsLAyGhobo2LGjfFtQUBB+/fVXtGzZEj169MDdu3cRGBiIli1bwtfXFxKJ5LO/RyIiIiIiIqKyopQFgPT0dDRv3hzdu3fH0qVLizzu2LFjWL16NW7evIkKFSrgu+++w6RJk2BsbJzvOAsLC9SuXRtHjhzJtz00NBR+fn5ISEhA1apV0aVLF4wdO7bY6QNEREREREREqkgpCwBERERERERE9GkpbQ8AIiIiIiIiIvp0WAAgIiIiIiIi0gAsABARERERERFpABYAiIiIiIiIiDQACwBEREREREREGoAFACIiIiIiIiINwAIAEZEKi4qKwosXL4rc/+jRI+zZs6cMExERERGRsmIBgIhIhQ0aNAhnzpwpcv+pU6cwe/bsMkxERERERMpKW+wApBqioqKK3S8IAnR1dVG1alXUrl27jFIRaZ6kpCT4+vrKX8tkMuzatQsXL14scKxUKsXZs2dhaGhYlhHpM0tKSsKlS5fg6OgodhT6BM6cOYN169bB399f7ChEVIjo6GiEhIRgwYIFYkch+iRYACCFuLm5QRAEhY41NjaGl5cXunXr9plT0cdgUUc11alTB3FxcYiOjgaQd53Onj2Ls2fPFnq8RCLBlClTyjIifWZXrlyBl5cXCwBqIiUlBRcuXBA7BhEV4f79+9izZw8LAKQ2BJlMJhM7BCm/HTt24I8//sC7d+/g4OAAMzMz6OnpIT4+Hvv27UNGRgacnZ3x9u1bHDlyBCkpKfDz84Otra3Y0akIlpaWLOqoqPT0dKSmpkImk6Fjx46YPn06OnToUOA4iUSCypUrQ09PT4SU9LncvHkTkZGRGDt2rNhR6BN4+/YtXrx4wUKrkhs0aFCpzxEEAVu2bPkMaagsPX/+HHfv3sXXX38tdhRSkCKfcd8/5GrWrBnGjRsHU1PTsgmnBFgAIIUsWbIEYWFh2L59O2rVqpVvX0pKCnr37g1HR0dMnDgR6enpcHZ2Ro0aNbBx40aRElNJWNRRD6GhoWjZsiVMTEzEjkIf6Nq1azAzM+NUDSIl1rhxY4WL5tnZ2ZDJZBAEAbGxsZ85GRH914wZM/D333/j1atXMDU1zfcZNy4uDgYGBrCwsMDr168RHx+PChUqYNeuXahTp47Y0csEpwCQQvbu3QsXF5cCN/9A3tPhAQMGICgoCBMnToSRkRGcnJywYcMGEZKSohISEqCtrY3du3cXuK4jR45E7969oauri2nTpmHy5MlwdnbGxo0bWQBQMk5OTgCA3NxcSCQSAHkjBA4cOACJRIJOnTrxxlLJjRgxApMnT0bfvn0BAF5eXnB2dkbTpk1FTkafi1Qqxfnz5yGRSNCyZUuFbyxJPNevXy/xmMePH+OXX37BiRMnUK5cOfz0009lkIw+l6SkJGhpaXF0jgpq1qwZwsLC8Oeff6JLly759p07dw4jR46Eq6srHBwc8M8//2D48OFYs2aNxkzz4CoApJD09HSUK1euyP36+vp4/fq1/HWFChXw7t27sohGH0iRos7u3bsBQF7U+eeff8o6JpUgMzMTkyZNgpubGwDg3bt36Nu3L2bNmgUvLy/06NEDT58+FTklFSczMxPPnj2Tvw4NDUVSUpKIiehTkkql+OOPP+Dp6Qkgr1jn6uqKoUOHYvDgwejXrx/S09NFTkkfa/v27XBwcMDJkyfRunVr/PXXX3B1dRU7FikoODgYc+fOlb+eOHEiOnXqhI4dO2LcuHHIysoSMR2Vlp+fH5ydnQvc/AOAra0tXFxcsG7dOgCAtbU1+vfvj9OnT5d1TNFwBAAppEGDBti1axcGDBhQYD5xVlYWQkNDYWZmJt92/fr1Qm8sSXmwqKMe1q5di4iICPTo0QNAXmHn3r17GDhwIBo2bIj58+dj9erV8Pb2FjkpFaVhw4ZYvXo1Tp48CSMjIwDAxo0bERYWVuQ5giDAx8enrCLSR/Dz88OGDRvQqlUrAMCBAwdw5coVdOrUCebm5vDx8cHatWvZrFNFPXjwADNnzsT58+dRvnx5zJs3D7179xY7FpXCzp07MWfOHFhaWgIAjh07hv3796NZs2YwNTVFWFgY/Pz8MHr0aJGTkqKSk5Px1VdfFbm/bt26uH//vvx1nTp1kJqaWhbRlAILAKSQUaNGwcPDAz179oSbmxvq1asHXV1d3Lt3D8HBwbh16xaWLl0KAJg3bx527dqFH3/8UeTUVBwWddTDoUOH0KNHDyxevBgAEBkZCUNDQ0ybNg06OjpISEjA3r17RU5JxZk3bx68vLzwzz//IDs7G4IgIC4uDnFxcUWewyHjqiM8PBz29vZYv349AODgwYPQ09PDwoULUa5cObx+/RqHDh1iAUAFbdmyBX/++Sfevn2LDh06YM6cOahWrZrYsaiUQkJCYGNjI2/YGBERAW1tbaxduxaVK1eGlpYWwsPDWQBQITVr1sSJEyfg4uJS6P4TJ06gRo0a8tcPHjyAsbFxWcUTHQsApJD27dtjwYIFWLBgAebOnSv/8CmTyWBkZIS5c+eia9euSE1NRWBgIOzs7DB06FCRU1NxWNRRDw8fPsSwYcMA5BVuoqKi8M0330BHRwdAXpX7+fPnYkakEpiZmWH79u3y15aWlliyZAkcHBxETEWfSmJionwouFQqxdmzZ2FjYyMfgWVhYYGQkBAxI1IpxcfHY/r06bh69SoqV66M3377javkqLA7d+5g6tSp0NXVBQCcOnUKjRs3RuXKlQEANjY22Ldvn5gRqZT69u2LJUuWYMqUKRg5ciRMTU2ho6ODxMRE+Pv74/jx4/JpWYcOHcK2bdvQqVMnkVOXHRYASGGOjo7o0qULzpw5g8TERGRnZ8PU1BR2dnbyDzIGBgY4fvw4qlevLnJaKgmLOuqhfPny8vnDly5dwtu3b/M1akxOTkbVqlXFikcfYOzYsbCwsBA7Bn0ienp6yM7OBgBcvXoVaWlp8ukAQN4SYxUrVhQrHpWCVCrFxo0bsXr1arx79w7du3fHzJkz5TeKpJq0tLTkn4FiYmLw4sULODs7y/enp6ezma6KGTp0KO7evYvdu3fjr7/+giAIEAQBUqkUMpkMPXr0wKhRo5CZmYnx48ejatWqGDNmjNixywwLAFQq+vr6aN++fZH7dXV1efOvQljUUX0WFhbYuXMnWrRogXXr1kEQBHTo0AFA3geZ4OBgtGzZUuSUVJznz5+jfPny8qdPAwYMkG8vDgs7qqF+/foIDw9Ht27dsHnzZgiCgHbt2gEAnj59iu3bt8PKykrklFSSuLg4TJ8+HbGxsfjiiy/g7e2Ntm3bih2LPoF69erhyJEjcHZ2xvbt2yEIgvzaZmRkFJgSScpPEATMnz8f/fr1w4EDB5CQkICcnByYmpqiS5cuaNGiBQDg7du3WLx4Mezt7VGhQgWRU5cdQSaTycQOQaohKSkJf/31F1JSUpCbm1tgvyAImD17tgjJiDTX9evX4e7ujjdv3kAmk8HJyQkLFizA2bNn4e7ujgoVKiAwMBANGjQQOyoVwcrKCosXL5YP+be0tCxxjr8gCIiJiSmLePSRTp48iTFjxiA3NxcymQxt2rTBhg0bcOnSJbi7u0Mmk2HTpk3yD6SknKytreWffZo2bYry5cuXeA6bdaqGvXv3YurUqTA0NMSbN29gbW2NnTt34p9//sGPP/6IZ8+eYfXq1cU+ACNSJRwBQAo5deoURo8ejZycnCKPYQFA9bCoo/oaN26MXbt24fDhw6hRo4Z8yZt69erB1dUVbm5uMDU1FTckFcvR0RF169bN95pN/tRHmzZtsHnzZkRERKBGjRoYOHAgAKBatWr49ttvMWLECDRv3lzklFSSf3/+iY6OVugc/j1WDT169IBEIsHevXtRvXp1+dxwPT09VKxYEV5eXrz5V1GXLl0q8jMuAI3t3cERAKQQZ2dnxMfHY9asWbC2tpYPVf2v2rVrl3Ey+lCKFnViY2PLMBURERER0YdLSEjAqFGj8i31928ymUyjP+NyBAApJDY2FmPGjGFXajWyatUqlCtXrsSiDik/qVSKnTt34tChQ0hOTsZvv/0GAwMD7N+/H0OHDmWDMTUglUpx/vx5SCQStGzZkk8WVVBmZiYyMjLw7+cuOTk5SE9Px6lTpzB48GAR0xFRfHw8Dh8+jOTkZLi5ucHQ0BB3795F69atxY5GpfT7778jKSkJffr04WfcQrAAQAoxMDDQqOYYmoBFHfWQlZWFkSNH4ty5c9DW1kZubi4yMzPx6NEjrF+/HpGRkQgMDESVKlXEjkoKkkqlWLZsGRISErBy5Urk5uZi4MCB8mHH1tbW2LRpE4yMjEROSop4+fIlZsyYgaNHjxZ7HAsAROJZsWIF1q1bB6lUCkEQ0LlzZ6Snp8PT0xNdu3bFkiVLoK3N2yZVce7cObi4uGDmzJliR1FK/JNMCrG3t0dkZCRcXFzEjkKfCIs66sHHxwfnz5+Xd6S2t7cHAHTu3BkzZszAwoULsW7dOkyfPl3kpKQoPz8/bNiwQb5U3IEDB3DlyhV06tQJ5ubm8PHxwdq1azFlyhSRk5Iili1bhiNHjqBJkyYoX748zpw5AwcHB6SkpCAqKgoSiQR//vmn2DGpBO9XVykNQRBw+PDhz5CGPqW9e/dizZo16N69O7p27YqxY8cCyOux06lTJxw4cABNmzbFkCFDxA1KCsvNzeVyusXQEjsAqQYPDw/cv38fEyZMwOHDhxEdHY1r164V+CLV8b6oQ6otPDwcPXv2RP/+/fMNcZNIJHBzc0Pv3r1LfPJIyiU8PBz29vbYtGkTAODgwYPQ09PDwoUL4enpCWdnZxw6dEjklKSoEydOwN7eHtu3b8fixYshk8ng7u4OPz8/BAUFQSaTIT4+XuyYVAIdHR3o6uqW+KWlpYWHDx/Kv0j5bdmyBS1btsQff/yRryFnjRo1sGLFCnz77bfYvXu3iAmptJo2bapws05NxBEApJBOnToBAB4+fIiDBw8WeZymNtNQRR4eHnB3d8eECRPwww8/wNjYGFpaBWuCTZo0ESEdKSo5ORnu7u5F7re2tsaePXvKMBF9rMTERLi6ugLImw5w9uxZ2NjYoFy5cgAACwsLhISEiBmRSiElJQUjRowAAFStWhXGxsa4du0arKys0KRJEzg5OSE8PBxDhw4VOSkV58CBAyUec+PGDfloq+rVq8Pb2/tzx6JP4M6dO/jpp5+K3P/9999j0aJFZZiIPtbkyZMxZMgQNGrUCA4ODgot26lJWAAghXh4eLDplJphUUc9VKxYESkpKUXuv3fvHqd6qBg9PT1kZ2cDAK5evYq0tDT5dAAAeP78ORs7qhB9fX3o6OjIX5uYmOD27dvy140aNcL+/fvFiEafSFZWFlavXg1fX1/k5OSgX79+mDp1Kvt0qAgdHZ0il4kD8vp4cP6/apk9ezZ0dXUxd+5czJ07F9ra2gUecgmCoLGjBPinmRTyfk1UUh8s6qiH1q1bY9u2bejbt2+BLrexsbEIDg5Gx44dRUpHH6J+/foIDw9Ht27dsHnzZgiCgHbt2gEAnj59iu3bt8PKykrklKSo+vXrIyoqCv369QMA1KtXDzdu3JDvf/nyZbHLsZJyi46OxowZM3D37l2YmJhg7ty5+Qp2pPyaNm2KsLCwQuf4p6enY8eOHRwNqWLKlSsHMzMzsWMoLUH27/VoiIhIpTx8+BC9evWCIAj4+uuvERkZie7duyMnJweHDx+Gvr4+du3ahS+//FLsqKSgkydPYsyYMcjNzYVMJkObNm2wYcMGXLp0Ce7u7pDJZNi0aRNatGghdlRSQFBQEObOnQsHBwd4e3vjxIkTmDBhAsaPHw9zc3PMmTMHJiYmCA4OFjsqlUJmZiaWLl0q7+MwcOBATJw4EQYGBmJHo1K6ePEiBg8ejKZNm6JTp05YtGgRJk+eDAMDA2zatAkPHz7Exo0b8e2334odleiTYAGACtW0aVMsWLAA3bp1A5A3D7ykp8WaPJSGSEz37t3Dr7/+inPnzuVbY9zGxgazZ8+GpaWliOnoQ1y8eBERERGoUaMGBg4ciHLlyuH+/fuYP38+RowYka9RFSk3mUyGX3/9Fdu3b8fly5eho6ODkSNH4tSpUxAEAdra2vDx8eFTYxVy7tw5zJo1C0lJSfjqq68wf/58NGvWTOxY9BEiIiLg7e2N1NRUAHmfaWUyGQwMDDB9+nT07dtX5IREnw4LAFQoNzc3/Pjjj/IPJG5ubgqdFxAQ8Dlj0UdgUUc9PX78GDVq1AAApKamIjExETKZDLVr14axsbHI6YjovZcvX6Jy5coAgJycHOzbtw+vXr2CnZ0dh6qqiDdv3mDRokXYsWMHJBIJhg0bBg8PjwLTr0g1ZWRk4MyZM0hISIBUKoWJiQns7OzYR0cFjBgxAsOHD8c333wjf10SQRDg4+PzuaMpJfYAoEL990aeN/aqr0mTJvIPn0BeQYBUX//+/dGrVy+MHz8eFStW5DxFNZKZmYmMjIx8ozpycnKQnp6OU6dOYfDgwSKmo9L697+/2tra6Nmzp4hpqLSOHz+OOXPm4PHjx7CyssL8+fM5ukpNDBgwAL169ULfvn3ZM0dFnTx5Ej169Mj3uiSa3AeLIwBIIY8ePULNmjWL3J+VlYXly5djypQpZZiKiBo3boxffvmFwxPVyMuXLzFjxgwcPXq02OO4QodyioiI+KDz3o/OIuVkaWkpv2GoW7cuJBJJiecIgoB9+/Z97mj0kRo3bowZM2bA2dlZ7ChEZYIjAEghgwcPRmBgIL744osC+65evQovLy/cu3ePBQAV4uXlBWdn5yJHApw9exYbN26Er69vGSej0mjTpg0iIiLg6OiYb6kxUl3Lli3DkSNH0KRJE5QvXx5nzpyBg4MDUlJSEBUVBYlEgj///FPsmFSESZMmlerJkkwmgyAILAAouVq1asl/nZ2dLV+qk1TfV199xYIqaRQWAEghKSkp8iJA1apVAeQ99V+2bBn8/f0hCALGjBkjckoqjdDQULRu3brIAsClS5dw4cKFMk5FpdW0aVOsX