login page

This commit is contained in:
Alicja Cięciwa
2020-10-27 12:57:58 +01:00
commit cb8886666c
8545 changed files with 1082463 additions and 0 deletions

View File

@@ -0,0 +1,19 @@
Copyright (c) 2012 Erik Rose
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,2 @@
from more_itertools.more import * # noqa
from more_itertools.recipes import * # noqa

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,577 @@
"""Imported from the recipes section of the itertools documentation.
All functions taken from the recipes section of the itertools library docs
[1]_.
Some backward-compatible usability improvements have been made.
.. [1] http://docs.python.org/library/itertools.html#recipes
"""
from collections import deque
from itertools import (
chain, combinations, count, cycle, groupby, islice, repeat, starmap, tee
)
import operator
from random import randrange, sample, choice
from six import PY2
from six.moves import filter, filterfalse, map, range, zip, zip_longest
__all__ = [
'accumulate',
'all_equal',
'consume',
'dotproduct',
'first_true',
'flatten',
'grouper',
'iter_except',
'ncycles',
'nth',
'nth_combination',
'padnone',
'pairwise',
'partition',
'powerset',
'prepend',
'quantify',
'random_combination_with_replacement',
'random_combination',
'random_permutation',
'random_product',
'repeatfunc',
'roundrobin',
'tabulate',
'tail',
'take',
'unique_everseen',
'unique_justseen',
]
def accumulate(iterable, func=operator.add):
"""
Return an iterator whose items are the accumulated results of a function
(specified by the optional *func* argument) that takes two arguments.
By default, returns accumulated sums with :func:`operator.add`.
>>> list(accumulate([1, 2, 3, 4, 5])) # Running sum
[1, 3, 6, 10, 15]
>>> list(accumulate([1, 2, 3], func=operator.mul)) # Running product
[1, 2, 6]
>>> list(accumulate([0, 1, -1, 2, 3, 2], func=max)) # Running maximum
[0, 1, 1, 2, 3, 3]
This function is available in the ``itertools`` module for Python 3.2 and
greater.
"""
it = iter(iterable)
try:
total = next(it)
except StopIteration:
return
else:
yield total
for element in it:
total = func(total, element)
yield total
def take(n, iterable):
"""Return first *n* items of the iterable as a list.
>>> take(3, range(10))
[0, 1, 2]
>>> take(5, range(3))
[0, 1, 2]
Effectively a short replacement for ``next`` based iterator consumption
when you want more than one item, but less than the whole iterator.
"""
return list(islice(iterable, n))
def tabulate(function, start=0):
"""Return an iterator over the results of ``func(start)``,
``func(start + 1)``, ``func(start + 2)``...
*func* should be a function that accepts one integer argument.
If *start* is not specified it defaults to 0. It will be incremented each
time the iterator is advanced.
>>> square = lambda x: x ** 2
>>> iterator = tabulate(square, -3)
>>> take(4, iterator)
[9, 4, 1, 0]
"""
return map(function, count(start))
def tail(n, iterable):
"""Return an iterator over the last *n* items of *iterable*.
>>> t = tail(3, 'ABCDEFG')
>>> list(t)
['E', 'F', 'G']
"""
return iter(deque(iterable, maxlen=n))
def consume(iterator, n=None):
"""Advance *iterable* by *n* steps. If *n* is ``None``, consume it
entirely.
Efficiently exhausts an iterator without returning values. Defaults to
consuming the whole iterator, but an optional second argument may be
provided to limit consumption.
>>> i = (x for x in range(10))
>>> next(i)
0
>>> consume(i, 3)
>>> next(i)
4
>>> consume(i)
>>> next(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
If the iterator has fewer items remaining than the provided limit, the
whole iterator will be consumed.
>>> i = (x for x in range(3))
>>> consume(i, 5)
>>> next(i)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
"""
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"""Returns the nth item or a default value.
>>> l = range(10)
>>> nth(l, 3)
3
>>> nth(l, 20, "zebra")
'zebra'
"""
return next(islice(iterable, n, None), default)
def all_equal(iterable):
"""
Returns ``True`` if all the elements are equal to each other.
>>> all_equal('aaaa')
True
>>> all_equal('aaab')
False
"""
g = groupby(iterable)
return next(g, True) and not next(g, False)
def quantify(iterable, pred=bool):
"""Return the how many times the predicate is true.
>>> quantify([True, False, True])
2
"""
return sum(map(pred, iterable))
def padnone(iterable):
"""Returns the sequence of elements and then returns ``None`` indefinitely.
>>> take(5, padnone(range(3)))
[0, 1, 2, None, None]
Useful for emulating the behavior of the built-in :func:`map` function.
See also :func:`padded`.
"""
return chain(iterable, repeat(None))
def ncycles(iterable, n):
"""Returns the sequence elements *n* times
>>> list(ncycles(["a", "b"], 3))
['a', 'b', 'a', 'b', 'a', 'b']
"""
return chain.from_iterable(repeat(tuple(iterable), n))
def dotproduct(vec1, vec2):
"""Returns the dot product of the two iterables.
>>> dotproduct([10, 10], [20, 20])
400
"""
return sum(map(operator.mul, vec1, vec2))
def flatten(listOfLists):
"""Return an iterator flattening one level of nesting in a list of lists.
>>> list(flatten([[0, 1], [2, 3]]))
[0, 1, 2, 3]
See also :func:`collapse`, which can flatten multiple levels of nesting.
"""
return chain.from_iterable(listOfLists)
def repeatfunc(func, times=None, *args):
"""Call *func* with *args* repeatedly, returning an iterable over the
results.
If *times* is specified, the iterable will terminate after that many
repetitions:
>>> from operator import add
>>> times = 4
>>> args = 3, 5
>>> list(repeatfunc(add, times, *args))
[8, 8, 8, 8]
If *times* is ``None`` the iterable will not terminate:
>>> from random import randrange
>>> times = None
>>> args = 1, 11
>>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
[2, 4, 8, 1, 8, 4]
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def pairwise(iterable):
"""Returns an iterator of paired items, overlapping, from the original
>>> take(4, pairwise(count()))
[(0, 1), (1, 2), (2, 3), (3, 4)]
"""
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def grouper(n, iterable, fillvalue=None):
"""Collect data into fixed-length chunks or blocks.
>>> list(grouper(3, 'ABCDEFG', 'x'))
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
"""
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
def roundrobin(*iterables):
"""Yields an item from each iterable, alternating between them.
>>> list(roundrobin('ABC', 'D', 'EF'))
['A', 'D', 'E', 'B', 'F', 'C']
This function produces the same output as :func:`interleave_longest`, but
may perform better for some inputs (in particular when the number of
iterables is small).
"""
# Recipe credited to George Sakkis
pending = len(iterables)
if PY2:
nexts = cycle(iter(it).next for it in iterables)
else:
nexts = cycle(iter(it).__next__ for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
def partition(pred, iterable):
"""
Returns a 2-tuple of iterables derived from the input iterable.
The first yields the items that have ``pred(item) == False``.
The second yields the items that have ``pred(item) == True``.
>>> is_odd = lambda x: x % 2 != 0
>>> iterable = range(10)
>>> even_items, odd_items = partition(is_odd, iterable)
>>> list(even_items), list(odd_items)
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
"""
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)
def powerset(iterable):
"""Yields all possible subsets of the iterable.
>>> list(powerset([1, 2, 3]))
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
:func:`powerset` will operate on iterables that aren't :class:`set`
instances, so repeated elements in the input will produce repeated elements
in the output. Use :func:`unique_everseen` on the input to avoid generating
duplicates:
>>> seq = [1, 1, 0]
>>> list(powerset(seq))
[(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
>>> from more_itertools import unique_everseen
>>> list(powerset(unique_everseen(seq)))
[(), (1,), (0,), (1, 0)]
"""
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
def unique_everseen(iterable, key=None):
"""
Yield unique elements, preserving order.