78e3333HWxsbGBsbFzoWrezZ88WKSGV1okTJ2Bvb4/169fj+fPnaN26Ndzd3WFlZYVr167Bzc0N8fHxaNu2rdhRqRALFiwQOwJ9Bnv27Cn1XPCzZ89+pjT0KY0aNQqzZs3CkydPYGtrW+jPUYCjdFTJqlWrit0vCAJ0dXVhbGyMJk2aaFwfFk4BIIVcvXoVw4cPR40aNbBlyxYkJCRg+vTpSEhIQNOmTTFv3jyYm5uLHZOKcf/+fTg5OcnXm3737h10dHQK/SEnlUqRk5MDc3Nz7N27t6yjUikoMgdVEAQ+3VAh1tbW8PLygqurKwDAzs4Onp6e6N+/PwBgzpw5uHr1KkJDQ8WMSR/pxYsXqFKlitgxSEF9+vTB5s2bYWRkVOKxOTk5WLp0KbZs2YIbN26UQTr6GP/9OfrfETzvR+nw56jq+PeUnf/e6v53uyAIcHZ21qgHJRwBQApp2rQp/Pz8MHz4cDg5OeHZs2fQ09ODl5cXBg0apNGNNFRF3bp15UtPAXnLjNWpU0c+ouPfJBIJqlatqlAXVRLX33//LXYE+sT09fXzTecwMTHB7du35a8bNWqE/fv3ixGNPtCePXuwYsUK+Pv7w8TEBACwZMkSnDp1CrNnz2bjMRXwzz//YOjQofDz8yu2CJCQkICffvoJN27cgIGBQRkmpA/FUTvqJyQkBKNGjUKtWrUwbNgwmJmZQVdXF/Hx8QgMDMTVq1cxe/Zs6OrqIjw8HMHBwbCyskK/fv3Ejl4mOAKASiUmJgbu7u5IT09HSEgIrK2txY5EH8jS0hJLliyBg4OD2FGI6F+cnZ1Rp04dLFmyBEBev46EhARs27YNAODj44P169fj0qVLYsYkBUVGRsLT0xOmpqbw8fFB3bp1AQBhYWHw8fHBvXv3sGnTJvnyVaSc5s2bh8DAQDRr1gy+vr4wNDQscMzOnTsxf/58ZGRkoGnTpli0aBFMTU3LPiyRhpswYQLu37+P4ODgAst05ubmwsXFBXXq1MHvv/8OABg+fDhevXqFnTt3ihG3zLEAQIUqrovxzZs3sX79ejRs2BAjRozIN7SG86OIyp5MJkNoaCgOHDiABw8eQFdXFzVr1kTnzp3Rs2dPjtBRMUFBQZg7dy4cHBzg7e2NEydOYMKECRg/fjzMzc0xZ84cmJiYIDg4WOyopID+/ftDS0sLW7ZsKfBBNCsrC66urtDX1+dyuypg0aJF2LRpE2xsbODr64ty5coBANLS0jBr1iwcPHgQEokEHh4eGDVqVKFT7Ej5JCcnF7v//XzxSpUqKbT6A4mvRYsW8PT0LHK53ICAACxfvhwXL14EkPdzd+nSpRpTWOcUACqUIl2MY2JiMGnSJADsYqyqnj9/jpiYGLRp0wYAcPToUWzcuBFaWloYMmQIOnToIHJCKklubi48PDxw/PhxyGQyGBsbQyqVIi4uDseOHcNff/0FHx8ffhBVIS4uLrhz5w62b9+OefPmoVOnTrCzs8Py5cshCAK0tbXlowNI+d25cwdTpkwpcPMPALq6unB0dMTy5ctFSEalNW3aNOjo6MDHxwcjRozAxo0bcePGDUydOhXJyckwNzfH4sWLYWVlJXZUKoX27dsrVCiXSCRo1KgRpkyZghYtWpRBMvpQEokEaWlpRe5PTU3N9wBTS0tLo4o7LABQoTgfSv3dvHkTAwcORPXq1dGmTRskJibC09MTAKCjowNPT09s2LABrVu3FjkpFcfPzw/Hjh2Di4sLxo0bh0qVKgHIW0t+1apVCAoKgr+/P4YMGSJuUFLY+1Ubxo0bBz09PQDAunXrsG/fPrx69Qp2dnYa17FYleno6ODly5dF7n/z5g2kUmkZJqKPMWnSJEgkEqxduxaOjo548OABZDIZ3N3dMXHixEILPaTcxo4di8DAQKSmpuLbb7+FmZkZ9PT0EB8fj1OnTkFLSwvt2rVDWloaoqKiMHToUAQHB6Nhw4ZiR6ciNG/eHAEBAejatWuBn5cPHz5EUFAQbGxsAOQ9xIyMjES9evXEiCoKFgCoUE5OTgodxy7GqmvNmjXQ0tLCxIkTAQC7d+9Gbm4uAgICYGVlBTc3N2zcuJEFACW3Z88etG3bFr/88ku+7ZUrV8asWbPw4MEDhIaGsgCggipXriz/tba2Nnr27CliGvpQzZo1w7Zt2+Ds7JzvmgJ5Q8dDQkKKXI6VlNP48eOhra2NlStXQktLi8VyFaerq4usrCyEhISgSZMm+fbdvXsXAwYMQJMmTTBkyBA8fvwYLi4uWLduHVasWCFSYirJxIkT4ezsjJ49e6JDhw4wNTWFrq4u7t27hyNHjkAmk+Gnn34CADg6OuLWrVsa9fCTBQBSGLsYq5eoqCgMGjRIPsz/2LFjqFWrlnxYm6OjI1auXClmRFJAUlISXFxcitz/3Xffcbi4kiuu50pxOOVKNYwaNQpubm7o0qUL+vTpI/8gmpCQgLCwMDx9+hSLFy8WOyaVkoeHB3R0dLB06VL4+fmhZcuWfPqvooKDg+Hm5lbg5h8AzMzM4OrqioCAAAwZMgQ1atRA3759ERgYKEJSUpS5uTlCQkKwYMECHD58GLm5ufJ9tra28PLygoWFBVJSUpCZmYmJEyfC0dFRxMRliwUAUkhkZCR+/vlnmJqa5huqaGtri2vXrmHcuHHsYqxi0tLSUKNGDQBASkoKbt68iT59+sj36+npIScnR6x4pCADA4Nihxc/f/5cPoyclJMiPVf+jT1XVIuNjQ1Wr14Nb29v+Pr65ttXvXp1rFixAs2bNxcpHSmqsEZxP/zwA549e4aAgACMHj0a3t7eBeYR16pVq6wi0gd68eIFqlWrVuT+qlWr4tmzZ/LX1apVw5s3b8oiGn2E+vXrw9fXF2lpabh//z5ycnJQt27dfCOxjI2NcfDgQRFTioMFAFLIxo0bYWNjU6CLcc+ePdG1a1e4urpiHYkq+gAAIABJREFU1apVLACokBo1aiAhIQEAcOTIEQiCADs7O/n+ixcvombNmiKlI0W1bNkSQUFB6NOnj7yg815ycjK2bdvGmwslp0nDDjWVvb09jhw5gpiYGCQlJSE3Nxe1a9eGtbW1RjWeUmUlNYo7c+YMOnXqlG+bIAiIiYn53NHoI5mamiIiIgIuLi4FGubKZDIcOHAAderUkW+7ffs2qlevXtYx6QOVL18ejRo1EjuGUmEBgBTCLsbqp02bNggICEBGRgYiIiJgZGQEe3t7PH36FD4+Pti3bx/GjBkjdkwqwdixY9GvXz90794dvXv3lje7uXPnDnbv3o3s7Gx4eHiInJKKo2jPFVJ9DRs2ZOMwFeXo6MglVdXUoEGDMH36dAwePBjDhw/PN188ICAAly5dwsyZMwEAmzdvRkhICAYMGCByaipOSQW790s7Vq1aFc2aNcPQoUML9GhRZywAkELYxVj9TJkyBffv30dQUBCMjIzw22+/wcDAAHFxcQgMDETbtm0xfPhwsWNSCSwtLeHj44MZM2bA398/375atWph7ty5rHyrkISEBJiamhbYfvr0aWhra3OUFZFIFi5cKHYE+kx69eqFR48eYe3atRg9enS+fVpaWhg9ejRcXV2Rnp6OhQsXwtzcHCNHjhQpLSmibt26iI2NRWpqKgwNDVGnTh3o6ekhMTERr169go6ODipWrIjk5GRERUVh37592Llzp8Y0Nhdk/14EkagIo0ePRkxMDMLCwgrtYuzo6AhTU9MC8xtJ+b148QJGRkby0R0ZGRmIj4+HtbW1yMmoNGQyGW7cuIGkpCTIZDKYmJjA2tq6wHBGUk6vX7/G5MmTcfr0aZw/fx5GRkb59g8bNgxnzpyBra0tfv/9d1StWlWkpERE6unRo0c4fPgwEhMTkZ2dDVNTU3z//ffyxtdv375FbGwsmjZtyqk7Su7IkSMYO3YsfvrpJ7i5uck/48pkMuzevRuzZ8/GunXrYGdnh0OHDmHatGno1asXZs2aJXLyssECACnkypUrcHNzg6GhYZFdjLds2cK5xirq+fPnePjwIXR1dVG9enWNGgalapKTk1GlShXo6+uLHYU+kczMTLi4uCAmJgb/+9//sGzZsgLzS/fv349t27bhwoULsLCwwI4dO9hxnIiIqBC9evWChYVFkT12fvnlF9y4cQO7du0CkDfC59ChQzhy5EhZxhQNHw2RQt53MTY0NISvry9mzZqFadOmYe3atcjNzWUXYxV19+5duLm5wc7ODv3794eTkxNat26NQYMG4c6dO2LHo0J06NABkZGR+bbJZDIkJycjKytLpFT0MbZs2YKYmBjMmTMHW7duLbS5VNeuXeHv749Jkybh5s2bXIKKiOgTevPmDZYtW4auXbuiWbNmOHv2LK5cuYKffvoJSUlJYsejUrpz506hyzq+Z2Vlhdu3b8tf169fHykpKWURTSmwBwApjF2M1cuDBw/g4uKCtLQ0tG3bFubm5sjNzcWdO3dw8uRJuLq6IjQ0lEsYKZnCBm29evUKHTp0gJ+fH1q1aiVCKvoY+/fvR9u2beHs7FzisSNHjsTx48fx119/YejQoWWQjohIvaWlpcHFxUXe3f/du3cAgKdPn2Lfvn04f/48goOD5VMBSPlVq1YNly5dKrJZ45UrV/KNdk1JSdGY+f8ARwDQB2jYsCE6d+6Mbt26cR6UClu5ciXevXuHbdu2Ye3atZg0aRKmTJmC9evXIzg4GFlZWVizZo3YMUlBnM2luhISEkpVuLG3t8e9e/c+YyL61KRSKbZv347hw4ejW7duuHLlCuLi4rBs2TKkpqaKHY9Io61atQr37t3Dhg0bEBoaKv952rlzZ6xZswbp6en8PKRifvjhB+zbtw/Lli1Denq6fHtmZiZ8fX0RHh6Orl27AgCuX7+O4OBg/O9//xMrbpnjCABS2LNnz3D48GFkZGTk6/ifm5uLtLQ0nDlzBqGhoSImpNI4ffo0BgwYgKZNmxbY16RJEzg7OyMiIkKEZESaRVtbu1Tz+StWrMjmjiokKysLI0eOxLlz56CtrY3c3FxkZmbi0aNHWL9+PSIjIxEYGKhRT5+IlElkZCT69++PNm3aFFjxqn379nB2dsahQ4dESkcfwsPDA9euXcP69euxYcMGGBsbQ1dXF48fP0ZOTg5atmyJ8ePHIysrC/3794eenl6BFSDUGQsApJDz589j5MiRyMrKgkwmgyAI8grp+3U2jY2NxYxIpfTq1St8+eWXRe6vW7cuXrx4UYaJiDRT7dq1cevWLYWPv3nzZqF9Akg5+fj44Pz58/D29kbbtm1hb28PIO/p4owZM7Bw4UKsW7cO06dPFzkpkWZ6+vQpLCwsitz/1Vdf4dmzZ2WYiD6Wrq4uNm3ahH379uHAgQNISEhATk4O7Ozs0LVrV/To0QOCICA1NRXjxo1D9+7dUadOHbFjlxkWAEgha9euhZaWFmbNmgVBEDB37lysXr0ab968QVBQEOLi4rBt2zaxY1Ip1KpVC1euXCly3vHly5d5k0FUBtq3b48tW7Zg7NixJS7v9+zZM+zduxfdu3cvo3T0scLDw9GzZ0/0798/39NFiUQCNzc33L59G0ePHmUBgEgk1apVQ2JiYpH7Y2Ji+JBLRXXv3r3Yn5cVK1bUqCf/73EMISnkxo0bcHZ2houLC3r37g0tLS3o6OjAwcEBmzdvRvXq1bF69WqxY1IpdOnSBXv37sWWLVvyTemQSqXYvHkz/vrrL3Tu3FnEhESawdnZGdra2hgyZAji4+OLPO7u3bsYMWIEMjMz4ebmVoYJ6WMkJyejWbNmRe63trbGkydPyjAREf1b+/btERwcjLi4OPm296Nbjx49ip07d8pH7pBqyczMxIsXL/D8+XP515MnT3D37l1s2bJF7Hii4QgAUsjbt29hZmYGIG9YTe3atREbG4s2bdpAX18fTk5O8rU0STWMGTMGp06dwsKFC7F27VqYmpoCyGtIlpqaCnNzc/z444/ihqRCbd++HWfOnJG/zsrKgiAI8PX1xd69ewscLwgC5s+fX5YRqRSqV6+OBQsWYMKECXBwcICtrS1sbGzwxRdfICcnBykpKbh8+TIuXrwIqVSKBQsWoH79+mLHJgVVrFix2OWl7t27hwoVKpRhIiL6t7Fjx+LYsWPo168fLC0tIQgC1q9fjz/++AP//PMPjI2N4eHhIXZMKoWXL19ixowZOHr0aLHHDR48uIwSKRcWAEghlSpVQlpamvy1iYkJ7t69K39tbGzM+VEqxsDAAIGBgfD19cXBgwcRFxcHmUwGExMTDBgwAMOHD4ehoaHYMakQUVFRiIqKKrD91KlThR7PAoDy69ChA4KDg/Hrr7/i9OnTOH36tPwJ1Pu+K82bN8e0adPQuHFjkdNSabRu3Rrbtm1D3759CzR7jI2NRXBwMDp27ChSOiKqXLkyduzYgaVLl+LQoUOQyWQ4e/YsDAwM0L17d0yZMgXVqlUTOyaVwrJly3DkyBE0adIE5cuXx5kzZ+Dg4ICUlBRERUVBIpHgzz//FDumaAQZ144iBYwbNw737t3D1q1bUb58eSxatAj79+/HwYMHoaenh19++QVHjx7FyZMnxY5KpNYePnz4QefVrl37EyehzyUxMRHXrl3D06dPIZFI8MUXX6BFixb44osvxI5GH+Dhw4fo1asXBEHA119/jcjISHTv3h05OTk4fPgw9PX1sWvXrmKbshJR2Xnx4gWkUimqVKnCFVdUVNu2bWFhYYH169fj+fPnaN26NUJDQ2FlZYVr167Bzc0N48ePx9ChQ8WOKgoWAEgh165dg4uLC/T19REZGYmUlBT06NEDDRo0QO3atXH06FH07NkTCxcuFDsqldL9+/dx6NAhPHjwALq6uqhVqxY6dOigUd1QiYg+p4SEBHh7e+PcuXP498cuGxsbzJ49G5aWliKmI6Li5OTkYMWKFZg0aZLYUUhB1tbW8PLygqurKwDAzs4Onp6e6N+/PwBgzpw5uHr1qsYuX84pAKSQJk2aYMuWLfDz80PlypVRuXJlLFiwAN7e3rh58yaaN2+