>>> list(unique_everseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D']
>>> list(unique_everseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'D']
Sequences with a mix of hashable and unhashable items can be used.
The function will be slower (i.e., `O(n^2)`) for unhashable items.
"""
seenset = set()
seenset_add = seenset.add
seenlist = []
seenlist_add = seenlist.append
if key is None:
for element in iterable:
try:
if element not in seenset:
seenset_add(element)
yield element
except TypeError:
if element not in seenlist:
seenlist_add(element)
yield element
else:
for element in iterable:
k = key(element)
try:
if k not in seenset:
seenset_add(k)
yield element
except TypeError:
if k not in seenlist:
seenlist_add(k)
yield element
def unique_justseen(iterable, key=None):
"""Yields elements in order, ignoring serial duplicates
>>> list(unique_justseen('AAAABBBCCDAABBB'))
['A', 'B', 'C', 'D', 'A', 'B']
>>> list(unique_justseen('ABBCcAD', str.lower))
['A', 'B', 'C', 'A', 'D']
"""
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
def iter_except(func, exception, first=None):
"""Yields results from a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
to end the loop.
>>> l = [0, 1, 2]
>>> list(iter_except(l.pop, IndexError))
[2, 1, 0]
"""
try:
if first is not None:
yield first()
while 1:
yield func()
except exception:
pass
def first_true(iterable, default=None, pred=None):
"""
Returns the first true value in the iterable.
If no true value is found, returns *default*
If *pred* is not None, returns the first item for which
``pred(item) == True`` .
>>> first_true(range(10))
1
>>> first_true(range(10), pred=lambda x: x > 5)
6
>>> first_true(range(10), default='missing', pred=lambda x: x > 9)
'missing'
"""
return next(filter(pred, iterable), default)
def random_product(*args, **kwds):
"""Draw an item at random from each of the input iterables.
>>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
('c', 3, 'Z')
If *repeat* is provided as a keyword argument, that many items will be
drawn from each iterable.
>>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
('a', 2, 'd', 3)
This equivalent to taking a random selection from
``itertools.product(*args, **kwarg)``.
"""
pools = [tuple(pool) for pool in args] * kwds.get('repeat', 1)
return tuple(choice(pool) for pool in pools)
def random_permutation(iterable, r=None):
"""Return a random *r* length permutation of the elements in *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length of
*iterable*.
>>> random_permutation(range(5)) # doctest:+SKIP
(3, 4, 0, 1, 2)
This equivalent to taking a random selection from
``itertools.permutations(iterable, r)``.
"""
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(sample(pool, r))
def random_combination(iterable, r):
"""Return a random *r* length subsequence of the elements in *iterable*.
>>> random_combination(range(5), 3) # doctest:+SKIP
(2, 3, 4)
This equivalent to taking a random selection from
``itertools.combinations(iterable, r)``.
"""
pool = tuple(iterable)
n = len(pool)
indices = sorted(sample(range(n), r))
return tuple(pool[i] for i in indices)
def random_combination_with_replacement(iterable, r):
"""Return a random *r* length subsequence of elements in *iterable*,
allowing individual elements to be repeated.
>>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
(0, 0, 1, 2, 2)
This equivalent to taking a random selection from
``itertools.combinations_with_replacement(iterable, r)``.
"""
pool = tuple(iterable)
n = len(pool)
indices = sorted(randrange(n) for i in range(r))
return tuple(pool[i] for i in indices)
def nth_combination(iterable, r, index):
"""Equivalent to ``list(combinations(iterable, r))[index]``.
The subsequences of *iterable* that are of length *r* can be ordered
lexicographically. :func:`nth_combination` computes the subsequence at
sort position *index* directly, without computing the previous
subsequences.