OyZMnix2TSsnHxwcrVqxATk5Ovu1LliyBp6enRnZGJSL61ExNTbFp0yakpqYiMTERMpkMtWvXZmdxIpGkp6dj586duHz5MgCgcePGcHV1Rbly5fIdFxcXh2nTpuHWrVssAKgQfX196OjoyF+bmJjg9u3b8teNGjXC/v37xYimFFgAIIU1b94czZs3l792dHREt27dkJmZyQZGKujw4cNYunQpGjZsiDFjxqB+/fqQSqW4ffs2fHx8sHz5cjRo0ADt27cXOyqRWuvQoUOpzxEEAYcPH/4Maehzys7OBpC3rrienh6kUimHGBOVsSdPnmDgwIF48OCBfETOoUOHsG3bNgQFBaFmzZoA8h6SrFy5EtnZ2bC1tRUzMpVS/fr1ERUVhX79+gEA6tWrhxs3bsj3v3z5ssDDL03CnzqkkEGDBuHs2bMFtuvq6qJChQo4cuQIunbtKkIy+lC+vr5o0KABgoOD8f3336NevXowMzNDly5dEBwcDHNzc2zevFnsmERqT0dHB7q6uiV+aWlp4eHDh/IvUh1xcXFwdnZGmzZt0L9/f/zzzz+IiopChw4dcOTIEbHjEWmU5cuXIykpCU5OTggJCUF4eDgmTpyIlJQULF68GLm5uRg/fjyWLVsGbW1tzJo1i5+HVIyDgwPCw8MxZcoUZGRkwN7eHleuXMHatWtx+PBh+Pv7w9zcXOyYouEIACpUVlaWvOu/TCbDhQsX0LVrVzRo0KDAsVKpFGfOnOEHUhUTFxeHsWPHFuhKDeQVdnr27Il169aJkIxIsxw4cKDEY27cuIHp06cDyFs20Nvb+3PHok8kPj4erq6u0NbWRpcuXeTXW1dXF2lpaRg3bhw2b96MFi1aiJyUSDOcP38ednZ2+VbHMTc3h0QiwYoVK7BkyRIcPHgQzZo1w5IlS9gTSQW5uLjgzp072L59O+bNm4dOnTrBzs4Oy5cvB5BXeF+yZInIKcXDAgAV6uXLl+jSpQsyMzPl23799Vf8+uuvRZ7TrFmzsohGZUQQBI0eHkWkDLKysrB69Wr4+voiJycH/fr1w9SpU2FkZCR2NFLQ8uXLoa+vjz179kAikcjnnbZs2RLh4eEYMGAA1q9fzwIAURl5/vw5Bg0aVGB7u3bt8Pvvv8Pf3x8DBw6El5cXJBKJCAnpYwmCgNmzZ2PcuHHQ09MDAKxbtw4RERF4+fIl7OzsYGZmJnJK8bAAQIWqXr06fvnlF1y4cAEymQx79uxB8+bNC62CamlpwdjYGAMGDBAhKX0oKysrhIeHY9CgQfkapQB5Nx1hYWGwsLAQKR0RRUdHY8aMGbh79y5MTEwwd+5ctGrVSuxYVErnz5+Hq6srqlWrhpcvX+bbV7NmTTg7OyMgIECkdESaJzMzE1WqVCmwvXLlygDyCgEzZ84s61j0GVSuXBlZWVnYunUrLl68CC0tLdja2qJu3bpiRxMVCwBUJCcnJzg5OQEALly4AHd39w9qVkXKyd3dHZ6enhg4cCBGjBghr4TevXsXPj4+uHXrFpYuXSpySvpYSUlJuHTpEhwdHcWOQgrKzMzE0qVLERQUBJlMhkGDBmHixIkwMDAQOxp9gIyMDHzxxRdF7i9fvjzS09PLMBERFUYQBACQf/Yl1XL69Gn8+eefuHPnDurVq4eJEyeiVatWGDZsGC5evChv+BgZGYmdO3fC399fY0fTsQBAxcrMzMStW7fyNSnKzs7G9u3bcfHiRRgYGKBz586wt7cXMSV9iO+//x4TJkzAypUr4enpKd8uk8mgpaUFDw8PNnZUA1euXIGXlxcLACri3LlzmDVrFpKSkvDVV19h/vz5nF6l4r788ktcvnxZvv70f508eZJzjImUiKGhodgRqJTOnz+PESNGQF9fH9bW1khOTsbo0aPRv39/XLx4Ee7u7ujRowdkMhl2796NgIAA+Pn5Ydy4cWJHFwULAFSkyMhI/PLLL3j9+rV86QypVIqRI0fi3Llz8kpaaGgo+vfvjzlz5oiYlj7E6NGj0a1bN0RGRuLBgweQSqWoU6cOOnbsCFNTU7Hj0SdgYWEBDw8PsWNQCd68eYNFixZhx44dkEgkGDVqFDw8PApt0kmqpWfPnli6dClsbGzQrl07AHlPGjMyMrBy5UocP34cEyZMEDklEZHq2rhxI0xNTREUFCSfyjFt2jRs27YNjo6OmDp1qvzYGTNm4P79+/j77781tgAgyN7fxRH9y+3bt+Ho6IiKFSuiR48emDJlCiQSCUJCQjB79mxUrVoVq1evhoWFBQIDA7F06VKsXLkSHTt2FDs6fYD/zo9q1aoV+vTpU6A3ABF9esePH8ecOXPw+PFjWFlZYf78+bC0tBQ7Fn0iubm5GDt2LI4ePQqJRAKpVIpKlSrh9evXyM3NxTfffIONGzfy31uiMmJpaYmWLVvCxMQk3/asrCxERESgdevWqFatWr59giDkWzWAlIutrS3c3d0xatQo+ba4uDg4Ojrijz/+QPfu3fMdHxISgkWLFuHy5ctlHVUpcAQAFcrPzw8VKlRAWFhYvn8Eg4ODIQgCPD095cNSR4wYgXPnziE4OJgFACVXmvlRO3bs0Oj5Uerk1q1bhS7hScph1KhR8rmnb968waRJk0o8RxAE7Nu373NHo09AIpFg7dq12Lt3L/bv34/79+9DKpWiUaNG6Ny5M3r16sVO40RlLCoqClFRUYXuO3XqVIFtLAAot9evX8PY2Djftvf3L5UqVSpwvIGBAd6+fVsm2ZQRCwBUqAsXLqB37975bv5TUlIQGxsLLS0tdO7cOd/xbdq0wfr168s6JpUC50epl+fPn+PatWsQBAFWVlaoXr16gWNkMhk2bNiAVatW4dq1ayKkJEXUqlVL/uvs7GxkZ2eLmIY+tcDAQNja2qJHjx7o0aOH2HGINN7ff/8tdgT6xKRSaYEpc1paWvn+S/8fCwBUqGfPnuHLL7/Mt+3ChQsAAHNzc/n8mvcqVKjALsZKjvOj1INUKsWSJUsQEBCA3NxcAHlPGN3c3DB16lT5k+T79+9j6tSpuHr1KvT19cWMTCX4d5NVUj9Lly7FsGHDUL9+fbGjEBGA2rVrix2BSFQsiVCh9PX1kZGRkW/bhQsXIAgCvvnmmwLHP3nyBBUqVCirePQBrl+/jp49e+Yr3ri7u0Mmk8HOzq7A8e3bt0dSUlJZRiQF+Pv7Y9OmTahQoQL69euHIUOG4Msvv8TmzZuxYcMGAMDhw4fh5OSE6OhoNGnSBLt37xY5NZHm0tHRYVdxIqLP7NWrV0hOTpZ/PX78GADw4sWLfNuTk5Px8uVLkdOKiyMAqFBmZma4cuUKBg8eDCDvqeP7p1Rt27YtcHxkZCTMzc3LMiKVEudHqYfw8HDUqFEDYWFhqFixIgBgypQp8PT0RGBgIKysrDB+/HhoaWlh0qRJGD58OIe/EYnI09MT69atQ61atWBra8tiORHRZzB//vxC+zRMnjxZhDTKjQUAKtQPP/yA+fPnIzAwEN999x0CAgLw9OlT1KlTB