"""
pool = tuple(iterable)
n = len(pool)
if (r < 0) or (r > n):
raise ValueError
c = 1
k = min(r, n - r)
for i in range(1, k + 1):
c = c * (n - k + i) // i
if index < 0:
index += c
if (index < 0) or (index >= c):
raise IndexError
result = []
while r:
c, n, r = c * r // n, n - 1, r - 1
while index >= c:
index -= c
c, n = c * (n - r) // n, n - 1
result.append(pool[-1 - n])
return tuple(result)
def prepend(value, iterator):
"""Yield *value*, followed by the elements in *iterator*.
>>> value = '0'
>>> iterator = ['1', '2', '3']
>>> list(prepend(value, iterator))
['0', '1', '2', '3']
To prepend multiple values, see :func:`itertools.chain`.
"""
return chain([value], iterator)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,616 @@
from doctest import DocTestSuite
from unittest import TestCase
from itertools import combinations
from six.moves import range
import more_itertools as mi
def load_tests(loader, tests, ignore):
# Add the doctests
tests.addTests(DocTestSuite('more_itertools.recipes'))
return tests
class AccumulateTests(TestCase):
"""Tests for ``accumulate()``"""
def test_empty(self):
"""Test that an empty input returns an empty output"""
self.assertEqual(list(mi.accumulate([])), [])
def test_default(self):
"""Test accumulate with the default function (addition)"""
self.assertEqual(list(mi.accumulate([1, 2, 3])), [1, 3, 6])
def test_bogus_function(self):
"""Test accumulate with an invalid function"""
with self.assertRaises(TypeError):
list(mi.accumulate([1, 2, 3], func=lambda x: x))
def test_custom_function(self):
"""Test accumulate with a custom function"""
self.assertEqual(
list(mi.accumulate((1, 2, 3, 2, 1), func=max)), [1, 2, 3, 3, 3]
)
class TakeTests(TestCase):
"""Tests for ``take()``"""
def test_simple_take(self):
"""Test basic usage"""
t = mi.take(5, range(10))
self.assertEqual(t, [0, 1, 2, 3, 4])
def test_null_take(self):
"""Check the null case"""
t = mi.take(0, range(10))
self.assertEqual(t, [])
def test_negative_take(self):
"""Make sure taking negative items results in a ValueError"""
self.assertRaises(ValueError, lambda: mi.take(-3, range(10)))
def test_take_too_much(self):
"""Taking more than an iterator has remaining should return what the
iterator has remaining.
"""
t = mi.take(10, range(5))
self.assertEqual(t, [0, 1, 2, 3, 4])
class TabulateTests(TestCase):
"""Tests for ``tabulate()``"""
def test_simple_tabulate(self):
"""Test the happy path"""
t = mi.tabulate(lambda x: x)
f = tuple([next(t) for _ in range(3)])
self.assertEqual(f, (0, 1, 2))
def test_count(self):
"""Ensure tabulate accepts specific count"""
t = mi.tabulate(lambda x: 2 * x, -1)
f = (next(t), next(t), next(t))
self.assertEqual(f, (-2, 0, 2))
class TailTests(TestCase):
"""Tests for ``tail()``"""
def test_greater(self):
"""Length of iterable is greater than requested tail"""
self.assertEqual(list(mi.tail(3, 'ABCDEFG')), ['E', 'F', 'G'])
def test_equal(self):
"""Length of iterable is equal to the requested tail"""
self.assertEqual(
list(mi.tail(7, 'ABCDEFG')), ['A', 'B', 'C', 'D', 'E', 'F', 'G']
)
def test_less(self):
"""Length of iterable is less than requested tail"""
self.assertEqual(
list(mi.tail(8, 'ABCDEFG')), ['A', 'B', 'C', 'D', 'E', 'F', 'G']
)
class ConsumeTests(TestCase):
"""Tests for ``consume()``"""
def test_sanity(self):
"""Test basic functionality"""
r = (x for x in range(10))