7a2tvmOXbVqFWJjYzFz5kyR0pIiOD9KPdy/fx+DBw+W3/wDeddv2LBhcHFxwc8//4xatWphxYoVsLKyEjEpKcrS0lI+dUNRgiAgJibmMyWiTyk0NBRv3rzB+PHjAeRN2flv0z9BEBAdHS1GPCIilefk5CR2BJXCAgAVytnZGSdOnMC8efMgCAJkMhkMDAywYMEC+c1iaGgo1q9fj8TERDRq1AjOzs4ipyZSf+np6QWWLgIg31auXDmEhISgSpUqZR2NPlDr1q0VKgCkpaXh6tWrAMCu8SqkXLlysLa2FjsGEZHaWrBggdgRVAoLAFSo98sWHThwAJcvX4ahoSGcnJxgamoqPyYxMRHJycno3bs3fv75Z34gVQHv50e9l5qaCuD/z4/6N02fH6WsZDJZoX/X3q8hPmzYMN78qxhfX98Sj/n7778xZ84cAEDDhg25HJUS27NnD1q0aCEvygUEBIiciIiI6P8TZO8X/iYqpbdv30JPT4/Dx1VEUcOMZTJZsU8fY2NjP2csKiVLS0ssWbIEDg4O+ba/fPkSrVq1wqZNm9CqVSuR0tGn9vLlS8ybNw8RERHQ0dGBh4cHhg8fzoKrErOyssLixYsL/B0lIiJSBhwBQB/MwMBA7AhUCpwfRaRaIiIiMG/ePLx48QLNmjXDb7/9BjMzM7FjUQn4XIVIvdy8eRORkZEYO3as2FGIPgkWAIg0BOdHqY/4+HhERUXl25aWlgYg74OKtnbBf9pbtmxZJtno46WkpGDOnDn4+++/oa+vDy8vLwwaNKjUjQKJiOjj3bx5E6tXr2YBgNQGpwAQEamQ4jrGFzedg1M5VMPu3buxaNEipKamwtbWFnPnzkWdOnXEjkWlYGlpid9//x0//PCD2FGI6BNISkrCxYsXOZKS1AYLAEREKmTVqlUfdB6fXCi3R48eYebMmTh9+jSMjIwwdepU9OvXT+xY9AEsLS1hZmaGqlWrKnyOIAjYsmXLZ0xFRESUhwUAIiIiEW3duhV//PEHMjIyYG9vD29vb1SvXl3sWPSBLC0tS32OIAgcpUNERGWCBQAiIiIR/fuGUU9PT6FzBEFAdHT054pEH6GolTqISDl5eXkVu18QBOjq6sLY2BhNmjTBd999V0bJiD4PNgEkIiISERs0EhGJJywsDEBeH53CnosKgiDfLggCvvvuO6xZs4bLsZLKYgGAiIhIRAEBAWJHICLSWOHh4XBxcYGNjQ1Gjx4NMzMz6OnpIT4+Hps3b8bBgwexbNkyVKlSBXv37kVgYCD8/PwwYsQIsaMTfRBOASAiIiL6RDgFgEi1jBgxAu/evYO/v3+h+4cPHw5tbW2sW7cOAPDTTz/h1q1bCA8PL8uYRJ8MRwAQEREpicTERBw9ehSxsbF4+fIlBEFAlSpV0LBhQ3Ts2BE1a9YUOyKVYOzYsbCwsBA7BhEp6OLFi5g8eXKR+9u1a4ff/1979x4UVf3GcfyzgKSAiqBlkmWmLmqQKWbhmA5qBtooKHRRJx0rzUTN1BkRwisxeZmxxrtdFNJRagwS79k4FI0yal6A1NAK0iwTZbjoAru/Pxx34gcaKnCAfb/+gj3fc85n+EfPs8/3OUuX2n9/5plndODAgbqIBtQKCgAAABisuLhYsbGx2rlzp8rLyysd3759u+Lj4xUWFqaoqCg1a9bMgJSoDl65CTQsbm5uunjx4m2PX7x4Ua6urvbfLRaLmjZtWhfRgFpBAQAAAANZLBaNHTtWmZmZ6tmzp0JDQ2U2m+Xp6anS0lLl5+fr1KlTSklJUVJSks6ePauEhAQ1adLE6OgA0OAFBgYqMTFRgYGBCgwMrHDsxIkT+uKLL+yT/y0Wi1JSUtS5c2cjogI1ghkAAAAYaP369Vq2bJneffddTZw48Y5rN2zYoKVLlyo6Olpjxoypo4QA0HhdvHhRERERunz5srp166bHH39crq6uOn/+vI4fPy4vLy9t2bJFjzzyiPr27av8/HytXr1aAwYMMDo6cE8oAAAAYKCwsDC1aNFCn3/+ebXWjxs3ThaLRZs3b67dYADgIC5fvqyPPvpIe/fu1dWrVyVJHh4eGjJkiKZNm6YHH3xQV65c0cyZMzVy5EgNHTrU4MTAvaMAAACAgXr16qXJkydrwoQJ1Vq/YcMGrV+/XocOHarlZADgeK5evaqysjJ5e3vLZDIZHQeoccwAAADAQCUlJfLy8qr2em9vbxUWFtZiIgBwPIWFhUpLS1NeXp5cXV3l4+OjwMBAubm5GR0NqFEUAAAAMJDVapWLS/X/OXZ2dpbVaq3FRADgWHbs2KH58+ersLBQt5qjTSaTmjVrptjYWA0fPtzghEDNoQAAAAAAwCEdPnxYs2fPVps2bfTOO++oU6dOKi8v1y+//KJNmzYpKipKPj4+CggIMDoqUCMoAAAAYLBz584pIyOjWmtzcnJqOQ0AOI61a9eqbdu2Sk5OVvPmze2f9+/fX+Hh4QoNDdWGDRsoAKDRoAAAAIDB1qxZozVr1lRrrc1mYzAVANSQ48eP64033qjw8H9LixYtNGrUqGq/pQVoCCgAAABgoClTphgdAQAcVmlp6R0H/bm7u+v69et1mAioXbwGEAAAAIBDCgsLk7u7uxISEiods9lsGjNmjIqLi7V9+3YD0gE1z8noAAAAAABghFdffVUZGRmKjIzUzz//LIvFIovFouzsbEVGRuro0aOKiIgwOiZQY+gAAAAAAOCwYmJilJSUZJ+vYjKZZLPZZLPZFBoaqg8++MDghEDNoQAAAAAAwKEdOnRIe/fuVW5urqxWq9q3b68XXnhBzz33nNHRgBpFAQAAAAAAAAfADAAAAAAAqEJ8fLz69OljdAygxlAAAAAAAIAqlJSUqKCgwOgYQI1xMToAAACO7MKFC/d0Xrt27Wo4CQAAaOwoAAAAYKCgoCD75OnqMplMysrKqqVEAACgsaIAAACAgSIiIqpVAMjLy9MPP/wgSfLw8KjtWAAAoBGiAAAAgIEWLFhwx+M2m00JCQlKSUmRJA0YMEDz58+vi2gAAKCRoQAAAEA9df78ec2dO1fHjh2Tp6enFi5cqGHDhhkdCwAarLudu1JUVFRLSQBjUAAAAKCesVqt+uSTT7Ry5Updv35dwcHBiomJkZeXl9HRAKBBu9u5Kzab7a7ntAD1GQUAAADqkTNnzigqKkqZmZlq3bq1li5dqkGDBhkdCwAahREjRvBAD4dmstlsNqNDAADg6MrKyrR69WqtW7dOpaWlCg0NVVRUlJo3b250NAAA0EjQAQAAgMFOnjypqKgonT17Vu3atdPChQvVt29fo2MBAIBGhg4AAAAMtGTJEm3cuFHl5eUaPHiwZs1H8JeSAAAJDUlEQVSaJTc3t/88z9vbuw7SAQCAxoQCAAAABvL19bX/XN19qSaTSVlZWbUVCQAANFJsAQAAwEAMpAIAAHWFDgAAAAAAAByAk9EBAAAAAABA7WMLAAAABsrIyLin83r37l3DSQAAQGPHFgAAAAzk6+t71zMAGAIIAADuBR0AAAAYaMaMGdVa99NPP+nAgQOSpHbt2tVmJAAA0EjRAQAAQD1248YNLV++XImJibJarRo9erRmzJghNzc3o6MBAIAGhg4AAADqqcOHDys6Olq5ubl67LHHtHjxYvXq1cvoWAAAoIGiAwAAgHqmqKhIS5Ys0bZt22QymTR+/HhNnTpVrq6uRkcDAAANGB0AAADUI2lpaYqNjdWFCxdkNpu1ePFiPfnkk0bHAgAAjQAdAAAA1AMFBQWKi4tTcnKyXFxcNHHiRE2aNEkuLtTqAQBAzeB/FQAAGGzfvn2aP3++Ll++LD8/P8XFxalz585GxwIAAI0MHQAAABho+vTp2rNnjyRp8ODBGj9+vJydnf/zPH9//9qOBgAAGhkKAAAAGMjX19f+s8lkqvZ52dnZtREHAAA0YmwBAADAQFOmTDE6AgAAcBB0AAAAAAAA4ACcjA4AAAAAAABqHwUAAAAAAAAcAAUAAAAAAAAcAAUAAAAAAAAcAAUAAAAgSfr4449lNptlNps1Z86cO669cuWKunfvLrPZrLFjx97zPbOzs7Vv374Kn5nNZj3//PP3fM17FRQUJLPZrLKysjq/NwAAdYECAAAAqOTbb79VaWnpbY/v3r37vh+UDx48qLCwMJ06deq+rgMAAKqHAgAAAKigTZs2unbtmtLT02+7ZufOnXJ3d7+v+/zzzz+yWq33dQ0AAFB9FAAAAEAFL774oqSb3/JX5dKlSzpy5IgGDRpUl7EAAMB9ogAAAAAqMJvN6tix4223AezatUtWq1VDhw6t8vyDBw9q3LhxCggIkL+/v4YPH66EhIQK3/aPHTvWPmdgzZo1MpvNOnToUIXr5OTkKDIyUr1791aPHj0UHh6uPXv2VHnP5ORkvfLKK3r66af11FNPKTQ0VAkJCSovL6+09vfff9fMmTPVt29f9ejRQ+PGjVNWVla1/z4AADRUFAAAAEAlwcHBt90GkJqaKl9fXz3xxBOVjq1fv15vvfWWTp8+rSFDhmj06NGyWq1atGiRpk+fLpvNJkkKDQ3VwIEDJUkBAQGaMmWKfHx87NcpKChQeHi4/vjjD40aNUoDBw5UZmampk6dqgMHDtjX2Ww2RUVFafbs2crLy1NwcLBGjBiha9euadGiRXr77bcrzCrIyclReHi4vvnmG/n5+SkiIkL5+fkaM2aM8vPza+zvBwBAfeRidAAAAFD/hISEaOXKldq9e7f69+9v/zw3N1cnTpzQe++9V+mcrKwsLV++XF26dNGmTZvUqlUrSdKsWbM0a9Ys7dixQ0lJSYqIiFBYWJikm8MGAwICFBkZWeFaJSUleu211/T+++/LZDJJkvr06aOYmBht27ZNQUFBkm52I3z11Vfy9/fX2rVr5eXlJUkqLi5WZGSkDh48qM8++0xvvvmmJGnRokW6evWq4uPjFRoaKkkqKyvTnDlzlJKSUpN/QgAA6h06AAAAQCWdOnVSly5dKm0DSE1NlclkqrL9PykpSVarVTNnzrQ//EuSk5OTZs+ebV9THSaTSZGRkfaHf0n2mQO//fab/bMvv/xSkhQdHW1/+JckNzc3zZs3T05OTtq6dask6a+//tKPP/6o7t272x/+JcnFxUVz585VkyZNqpUNAICGig4AAABQpeDgYK1YsULp6en2LoDU1FT16NFDPj4+ysvLq7D+5MmTkqS0tDSdOHGi0vWaNm2q7Oxs2Wy2Cg/2VWnZsmWFB3pJFb7dvyUzM1NNmzaVn59fpWu0b99ebdu2VW5urgoLC+339vf3r7TW09NTnTp1UnZ29h1zAQDQkFEAAAAAVQoJCdGKFSvs2wBycnJ05swZxcTEVLm+oKBAkpSQkHDH6xYVFcnDw+OOax544IHbHrs1R0CSCgsL1bJlSzk5Vd3U+NBDD+nChQsqLi6252vevHmVaz09Pe+YCQCAho4CAAAAqFKHDh3UtWtX7d+/XwsWLFBqaqqcnZ3trwn8f+7u7pKk9PR0eXt710lGDw8P5efny2KxyNXVtdLxa9euSbr5cH/rAf9WIeD//buzAACAxogZAAAA4LZCQkJUUFCg9PR07dq1S88++6xat25d5dquXbtKko4fP17pWGFhoRYvXqzExET7Z/+1DaA6unXrJqvVqiNHjlQ6dunSJf3666/q0KGDXF1d1b17dzk7O+vo0aOV1hYXF+vs2bP3nQcAgPqMAgAAALit4OBgSdLq1at17ty5Kof/3TJq1ChJ0pIlS/T3339XOLZs2TJt2rSpwh57F5ebjYj/fk3f3Ro5cqQk6cMPP6zwGr+SkhLFxsbKarXa3zjg5eWlgQMH6syZM9q4caN9rc1m0/Lly+kAAAA0emwBAAAAt9W+fXv5+fnp2LFjcnV11eDBg2+7tmfPnpo8ebJWrVqloUOHKigoSK1atVJGRoZOnjypjh07asaMGfb1Dz/8sCQpOTlZkjR8+HB16dLlrvINGzZMaWlp+vrrr/XSSy+pf//+atKkib7//nvl5uaqX79+mjBhgn19dHS0Tp06pbi4OH333Xcym806evSoTp8+rbZt2+rPP/+8q/sDANCQ0AEAAADuKCQkRJLUr18/tWjR4o5rp02bplWrVqlbt27av3+/Nm/erKKiIk2aNElbtmypMBsgICBAr7/+um7cuKHExMQqtw5UR3x8vOLi4uTj46PU1FSlpKSoVatWmjdvntatW2fvNJBuDgXcunWrXn75ZeXk5GjLli1ycnLSp59+qkcfffSe7g8AQENhsv17lC4AAAAAAGiU6AAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMABUAAAAAAAAMAB/A/JBHE1qEW0OwAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["plotSuccess()"]},{"cell_type":"markdown","metadata":{"_cell_guid":"05e05c13-6e1f-4900-b147-844cf49cdb41","_uuid":"97b824045c3668ad8eab81bdfe35d07ab0d18c76"},"source":["\n","## **11. Creating predictions on test set**"]},{"cell_type":"code","execution_count":160,"metadata":{"_cell_guid":"cd416a0e-a234-45c1-a502-e46d7b381dcd","_uuid":"ddf3291a57a8ed1ebd10c81779abc44ff9f5ce72","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
Index
\n","
Treatment
\n","
\n"," \n"," \n","
\n","
0
\n","
5
\n","
1
\n","
\n","
\n","
1
\n","
494
\n","
0
\n","
\n","
\n","
2
\n","
52
\n","
0
\n","
\n","
\n","
3