mi.consume(r, 3)
self.assertEqual(3, next(r))
def test_null_consume(self):
"""Check the null case"""
r = (x for x in range(10))
mi.consume(r, 0)
self.assertEqual(0, next(r))
def test_negative_consume(self):
"""Check that negative consumsion throws an error"""
r = (x for x in range(10))
self.assertRaises(ValueError, lambda: mi.consume(r, -1))
def test_total_consume(self):
"""Check that iterator is totally consumed by default"""
r = (x for x in range(10))
mi.consume(r)
self.assertRaises(StopIteration, lambda: next(r))
class NthTests(TestCase):
"""Tests for ``nth()``"""
def test_basic(self):
"""Make sure the nth item is returned"""
l = range(10)
for i, v in enumerate(l):
self.assertEqual(mi.nth(l, i), v)
def test_default(self):
"""Ensure a default value is returned when nth item not found"""
l = range(3)
self.assertEqual(mi.nth(l, 100, "zebra"), "zebra")
def test_negative_item_raises(self):
"""Ensure asking for a negative item raises an exception"""
self.assertRaises(ValueError, lambda: mi.nth(range(10), -3))
class AllEqualTests(TestCase):
"""Tests for ``all_equal()``"""
def test_true(self):
"""Everything is equal"""
self.assertTrue(mi.all_equal('aaaaaa'))
self.assertTrue(mi.all_equal([0, 0, 0, 0]))
def test_false(self):
"""Not everything is equal"""
self.assertFalse(mi.all_equal('aaaaab'))
self.assertFalse(mi.all_equal([0, 0, 0, 1]))
def test_tricky(self):
"""Not everything is identical, but everything is equal"""
items = [1, complex(1, 0), 1.0]
self.assertTrue(mi.all_equal(items))
def test_empty(self):
"""Return True if the iterable is empty"""
self.assertTrue(mi.all_equal(''))
self.assertTrue(mi.all_equal([]))
def test_one(self):
"""Return True if the iterable is singular"""
self.assertTrue(mi.all_equal('0'))
self.assertTrue(mi.all_equal([0]))
class QuantifyTests(TestCase):
"""Tests for ``quantify()``"""
def test_happy_path(self):
"""Make sure True count is returned"""
q = [True, False, True]
self.assertEqual(mi.quantify(q), 2)
def test_custom_predicate(self):
"""Ensure non-default predicates return as expected"""
q = range(10)
self.assertEqual(mi.quantify(q, lambda x: x % 2 == 0), 5)
class PadnoneTests(TestCase):
"""Tests for ``padnone()``"""
def test_happy_path(self):
"""wrapper iterator should return None indefinitely"""
r = range(2)
p = mi.padnone(r)
self.assertEqual([0, 1, None, None], [next(p) for _ in range(4)])
class NcyclesTests(TestCase):
"""Tests for ``nyclces()``"""
def test_happy_path(self):
"""cycle a sequence three times"""
r = ["a", "b", "c"]
n = mi.ncycles(r, 3)
self.assertEqual(
["a", "b", "c", "a", "b", "c", "a", "b", "c"],
list(n)
)
def test_null_case(self):
"""asking for 0 cycles should return an empty iterator"""
n = mi.ncycles(range(100), 0)
self.assertRaises(StopIteration, lambda: next(n))
def test_pathalogical_case(self):
"""asking for negative cycles should return an empty iterator"""
n = mi.ncycles(range(100), -10)
self.assertRaises(StopIteration, lambda: next(n))
class DotproductTests(TestCase):
"""Tests for ``dotproduct()``'"""
def test_happy_path(self):
"""simple dotproduct example"""
self.assertEqual(400, mi.dotproduct([10, 10], [20, 20]))
class FlattenTests(TestCase):
"""Tests for ``flatten()``"""
def test_basic_usage(self):
"""ensure list of lists is flattened one level"""
f = [[0, 1, 2], [3, 4, 5]]
self.assertEqual(list(range(6)), list(mi.flatten(f)))
def test_single_level(self):
"""ensure list of lists is flattened only one level"""
f = [[0, [1, 2]], [[3, 4], 5]]
self.assertEqual([0, [1, 2], [3, 4], 5], list(mi.flatten(f)))
class RepeatfuncTests(TestCase):
"""Tests for ``repeatfunc()``"""
def test_simple_repeat(self):
"""test simple repeated functions"""
r = mi.repeatfunc(lambda: 5)
self.assertEqual([5, 5, 5, 5, 5], [next(r) for _ in range(5)])
def test_finite_repeat(self):
"""ensure limited repeat when times is provided"""
r = mi.repeatfunc(lambda: 5, times=5)
self.assertEqual([5, 5, 5, 5, 5], list(r))
def test_added_arguments(self):
"""ensure arguments are applied to the function"""
r = mi.repeatfunc(lambda x: x, 2, 3)
self.assertEqual([3, 3], list(r))
def test_null_times(self):
"""repeat 0 should return an empty iterator"""
r = mi.repeatfunc(range, 0, 3)
self.assertRaises(StopIteration, lambda: next(r))
class PairwiseTests(TestCase):
"""Tests for ``pairwise()``"""
def test_base_case(self):
"""ensure an iterable will return pairwise"""
p = mi.pairwise([1, 2, 3])
self.assertEqual([(1, 2), (2, 3)], list(p))
def test_short_case(self):
"""ensure an empty iterator if there's not enough values to pair"""
p = mi.pairwise("a")
self.assertRaises(StopIteration, lambda: next(p))
class GrouperTests(TestCase):
"""Tests for ``grouper()``"""
def test_even(self):
"""Test when group size divides evenly into the length of
the iterable.
"""
self.assertEqual(
list(mi.grouper(3, 'ABCDEF')), [('A', 'B', 'C'), ('D', 'E', 'F')]
)
def test_odd(self):
"""Test when group size does not divide evenly into the length of the
iterable.
"""
self.assertEqual(
list(mi.grouper(3, 'ABCDE')), [('A', 'B', 'C'), ('D', 'E', None)]
)
def test_fill_value(self):
"""Test that the fill value is used to pad the final group"""
self.assertEqual(
list(mi.grouper(3, 'ABCDE', 'x')),
[('A', 'B', 'C'), ('D', 'E', 'x')]
)
class RoundrobinTests(TestCase):
"""Tests for ``roundrobin()``"""
def test_even_groups(self):
"""Ensure ordered output from evenly populated iterables"""
self.assertEqual(
list(mi.roundrobin('ABC', [1, 2, 3], range(3))),
['A', 1, 0, 'B', 2, 1, 'C', 3, 2]
)
def test_uneven_groups(self):
"""Ensure ordered output from unevenly populated iterables"""
self.assertEqual(
list(mi.roundrobin('ABCD', [1, 2], range(0))),
['A', 1, 'B', 2, 'C', 'D']
)
class PartitionTests(TestCase):
"""Tests for ``partition()``"""
def test_bool(self):
"""Test when pred() returns a boolean"""
lesser, greater = mi.partition(lambda x: x > 5, range(10))
self.assertEqual(list(lesser), [0, 1, 2, 3, 4, 5])
self.assertEqual(list(greater), [6, 7, 8, 9])
def test_arbitrary(self):
"""Test when pred() returns an integer"""
divisibles, remainders = mi.partition(lambda x: x % 3, range(10))
self.assertEqual(list(divisibles), [0, 3, 6, 9])
self.assertEqual(list(remainders), [1, 2, 4, 5, 7, 8])
class PowersetTests(TestCase):
"""Tests for ``powerset()``"""
def test_combinatorics(self):
"""Ensure a proper enumeration"""
p = mi.powerset([1, 2, 3])
self.assertEqual(
list(p),
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
)
class UniqueEverseenTests(TestCase):
"""Tests for ``unique_everseen()``"""
def test_everseen(self):
"""ensure duplicate elements are ignored"""
u = mi.unique_everseen('AAAABBBBCCDAABBB')
self.assertEqual(
['A', 'B', 'C', 'D'],