\n","
984
\n","
0
\n","
\n","
\n","
4
\n","
186
\n","
0
\n","
\n"," \n","
\n","
"],"text/plain":[" Index Treatment\n","0 5 1\n","1 494 0\n","2 52 0\n","3 984 0\n","4 186 0"]},"execution_count":160,"metadata":{},"output_type":"execute_result"}],"source":["# Generate predictions with the best method\n","clf = AdaBoostClassifier()\n","clf.fit(X, y)\n","dfTestPredictions = clf.predict(X_test)\n","\n","# Write predictions to csv file\n","# We don't have any significative field so we save the index\n","results = pd.DataFrame({'Index': X_test.index, 'Treatment': dfTestPredictions})\n","# Save to file\n","# This file will be visible after publishing in the output section\n","results.to_csv('preprocessed_datasets/2014/results.csv', index=False)\n","results.head()"]},{"cell_type":"markdown","metadata":{"_uuid":"35d306ec4cb719e14f1b2600dff7a3ffa89f1b47"},"source":["\n","## ** 12. Submision**"]},{"cell_type":"markdown","metadata":{"_uuid":"8fdd6b0a10dd1efb08cfac45026ad83d3fd770eb"},"source":["### Prepare Submission File\n","We make submissions in CSV files. Your submissions usually have two columns: an ID column and a prediction column. The ID field comes from the test data (keeping whatever name the ID field had in that data, which for our data is the index). The prediction column will use the name of the target field.\n","\n","We will create a DataFrame with this data, and then use the dataframe's to_csv method to write our submission file. Explicitly include the argument index=False to prevent pandas from adding another column in our csv file."]},{"cell_type":"code","execution_count":161,"metadata":{"_uuid":"224fe370c6c43359faa76d067a3ef39ed3b13402","collapsed":true,"jupyter":{"outputs_hidden":true},"trusted":true},"outputs":[],"source":["# Write predictions to csv file\n","# We don't have any significative field so we save the index\n","results = pd.DataFrame({'Index': X_test.index, 'Treatment': dfTestPredictions})\n","# Save to file\n","# This file will be visible after publishing in the output section\n","results.to_csv('preprocessed_datasets/2014/submission.csv', index=False)\n"]},{"cell_type":"markdown","metadata":{"_uuid":"e56961d7c4f00c35537023aad9c6cbf09cd8286a"},"source":["### Make Submission\n","Hit the blue Publish button at the top of your notebook screen. It will take some time for your kernel to run. When it has finished your navigation bar at the top of the screen will have a tab for Output. This only shows up if you have written an output file (like we did in the Prepare Submission File step)."]},{"cell_type":"markdown","metadata":{"_cell_guid":"2c05dd56-2528-40b1-9cd0-368300adc2c3","_uuid":"d5972622da305ae627019fc0476a769a22a9f3fc"},"source":["\n","## **13. Conclusions**\n","\n","As a beginner I don't know whether the results are the best. I think over 80% of success in the majority of methods is a good rate, given the point is to know whether a patient needs treatment or not.\n","\n","There's only left to have a way to persist the model for future use without having to retrain. This job will be done in another kernel.\n","\n","\n","Thanks for reading and if you'd like my job or want to give some advice, feel free.\n","\n"]}],"metadata":{"kernelspec":{"display_name":"StrokePredictionModel","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.8.13 (default, Mar 28 2022, 06:59:08) [MSC v.1916 64 bit (AMD64)]"},"vscode":{"interpreter":{"hash":"6d6bab66b583e7661b89cead2220317a23c391a40fb8c52f2c1bcd3c04f3fbda"}}},"nbformat":4,"nbformat_minor":4}