list(u)
)
def test_custom_key(self):
"""ensure the custom key comparison works"""
u = mi.unique_everseen('aAbACCc', key=str.lower)
self.assertEqual(list('abC'), list(u))
def test_unhashable(self):
"""ensure things work for unhashable items"""
iterable = ['a', [1, 2, 3], [1, 2, 3], 'a']
u = mi.unique_everseen(iterable)
self.assertEqual(list(u), ['a', [1, 2, 3]])
def test_unhashable_key(self):
"""ensure things work for unhashable items with a custom key"""
iterable = ['a', [1, 2, 3], [1, 2, 3], 'a']
u = mi.unique_everseen(iterable, key=lambda x: x)
self.assertEqual(list(u), ['a', [1, 2, 3]])
class UniqueJustseenTests(TestCase):
"""Tests for ``unique_justseen()``"""
def test_justseen(self):
"""ensure only last item is remembered"""
u = mi.unique_justseen('AAAABBBCCDABB')
self.assertEqual(list('ABCDAB'), list(u))
def test_custom_key(self):
"""ensure the custom key comparison works"""
u = mi.unique_justseen('AABCcAD', str.lower)
self.assertEqual(list('ABCAD'), list(u))
class IterExceptTests(TestCase):
"""Tests for ``iter_except()``"""
def test_exact_exception(self):
"""ensure the exact specified exception is caught"""
l = [1, 2, 3]
i = mi.iter_except(l.pop, IndexError)
self.assertEqual(list(i), [3, 2, 1])
def test_generic_exception(self):
"""ensure the generic exception can be caught"""
l = [1, 2]
i = mi.iter_except(l.pop, Exception)
self.assertEqual(list(i), [2, 1])
def test_uncaught_exception_is_raised(self):
"""ensure a non-specified exception is raised"""
l = [1, 2, 3]
i = mi.iter_except(l.pop, KeyError)
self.assertRaises(IndexError, lambda: list(i))
def test_first(self):
"""ensure first is run before the function"""
l = [1, 2, 3]
f = lambda: 25
i = mi.iter_except(l.pop, IndexError, f)
self.assertEqual(list(i), [25, 3, 2, 1])
class FirstTrueTests(TestCase):
"""Tests for ``first_true()``"""
def test_something_true(self):
"""Test with no keywords"""
self.assertEqual(mi.first_true(range(10)), 1)
def test_nothing_true(self):
"""Test default return value."""
self.assertIsNone(mi.first_true([0, 0, 0]))
def test_default(self):
"""Test with a default keyword"""
self.assertEqual(mi.first_true([0, 0, 0], default='!'), '!')
def test_pred(self):
"""Test with a custom predicate"""
self.assertEqual(
mi.first_true([2, 4, 6], pred=lambda x: x % 3 == 0), 6
)
class RandomProductTests(TestCase):
"""Tests for ``random_product()``
Since random.choice() has different results with the same seed across
python versions 2.x and 3.x, these tests use highly probably events to
create predictable outcomes across platforms.
"""
def test_simple_lists(self):
"""Ensure that one item is chosen from each list in each pair.
Also ensure that each item from each list eventually appears in
the chosen combinations.
Odds are roughly 1 in 7.1 * 10e16 that one item from either list will
not be chosen after 100 samplings of one item from each list. Just to
be safe, better use a known random seed, too.
"""
nums = [1, 2, 3]
lets = ['a', 'b', 'c']
n, m = zip(*[mi.random_product(nums, lets) for _ in range(100)])
n, m = set(n), set(m)
self.assertEqual(n, set(nums))
self.assertEqual(m, set(lets))
self.assertEqual(len(n), len(nums))
self.assertEqual(len(m), len(lets))
def test_list_with_repeat(self):
"""ensure multiple items are chosen, and that they appear to be chosen
from one list then the next, in proper order.
"""
nums = [1, 2, 3]
lets = ['a', 'b', 'c']
r = list(mi.random_product(nums, lets, repeat=100))
self.assertEqual(2 * 100, len(r))
n, m = set(r[::2]), set(r[1::2])
self.assertEqual(n, set(nums))
self.assertEqual(m, set(lets))
self.assertEqual(len(n), len(nums))
self.assertEqual(len(m), len(lets))
class RandomPermutationTests(TestCase):
"""Tests for ``random_permutation()``"""
def test_full_permutation(self):
"""ensure every item from the iterable is returned in a new ordering
15 elements have a 1 in 1.3 * 10e12 of appearing in sorted order, so
we fix a seed value just to be sure.
"""
i = range(15)
r = mi.random_permutation(i)
self.assertEqual(set(i), set(r))
if i == r:
raise AssertionError("Values were not permuted")
def test_partial_permutation(self):
"""ensure all returned items are from the iterable, that the returned
permutation is of the desired length, and that all items eventually
get returned.
Sampling 100 permutations of length 5 from a set of 15 leaves a
(2/3)^100 chance that an item will not be chosen. Multiplied by 15
items, there is a 1 in 2.6e16 chance that at least 1 item will not
show up in the resulting output. Using a random seed will fix that.
"""
items = range(15)
item_set = set(items)
all_items = set()
for _ in range(100):
permutation = mi.random_permutation(items, 5)
self.assertEqual(len(permutation), 5)
permutation_set = set(permutation)
self.assertLessEqual(permutation_set, item_set)
all_items |= permutation_set
self.assertEqual(all_items, item_set)
class RandomCombinationTests(TestCase):
"""Tests for ``random_combination()``"""
def test_pseudorandomness(self):
"""ensure different subsets of the iterable get returned over many
samplings of random combinations"""
items = range(15)
all_items = set()
for _ in range(50):
combination = mi.random_combination(items, 5)
all_items |= set(combination)
self.assertEqual(all_items, set(items))
def test_no_replacement(self):
"""ensure that elements are sampled without replacement"""
items = range(15)
for _ in range(50):
combination = mi.random_combination(items, len(items))
self.assertEqual(len(combination), len(set(combination)))
self.assertRaises(
ValueError, lambda: mi.random_combination(items, len(items) + 1)
)
class RandomCombinationWithReplacementTests(TestCase):
"""Tests for ``random_combination_with_replacement()``"""
def test_replacement(self):
"""ensure that elements are sampled with replacement"""
items = range(5)
combo = mi.random_combination_with_replacement(items, len(items) * 2)
self.assertEqual(2 * len(items), len(combo))
if len(set(combo)) == len(combo):
raise AssertionError("Combination contained no duplicates")
def test_pseudorandomness(self):
"""ensure different subsets of the iterable get returned over many
samplings of random combinations"""
items = range(15)
all_items = set()
for _ in range(50):
combination = mi.random_combination_with_replacement(items, 5)
all_items |= set(combination)
self.assertEqual(all_items, set(items))
class NthCombinationTests(TestCase):
def test_basic(self):
iterable = 'abcdefg'
r = 4
for index, expected in enumerate(combinations(iterable, r)):
actual = mi.nth_combination(iterable, r, index)
self.assertEqual(actual, expected)
def test_long(self):
actual = mi.nth_combination(range(180), 4, 2000000)
expected = (2, 12, 35, 126)
self.assertEqual(actual, expected)
def test_invalid_r(self):
for r in (-1, 3):
with self.assertRaises(ValueError):
mi.nth_combination([], r, 0)
def test_invalid_index(self):
with self.assertRaises(IndexError):
mi.nth_combination('abcdefg', 3, -36)
class PrependTests(TestCase):
def test_basic(self):
value = 'a'
iterator = iter('bcdefg')
actual = list(mi.prepend(value, iterator))
expected = list('abcdefg')
self.assertEqual(actual, expected)
def test_multiple(self):
value = 'ab'
iterator = iter('cdefg')
actual = tuple(mi.prepend(value, iterator))
expected = ('ab',) + tuple('cdefg')
self.assertEqual(actual, expected)